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BACKGROUND: Maternal exposure to environmental chemicals during pregnancy can influence various maternal and offspring health parameters.
Modification of maternal metabolism by environmental exposure may be an important pathway for these impacts. However, there is limited evidence
regarding exposure to a wide array of chemicals and the metabolome during pregnancy.

OBJECTIVES:We investigated the relationship between the urinary exposome and metabolome during pregnancy.
METHODS: Urine samples were collected in the first and third trimesters from 1,024 pregnant women recruited in prenatal clinics in Jiangsu Province,
China. The exposome was analyzed using the first trimester sample with ultra-high performance liquid chromatography–high resolution accurate
mass spectrometry (UHPLC-HRMS) and inductively coupled plasma mass spectrometry. The metabolome was analyzed using the third trimester
sample with UHPLC-HRMS. We evaluated associations between each of 106 exposures in the first trimester with 139 metabolites in the third
trimester.
RESULTS: We identified 1,245 significant associations (p<3:39× 10−6, Bonferroni correction) between chemical exposures and maternal metabolism
during pregnancy. Among elements, the largest number of the significant metabolic associations were observed for magnesium, and among organic
compounds, for 4-tert-octylphenol. We used exposome–metabolome associations to explore mechanisms underlying published associations between
prenatal chemical exposures and offspring health outcomes. This integration of the literature with our results suggests that reported associations
between 10 analytes and birth weight, gestational age, fat deposition, neurobehavioral development, immunological disorders, and hypertension may
be partially mediated by metabolites associated with these exposures.

DISCUSSION: This high-dimensional analysis of the urinary exposome and metabolome identified many associations between chemical exposures and
maternal metabolism during pregnancy. Integration of these associations with the literature on health outcomes of exposure suggests that environmen-
tal modulation of the maternal metabolome may play a role in the association between prenatal exposure on pregnancy and child health outcomes.
https://doi.org/10.1289/EHP9745

Introduction
Pregnancy is a critical period for maternal and offspring health.
The developing fetus and the pregnant mother are both especially
susceptible to exposure to environmental chemicals (Barr et al.
2007). Many chemicals can pass through the placenta into the fe-
tus (Barr et al. 2007). Exposures during pregnancy may lead to
adverse outcomes in both mother (Wang et al. 2020) and fetus
(Buckley et al. 2016; Chiu et al. 2018; Laine et al. 2015; Wang
et al. 2019) that manifest both early and much later in life.

Most studies of the impact of prenatal exposure have exam-
ined a small number of specific chemicals (Tsai et al. 2021). There
is growing interest in examining a larger range of exposures at
once. This has led to the concept of measuring the chemical expo-
some to take a comprehensive and agnostic approach toward
assessment of chemical exposures (Vermeulen et al. 2020).
Application of the exposome concept to pregnancy would enable
the assessment of the burden of exposure to a larger range of

chemicals, which is important because vulnerability to environ-
mental exposures is enhanced in the prenatal period (Vrijheid et al.
2014).

Environmental epidemiological studies have identified many
associations between exposure to individual chemicals during
pregnancy and maternal (Wang et al. 2020) and offspring health
outcomes (Buckley et al. 2016; Chiu et al. 2018; Laine et al.
2015; Wang et al. 2019), but the underlying mechanisms remain
largely unknown. Metabolomics systematically profiles metabo-
lites, which are the endogenous small molecule substrates, inter-
mediates, and products of cell metabolism in a biological sample
(Nicholson and Lindon 2008). This comprehensive approach can
identify metabolic signatures of chemical exposures that could
play a role in disease etiology (Ramirez et al. 2013). Notably,
metabolomics has been recognized as an omics technology that
may be most closely relevant to disease phenotypes (Guijas et al.
2018). For example, metabolomic platforms assess clinically ap-
plicable indicators, such as steroid hormones and cholesterol
(Kliesch 2014). Moreover, the small molecules interrogated by
metabolomics approaches include nutrients and their metabolites
that are involved in disease pathogenesis in humans and animals
(Wang et al. 2011a, 2011b). Dramatic metabolic changes take
place in pregnancy, including increased protein synthesis from
amino acids to enable fetal growth and steroid hormone synthesis
to support maintenance of the pregnancy (Duggleby and Jackson
2002; Noyola-Martínez et al. 2019). Therefore, metabolomics is
of increasing interest in understanding both the normal physiol-
ogy and pathology of pregnancy (Souza et al. 2019). In genetic
studies, metabolomics has been used to suggest mechanisms
that may underlie associations with health outcomes in humans
(Suhre et al. 2011).

Application of exposomic and metabolomic technologies to-
gether in pregnancy could identify metabolomic signatures of a
broad range of exposures that could shed light on potential health
effects of these exposure, as well as their underlying mechanisms.
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However, to our knowledge, there are no published studies dedi-
cated to this design. Exposures early in pregnancy that impact the
metabolome across pregnancy may be especially injurious to the
fetus (Dencker and Eriksson 1998). Taking advantage of longitu-
dinal data to examine associations between exposures in the first
trimester and the metabolome in the third trimester has the poten-
tial to explore causal associations. We conducted a chemical
exposome- and metabolome-wide association study in a cohort of
pregnant women. We comprehensively examined various chemi-
cal exposures in the first trimester and maternal metabolites in
the third trimester during pregnancy to identify environmentally
determined urinary metabotypes. Similar to an approach used to
examine the role of metabolomics in genetic associations with
health outcomes (Suhre et al. 2011), we integrated associations
identified in the literature on health effects of the implicated ana-
lytes in offspring to exploring potential mechanisms underlying
diseases and biological process related to chemical exposure dur-
ing pregnancy.

Methods

Study Participants and Sample Collection
From April 2013 to July 2016, 1,532 pregnant women were
recruited in the first trimester of pregnancy from the prenatal clin-
ics during their first visits for the physical examinations during
pregnancy in Jiangsu Province, China. Women eligible for enroll-
ment were >18 years of age and reported neither assisted repro-
duction nor human immunodeficiency virus infection. Midstream
urine samples were collected from participants in their first and
third trimesters of pregnancy and stored at −20�C. The urine
samples were collected in the morning at ∼ 0800–0930 hours. A
total of 1,453 women provided a urine sample in the first trimes-
ter, and 1,084 of these women also provided a urine sample in
the third trimester. After excluding the 60 women with insuffi-
cient sample volume, 1,024 women with complete demographic
information and sufficient urine were available for organic expo-
some analysis in the first trimester and metabolome analysis in
the third trimester (Figure S1). The study design is shown in
Figure 1. Written informed consent was obtained from each par-
ticipating woman, and this study was approved by the institu-
tional review board of Nanjing Medical University.

Maternal Interviews
Questionnaires administered to each participant in person in the
first, second, and third trimesters elicited information on age, eth-
nicity, parity, height, weight before pregnancy, smoking, alcohol
consumption, and education level. The options on the question-
naire were to select Han, who are the majority in our study area,
or to write in other ethnicities. Only one ethnicity could be
selected. Questions on fixed characteristics, such as age, ethnic-
ity, parity, height, weight before pregnancy, and education level
were asked at baseline. The questions on changeable characteris-
tics, such as smoking and alcohol consumption status, were asked
at every visit. Maternal body mass index (BMI) was calculated as
self-reported weight before pregnancy (in kilograms) divided by
height (in meters squared). Information about age, parity, height,
and weight before pregnancy was confirmed by medical records.
The medical records were reviewed for all women. If the infor-
mation differed, we contacted the women for clarification.

Organic Exposome Analysis
The exposome includes both organic and inorganic chemicals
(i.e., elements). The exposome refers to chemicals with no known
metabolic function in the human body or that are not natural

components of human body (pollutants and nonnutritive plant
chemicals) (Misra 2020). Analysis of the organic exposome was
conducted with ultra-high performance liquid chromatography
Ultimate 3000 system (Dionex, Germering, Germany)–QExactive
hybrid quadrupole-orbitrap high resolution mass spectrometry
(UHPLC-QE-HRMS) (Thermo Fisher Scientific), which covered
major kinds of bioactive environmental chemicals, including pesti-
cides, antimicrobial agents, phthalates, phenols, phytoestrogens,
parabens, food metabolites, smoking metabolites, fire retardants,
personal care products, and perfluorochemicals (CDC 2015,
2019). The sample preparation, instrumental analysis, chemical
identification and relative levels detection and normalization were
performed as previously described (Hu et al. 2016). Briefly, the
urine sample was mixed with methanol and a set of stable isotope-
labeling internal standards, such as creatinine-d3, nicotinic-d4
acid, N-(4-hydroxyphenyl)acetamide-2,2,2-d3, and N-benzoyl-
d5-glycine. After centrifugation, the supernatant was dried in
Centrivap and reconstituted before instrumental analysis. The
instrument was set at a 70,000 resolution with full-scan acquisition
ranging from m/z 70 to 1,050. A multistep gradient was used with
mobile phase A of 0.1% formic acid in ultra-pure water and mobile
phaseB of acetonitrile acidifiedwith 0.1% formic acid; the gradient
operated at a flow rate of 0:4 mL=min over a run time of 15 min.
All samples were analyzed in random fashion to avoid bias from
the injection order. The chemical identification was based on
the accurate mass and the retention time compared with the com-
mercial standards using the author-constructed library with
TraceFinder (version 3.1; Thermo Fisher Scientific). The relative
levels of each chemical were normalized by a ratio relative to stable
isotope-labeling internal standard peak areas (Chen et al. 2014).

Figure 1. Study Design. Note: ICP-MS, inductively coupled plasma mass
spectrometry; UHPLC-QE-HRMS, ultra-high performance liquid chroma-
tography–Q Exactive hybrid quadrupole-orbitrap high resolution mass
spectrometry.
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Quality control and blank samples were analyzed together with
study samples. A total of 1,024 urine samples in the first trimester
were analyzed (Figure S1).

Inorganic Exposome Analysis
The elementomics quantitative analysis was performed with an
iCAP Qc inductively coupled plasma mass spectrometry (ICP-
MS) instrument (Thermo Scientific) according to our previous
report (Silver et al. 2018). Briefly, 60 lL of urine and 150 lL ni-
tric acid were mixed for 3 h, and the samples were mixed with
water to the volume of 1:8 mL. After centrifugation, the superna-
tant was subjected to ICP-MS analysis. The limit of detection
was defined as three times of the standard deviation (SD) of the
obtained concentrations in the blank with 10 replicates. Quality
control and blank samples were analyzed with study samples.
Because of the amount of sample available, a total of 963 urine
samples in the first trimester were analyzed for the inorganic
exposome profiling.

Metabolomics Analysis
The metabolome refers to organic chemicals with known meta-
bolic function in the human body or that are natural components
of the human body (Rinschen et al. 2019). Analysis of the metab-
olome in urine with UHPLC-QE-HRMS was performed as previ-
ously described (Hu et al. 2016). The sample preparation,
instrumental analysis, chemical identification, and relative levels
detection and normalization were conducted according to the
standard procedure of organic chemical profiling described above
in the “Organic Exposome Analysis” section. Quality control and
blank samples were analyzed in parallel with study samples. A
total of 1,024 urine samples in the third trimester were analyzed
(Figure S1).

Statistical Analysis
Urinary creatinine (CR) concentrations obtained by UHPLC-QE-
HRMS analysis were used for correcting the variations of concen-
trations caused by fluctuations in urine concentration by dividing
the exposomic and metabolomic analyte by CR; the adjustment of
urinary chemical concentration by CR is useful not only for envi-
ronmental chemical exposure data but also for metabolome data
(Blydt-Hansen et al. 2014). The chemicals with a detection rate of
>5% were included in the statistical analysis. The 106 exposome
chemicals retained for statistical analysis included 59 organic
chemicals and 47 elements. A total of 139 metabolites were
retained for statistical analysis. The inclusion and classification
of organic exposome were based on data from PubChem (https://
pubchem.ncbi.nlm.nih.gov/), Human Metabolome Database
(HMDB; https://hmdb.ca/) and Kyoto Encyclopedia of Genes and
Genomes (KEGG; https://www.genome.jp/kegg/). The classifica-
tion of elements was based on the reference Maret and Copsey
(2012). The inclusion and classification of metabolomewere based
on data from HMDB and KEGG. When metabolites belonged to
more than one classification, the classification was selected based
on the relevance and the simplification of classification for data
interpretation. The comparison of elements in our study and those
in a nationally representative U.S. sample of nonsmoking adult
females reported in the U.S. National Exposure Report was based
on whether the urinary geometric mean of each element in our
study was within the 95% confidence interval of the corresponding
urinary geometric mean in the U.S. National Exposure Report
(CDC 2019). The exposome data of ICP-MS and UPLC-QE were
next categorized before analysis (Ernst et al. 2019). When the
detection rate of a chemical exceeded 66.7%, tertiles were created.
If the detection rate of a chemical was <66:7%, the undetectable

samples were assigned to the lowest category, and the remaining
samples were divided into two equal categories. The dichotomiza-
tion of metabolite level was according to the following procedure:
If the detection rate of a metabolite was >50%, two equal catego-
ries were made; if the detection rate of a metabolite was <50%, the
undetectable samples were assigned to the low category, and the
remaining sampleswere assigned to high category.

We used polytomous logistic regression to explore the associa-
tions between exposome and metabolome with the adjustment for
maternal age, BMI before pregnancy, parity, and education
(Biesheuvel et al. 2008). Because nearly all women were of Han eth-
nicity and very few (<5%) reported either smoking or drinking, these
variables were not included in models. Maternal age and BMI were
included as continuous variables; parity and education were included
as binary variables. The selection of covariates was based on the bio-
logical considerations andaccording toprevious reports (Shapiro et al.
2015).Multiple comparisonwas accounted for by theBonferroni cor-
rection for 14,734 tests (106 exposome analytes × 139metabolites,
p<3:39× 10−6). Environmentally determined urinary metabotypes
were defined as the urinary metabolites in the third trimester signi-
ficantly associated with the exposome in the first trimester
(p<3:39× 10−6 from the polytomous logistic regression models).
These environmentally determined urinary metabotypes are the
metabolites in urine that might be altered by early exposure to envi-
ronmental factors. To test the robustness of the these environmentally
determined urinary metabotypes, two kinds of sensitivity analyses
were next conducted. First, we addressed potential selection bias due
to missing data and attrition by applying inverse probability weights
(IPWs) to all models (Narduzzi et al. 2014). We considered the entire
population (all the 1,532 pregnant women) and calculated the proba-
bility of nonmissing information using a logistic regression model,
where the response was the nonmissingness and the covariates were
its possible predictors, including maternal age, BMI, parity, and edu-
cation (Tables 1 and S1). Theweight of each subject was given by the
inverse of the predicted probability. The analysis was performed only
on the nonmissing observations using theweighted polytomous logis-
tic regression model. Second, we excluded smokers and drinkers
from the population and analyzed these environmentally determined
urinary metabotypes with the same polytomous logistic regression
settings. The statistical analysis was carried out in R stats package
(version 3.6.0; R Development Core Team). Polytomous model used
nnet package (version 7.3.12; R Development Core Team), and IPW

Table 1. Demographic information of pregnant women in Jiangsu Province
from April 2013 to July 2016 (n=1,024).

Maternal characteristic Mean±SD or n (%)

Maternal age (y) 28:8± 3:7
Ethnicity
Han 999 (97.6)
Other 25 (2.4)

Maternal height (cm) 161:7± 5:0
Weight before pregnancy (kg) 54:9± 7:8
BMI before pregnancy (kg=m2) 21:0± 2:8
Parity
0 814 (79.5)
≥1 210 (20.5)

Education (y)
≤12 446 (43.6)
≥13 578 (56.4)

Smokinga

Yes 23 (2.2)
No 1,001 (97.8)

Alcohol consumptiona

Yes 40 (3.9)
No 984 (96.1)

Note: These data were complete for all participants. BMI, body mass index.
aReported “yes” at least one time in the first, second, or third trimester.
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used ipw package (version 1.0.11; R Development Core Team).
Partial least squares-discriminant analysis (PLS-DA)was conducted
using the package Mixomics (version 6.10.9; R Development Core
Team). All the exposome data were included as the x and each
metabolite was included as y, and the default setting of the package
was used. The variable importance in the projection (VIP) in PLS-
DA was calculated to find significant associations with a VIP
score>1. PLS-DA was used for identifying the relationships
between all chemicals in the exposome and each metabolite in one
model, and the output VIP score>1 indicated that this chemical in
the exposome had above-average influence on this metabolite and
that their association was potentially important from the exposome
perspective. The metabolomic pathways were visualized with iPath
(https://pathways.embl.de/) and the MetScape (version 3.1.3;
National Center for Integrative Biomedical Informatics) plugin for
Cytoscape software (version: 3.6.1; Cytoscape Consortium). The
change rate was calculated by the number of significant metabolites
divided by the number of metabolites profiled in this major meta-
bolic pathway for themajormetabolic pathway enrichment.

Literature Search for Interpreting Health Implications of
Identified Associations
We took a similar approach to evaluate the health implications of
identified associations between exposures and metabolites as was
taken in a study that integrated genome-wide association study
(GWAS) findings with metabolomics to provide insights into
metabolic mechanisms for GWAS associations with common dis-
eases (Suhre et al. 2011). We searched for studies from the data-
bases of PubMed and Google Scholar published before May
2020. Search terms included pregnancy, prenatal and perinatal, a
list of the standard names of chemicals and metabolites with sig-
nificant associations in our study, and various maternal and off-
spring health parameters, such as gestational age, birth weight,
cardiovascular disease, metabolic disorder, neurodevelopment
abnormality, neurogenesis, immunological disorder, reproduction
abnormality, and cancer. A manual search based on the database
results was also conducted. This literature search was intended to
provide a current understanding about whether and how the expo-
sure or the presence of a metabolite during pregnancy was

associated with the abovementioned health outcomes. Inclusion
of literature in our study was based on the following criteria: a)
the publication reported a statistically significant association
between an exogenous chemical or a metabolite during pregnancy
and the health outcome, b) the associations and their directions in
the included publication were reliable and supported by other inde-
pendent biological evidence to avoid including controversial associ-
ations that might be contrary to consensus and contain publication
bias through careful consideration of true and nontrue relationships,
and c) the directions of associations between maternal exposure to
exogenous chemicals and outcomes from literature, between mater-
nal metabolites and outcomes from literature, and between maternal
exposure to exogenous chemicals and metabolites identified in our
study were consistent for explaining the exposome–metabolome-
outcome pathway. The explanation of the logic is shown in Figure
S2. Three reviewers were involved in study selection, data extrac-
tion, and validity assessment, which helped minimize the potential
for bias and error. Disagreements were resolved by discussion, and
all three reviewers came to consensus.

Results

Demographic Information
The 1,024 pregnant women ranged in age from 19 to 43 y. They
were generally lean (mean BMI before pregnancy= 21:0,
SD=2:8). Nearly four-fifths (79.5%) of the mothers were primi-
parous, and more than half (56.4%) had received an education of
above high school level (Table 1).

Prevalence of Exposure to Exposome Analytes
The coverage of urinary exposome and metabolome can be found
in Figure 2, Table S2, and Excel Table S1. The exposome detec-
tion results are summarized in Figure 3 and Table S2. A total of
21 classes of organic chemicals and elements were identified in
the first trimester urine. Among organic chemicals, median de-
tectable rates were above or near 50% for organophosphate pesti-
cides, amide pesticides, phthalates, parabens, nicotine and its
breakdown product, the perfluorochemical perfluorobutane

Amino acid metabolism

Carbohydrate metabolism

Lipid metabolism

Nucleotide metabolism

Metabolism of cofactors and vitamins

57

15

32

22

13

Macro element
Trace essential element

Potential toxic element

Other element

Pesticide(Organochlorine)Pesticide(Organophosphate)
Pesticide(Carbamate)

Pesticide(Pyrethroid)
Pesticide(Triazine)

Pesticide(Amide)
Pesticide(Dinitroaniline)

Antimicrobial agent

Phthalate

Phenol

Paraben
Nicotine and its related chemical

Perfluorochemical
Personal care product

Plasticizer and fire retardant
Phytoestrogen

Plant metabolite

11

4

30

833
2

3
21

7

5

4

2
2
11

1
4

10 2

BA

Figure 2. The coverage of the exposome and the metabolome. (A) The distribution of exposome based on chemical/element classification. (B) The distribution
of metabolome based on metabolism classification. Among organic chemicals detected by the ultra-high performance liquid chromatography–Q Exactive
hybrid quadrupole-orbitrap high resolution mass spectrometry platform, we defined the exposome as those exposures with no known metabolic function in the
human body or which are not natural components of human body (pollutants and nonnutritive plant chemicals, organic exposome). The exposome also includes
elements (inorganic exposome). The definition of the metabolome is organic chemicals with known metabolic function in the human body or which are natural
components of the human body. The inclusion and classification of organic exposome were based on data from PubChem (https://pubchem.ncbi.nlm.nih.gov/),
HMDB (https://hmdb.ca/), and KEGG (https://www.genome.jp/kegg/). The classification of elements was based on the reference Maret and Copsey (2012).
The inclusion and classification of metabolome were based on data from HMDB and KEGG. The data underlying this figure can be found in Excel Table S1.
Note: HMDB, Human Metabolome Database; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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sulfonic acid, the personal care product glycolic acid, and the
plasticizer and fire retardant triphenylphosphate, and various phy-
toestrogens (Figure 3A). Among the elements, the macro ele-
ments, such as calcium, showed the highest concentrations,
whereas a large number of unclassified elements showed the low-
est concentrations (Figure 3B). Only 1/106 (<1%) exposome var-
iables had a detection rate of <10% (actual value of 8.5%,
chloroneb). The detection rate was generally higher for the
metabolome analytes than for the exposome with only 1/139
(0.7%) metabolome variables with a detection rate of <10%
(actual value of 7.9%, ursodeoxycholic acid). When compared
with the urinary concentrations of elements in nationally repre-
sentative U.S. nonsmoking adult female populations reported in
the U.S. National Exposure Report (CDC 2019), the elements
manganese, arsenic (As), lead, strontium, cesium, barium (Ba),
uranium (U), and thallium were higher in our study; the elements
cobalt, molybdenum (Mo), cadmium, and tin were similar; and
antimony was lower (CDC 2019) (Table S2).

Results of the Exposome and Metabolome-Wide Association
Analysis: Environmentally Determined Urinary
Metabotypes
As shown in Figures 4 and S3 and Excel Table S2, among 14,734
associations tests, after Bonferroni correction, there were 1,245
significant associations between the exposome in the first trimester
and the urinarymetabolome in the third trimester (Excel Table S2).

All of the 1,245 significant associations remained significant in the
sensitivity analysis, using IPW for addressing potential selection
bias (Bonferroni correction for 1,245 tests cutoff, p<4:02× 10−5).
A total of 1,244 of the 1,245 significant associations remained
significant in a sensitivity analysis by excluding 57 smokers
and drinkers (Bonferroni correction cutoff for 1,245 tests,
p<4:02× 10−5), but the association between Ba and capric acid
did not reach the Bonferroni threshold (p=1:37× 10−4) (Excel
Table S2). By using the exposure mixtures analysis method, we
found 1,235/1,245 significant associations (99.2%) remained sig-
nificant with VIP>1 in the PLS-DA (Excel Table S2). Given the
robustness of the results, all the 1,245 significant associations were
considered as environmentally determined urinary metabotypes
and put into the following analysis.

We summarized the environmentally determined urinary
metabotypes based on classes of organic chemicals and elements
(Figure 5). Among the 106 exposome chemicals, 56 exposome
chemicals (24 elements and 32 organic chemicals) were signifi-
cantly associated with at least one metabolite in the metabolome.
The classes are described in Figure 2 and Excel Table S1. The
macro elements, atrazine and its metabolite deisopropyl-atrazine,
and organophosphate pesticides showed relatively consistent
associations with the urinary metabolome in classes of exposures
(see a subset of results in Figure 4 and all results in Figure S3).
There were metabolic associations in almost all classes of expo-
sures. Generally, among all the elements, the macro element,
magnesium (Mg) had the largest number of significant metabolic
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Figure 3. The analytical results of the exposome in urine in the first trimester of pregnant women in Jiangsu Province from April 2013 to July 2016. (A) The
detectable rates of exposome based on chemical classification (n=1,024). (B) The element concentrations. The data are presented as interquartile range box
plots (n=963). The top and bottom of each box represents the 75th and 25th percentile, respectively. Also shown are the median (—) separating the inner
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element data was ordered by the concentration level and atomic number. The data underlying this figure can be found in Table S2. Note: a, macro element;
b, trace essential element; c, other element; d, potential toxic element; LOD, limit of detection.
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associations (38), followed by titanium (Ti) with the second larg-
est number (34). Among the trace elements, Mo had the largest
number of metabolic associations (33). Among toxic elements,
As had the largest number of metabolic associations (29). Among
the organic compounds, the largest number (73) of metabolic
associations was seen for 4-tert-octylphenol. Among the pesti-
cides, silafluofen (a pyrethroid) had the largest number of meta-
bolic associations (69).

Based on the major metabolic pathway classification, the
change rates were generally highest for carbohydrate metabolism
among inorganic and organic exposome-determined urinary
metabotypes (Figure 5). We next summarized the environmentally

determined urinary metabotypes based on the metabolic network
(Figures 6 and S4). Among the 139 metabolites, 96 metabolites
were significantly associated with at least one exposome chemical.
The enrichment was based on the comparison between the propor-
tion of the number of significant associated exposome chemicals in
four classifications—a) macro and trace essential element, b)
potential toxic and other element, c) organic pollutant, and d) plant
metabolite and phytoestrogen) for each metabolite and the propor-
tion of the original number of detected exposome chemicals in
these same four classifications (for original proportion, see Excel
Table S1). Generally, organic pollutants were disproportionally
associated with the urinary metabolome. Specifically, within

*

*
*
*

*
*

*

*

*
*

*

*
*

*

*

*

*
*

*

*
*
*
*

*

*

*

*

*

*

*
*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*
*
*

*

*
*

*

*

*

*

*

*
*
*

*

*

*

*

*
*

*

*
*

*

*

*
*

*
*
*

*
*

*
*
*
*

*
*
*
*
*
*
*
*

*

*

*

*
*
*

*

*
*

*

*
*

*
*

*

*
*
*
*

*
*

*
*
*

*

*

*
*
*

*
*

*
*

*

*

*

*

*
*
*

*

*

*
*
*

*
*
*

*

−4
−3
−2
−1
0
1
2
3
4

Citrate cycle / TCA cycle

Glucosamine 6-phosphate
N-Acetyl-L-alanine
L-Aspartyl-L-phenylalanine
L-Proline
N-Acetylglutamic acid
N-Acetylglutamine
Spermine
5’-Methylthioadenosine
Homocysteine
L-Cystine
N-Acetyl-L-cysteine
N-Acetyl-L-methionine
Oxidized glutathione
Pyroglutamic acid
4-Aminohippuric acid
Acetylglycine
Glycine
L-Serine
3-Methylhistidine
Carnosine
Histamine
L-Histidine
5-Hydroxylysine
L-Lysine
N-Alpha-acetyllysine
Pipecolic acid
2-Hydroxyphenylacetic acid
2-Phenylacetamide
Hippuric acid
L-3-Phenyllactic acid
L-Phenylalanine
N-Acetyl-L-phenylalanine
Phenylglyoxylic acid
Quinic acid
1H-Indole-3-acetamide
3-Hydroxyanthranilic acid
5-Methoxytryptamine
5-Methoxytryptophol
Indole-3-methyl acetate
Indoleacetic acid
L-Tryptophan
Quinaldic acid
Serotonin
Tryptamine
Tryptophanol
Xanthurenic acid
3-Hydroxyphenylacetic acid
Gentisic acid
Iodotyrosine
L-Dopa
N-Acetyl-L-tyrosine
Thyroxine
L-Leucine
N-Acetylleucine
N-Acetylvaline
Norvaline
Hypotaurine
Citric acid
Fumaric acid
Isocitric acid
Succinic acid
D-Glyceraldehyde 3-phosphate
Tartaric acid
Gluconolactone
Glyceraldehyde
D-Glucuronic acid
Ascorbic acid
D-Glucaric acid
D-Glucurono-6,3-lactone
N-Acetylneuraminic acid
Sorbitol
Glucose 6-phosphate

Prostaglandin E2
Docosahexaenoic acid
2-Hydroxycaproic acid
2-Hydroxypalmitic Acid
Capric acid
Dodecanedioic acid
Dodecanoic acid
Glutaconic acid
Hexadecanedioic acid
L-Acetylcarnitine
L-Carnitine
L-Palmitoylcarnitine
Methylglutaric acid
Octadecanamide
Tetradecanedioic acid
2-Hydroxyestrone
2-Methoxyestradiol
Androstenedione
Cholesterol
Cortisol
Estriol
Estrone
Cholic acid
Deoxycholic acid
Taurocholic acid
Taurodeoxycholic acid
Ursodeoxycholic acid
Sphingosine
Glycerophosphocholine
LysoPC(16:0)
N-Oleoylethanolamine
Trimethylamine N-oxide
3'-AMP
3-Methyladenine
3-Methylxanthine
Adenine
Adenosine
Allantoin
Cyclic AMP
Deoxyinosine
Guanine
Inosine
Inosinic acid
Oxalic acid
Theophylline
Xanthosine
5-Hydroxymethyldeoxyuridine
Beta-Alanine
Cytidine
Cytosine
Deoxycytidine
Thymine
Ureidopropionic acid
Uridine
Neopterin
(R)-lipoic acid
Niacinamide
Nicotinic acid
Pantothenol
Bilirubin
Retinal
Rhamnose
Riboflavin
Thiamine
4-Hydroxybenzoic acid
Pyridoxal
Pyridoxine

Mg Ca

Mg Ca

IM
P
TCP

PHO

a

b

c

d

e

f

g

h

i

j

k

l

m
n
o
p
q
r
s
t

u
v

w

x

y

z

aa
ab

ac

ad

ae
af
ag
ah
ai
aj
ak
al

an
am

Am
ino acid m

etabolism

Prostaglandin E2
Docosahexaenoic acid
2-Hydroxycaproic acid
2-Hydroxypalmitic Acid
Capric acid
Dodecanedioic acid
Dodecanoic acid
Glutaconic acid
Hexadecanedioic acid
L-Acetylcarnitine
L-Carnitine
L-Palmitoylcarnitine
Methylglutaric acid
Octadecanamide
Tetradecanedioic acid
2-Hydroxyestrone
2-Methoxyestradiol
Androstenedione
Cholesterol
Cortisol
Estriol
Estrone
Cholic acid
Deoxycholic acid
Taurocholic acid
Taurodeoxycholic acid
Ursodeoxycholic acid
Sphingosine
Glycerophosphocholine
LysoPC(16:0)
N-Oleoylethanolamine
Trimethylamine N-oxide
3'-AMP
3-Methyladenine
3-Methylxanthine
Adenine
Adenosine
Allantoin
Cyclic AMP
Deoxyinosine
Guanine
Inosine
Inosinic acid
Oxalic acid
Theophylline
Xanthosine
5-Hydroxymethyldeoxyuridine
Beta-Alanine
Cytidine
Cytosine
Deoxycytidine
Thymine
Ureidopropionic acid
Uridine
Neopterin
(R)-lipoic acid
Niacinamide
Nicotinic acid
Pantothenol
Bilirubin
Retinal
Rhamnose
Riboflavin
Thiamine
4-Hydroxybenzoic acid
Pyridoxal
Pyridoxine

u
v

w

x

y

z

aa
ab

ac

ad

ae
af
ag
ah
ai
aj
ak
al

an
am

Nucleotide m
etabolism

Metabolism of cofactors and vitamins

A
Glucosamine 6-phosphate
N-Acetyl-L-alanine
L-Aspartyl-L-phenylalanine
L-Proline
N-Acetylglutamic acid
N-Acetylglutamine
Spermine
5’-Methylthioadenosine
Homocysteine
L-Cystine
N-Acetyl-L-cysteine
N-Acetyl-L-methionine
Oxidized glutathione
Pyroglutamic acid
4-Aminohippuric acid
Acetylglycine
Glycine
L-Serine
3-Methylhistidine
Carnosine
Histamine
L-Histidine
5-Hydroxylysine
L-Lysine
N-Alpha-acetyllysine
Pipecolic acid
2-Hydroxyphenylacetic acid
2-Phenylacetamide
Hippuric acid
L-3-Phenyllactic acid
L-Phenylalanine
N-Acetyl-L-phenylalanine
Phenylglyoxylic acid
Quinic acid
1H-Indole-3-acetamide
3-Hydroxyanthranilic acid
5-Methoxytryptamine
5-Methoxytryptophol
Indole-3-methyl acetate
Indoleacetic acid
L-Tryptophan
Quinaldic acid
Serotonin
Tryptamine
Tryptophanol
Xanthurenic acid
3-Hydroxyphenylacetic acid
Gentisic acid
Iodotyrosine
L-Dopa
N-Acetyl-L-tyrosine
Thyroxine
L-Leucine
N-Acetylleucine
N-Acetylvaline
Norvaline
Hypotaurine
Citric acid
Fumaric acid
Isocitric acid
Succinic acid
D-Glyceraldehyde 3-phosphate
Tartaric acid
Gluconolactone
Glyceraldehyde
D-Glucuronic acid
Ascorbic acid
D-Glucaric acid
D-Glucurono-6,3-lactone
N-Acetylneuraminic acid
Sorbitol
Glucose 6-phosphate

a

b

c

d

e

f

g

h

i

j

k

l

m
n
o
p
q
r
s
t

Am
ino acid m

etabolism
Carbohydrate m

etabolism

B

a
b
c
d
e
f
g
h
i
j
k

l
m
n

o
p
q
r
s
t

u
v
w
x
y
z

aa
ab

ac
ad

ae
af
ag
ah
ai
aj
ak
al
am
an

Amino acid metabolism

Lipid metabolism

Nucleotide metabolism

Carbohydrate metabolism

Metabolism of cofactors and vitamins

Carbohydrate metabolism
Alanine, aspartate and glutamate metabolism
Arginine metabolism
Cysteine and methionine metabolism
Glycine, serine and threonine metabolism
Histidine metabolism
Lysine metabolism
Phenylalanine metabolism
Tryptophan metabolism
Tyrosine metabolism
Valine, leucine and isoleucine degradation
Taurine and hypotaurine metabolism

Glycolysis / Gluconeogenesis
Glyoxylate and dicarboxylate metabolism

Pentose phosphate pathway
Pentose and glucuronate interconversions
Ascorbate and aldarate metabolism
Amino sugar and nucleotide sugar metabolism
Fructose and mannose metabolism
Starch and sucrose metabolism

Arachidonic acid metabolism
Biosynthesis of unsaturated fatty acids
Fatty acid metabolism
Steroid hormone biosynthesis
Bile acid metabolism
Sphingolipid metabolism
Glycerophospholipid metabolism
Methane metabolism

Purine metabolism
Pyrimidine metabolism

Folate biosynthesis
Lipoic acid metabolism
Nicotinate and nicotinamide metabolism
Pantothenate and CoA biosynthesis
Porphyrin and chlorophyll metabolism
Retinol metabolism
Riboflavin metabolism
Thiamine metabolism
Ubiquinone and other terpenoid-quinone biosynthesis
Vitamin B6 metabolism

-log10(   )p
positive

negative

Metabolism of cofactors and vitamins

C
arbohydrate m

etabolism

Lipid m
etabolism

Lipid m
etabolism

Nucleotide m
etabolism

IM
P
TCP

PHO

Figure 4. Heatmap of Bonferroni-14,734–corrected p-values regarding selected associations between the inorganic or organic exposome and the metabolome
in urine from pregnant women in Jiangsu Province from April 2013 to July 2016. (A) The associations between macro elements and the metabolome. (B) The
associations between organophosphate pesticides and the metabolome. When the association was in the positive direction, the blue scale was used for visualiz-
ing – log 10ðpÞ. When the association was in the negative direction, the red scale was used for visualizing – log 10ðpÞ. The association was adjusted by maternal
age, BMI before pregnancy, parity, and education using polytomous logistic regression with the Bonferroni correction. * indicates Bonferroni-corrected
p<0:05. The sample size for the association analysis between the organic exposome and the metabolome was 1,024; the sample size for the association analy-
sis between inorganic exposome and metabolome was 963. The data underlying this figure can be found in Excel Table S2, and the heatmap for all associations
can be found in Figure S3. Note: AMP, adenosine monophosphate; BMI, body mass index; cAMP, cyclic adenosine monophosphate; CoA, coenzyme A;
LysoPC, lysophosphatidlycholine; Mg, Magnesium; Ca, Calcium; IMP, 2-isopropyl-6-methylpyrimidin-4-ol; TCP, 3,5,6-trichloro-2-pyridinol; PHO, phospha-
midon; TCA, the citric acid cycle.
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carbohydrate metabolism, the pathway of the citric acid cycle was
sensitive to the exposome. The most significant metabolite was the
central one in this pathway: citric acid, which was also the metabo-
lite with the largest number (37) of associations with exposome.
Within lipid metabolism, the top six most sensitive metabolites
included the long-chain fatty acids capric acid (number: 31) and
dodecanoic acid (number: 24), as well as carnitine (number: 14), a
major metabolite involved in fatty acid degradation. The other
most sensitive metabolites were unsaturated fatty acids and their
relatedmetabolites docosahexaenoic acid (number: 21) and prosta-
glandin E2 (number: 16), which are bioactive metabolites involved
in various events during pregnancy. In addition, a number of
metabolites in amino acid metabolism (41) and nucleotide metabo-
lism (16) were significantly associatedwith the exposome.

Environmentally Determined Urinary Metabotypes Revealed
the Potential Mechanisms Underlying Exposome-Induced
Maternal and Offspring Outcomes
Based on our literature search covering various maternal and off-
spring outcomes, gestational age, birth weight, fat deposition,
neurodevelopment abnormality, immunological disorder, and
hypertension were identified as the outcomes where the directions
of significant associations from the literature for maternal expo-
sure to exogenous chemicals and outcomes and for maternal
metabolite and outcome were consistent with directions of associ-
ation identified in our study for maternal exposure to exogenous
chemicals and metabolite. Details about how the consistency was
determined are in Figure S2. These can potentially be used for
explaining the metabolic mechanisms underlying the outcomes
caused by prenatal exposure to exogenous chemicals.

Among all the outcomes searched, we identified the largest
number of potential mechanisms for birth weight (Figure 7;
Excel Table S3). This synthesis of the literature with our findings
suggests that the effects of 10 analytes on birth weight, gesta-
tional age, fat deposition, neurobehavioral development, immu-
nological disorders, and hypertension might be mediated by
metabolites that we found to be associated with them and which
in the literature were related to these outcomes with a direction
consistent with our associations (Figure 7; Excel Table S3).

Discussion
By using exposome-wide analysis (Figure 2), our study provides
extensive data regarding organic and inorganic exposure burden
in a pregnant population in China (Figure 3). The finding regard-
ing the urinary element concentration comparison between our
study and U.S. National Exposure Report was also supported by
the comparison with the available data of urinary concentrations
reported in The human urine metabolome database (https://
urinemetabolome.ca/metabolites) (Table S2), except for U, which
has not been included in the database. The heightened exposure
to heavy metals in our study population are consistent with the in-
dustrialization and resulting heavy metal pollution in China
(Shifaw 2018). This supports the importance of studying the
health effects of heavy metals exposure in pregnant women in
China and other locations undergoing similar trajectories of in-
dustrialization. Based on our exposome profiling, 59 organic
chemicals, including 45 pollutants, were detectable in our study
of pregnant women in China, raising concern about the potential
health issues caused by these exposures during pregnancy.
Pesticides (i.e., organophosphates and amides), phthalates, para-
bens, nicotine and its related chemical perfluorobutane sulfonic
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Figure 5. The summary of environmentally determined urinary metabotypes according to the exposome and their change rates in metabolic major pathways of
pregnant women in Jiangsu Province from April 2013 to July 2016. Change rate is equal to the number of significant metabolites divided by the number of
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this figure can be found in Figure S3 and Excel Table S2.
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acid, glycolic acid, triphenylphosphate, and phytoestrogens
showed median detection rates above or near 50%, consistent
with previous reports of elevated exposure to some of these
chemicals among pregnant women in China (Gao et al. 2017;
Tang et al. 2015).

Metabolomics is recognized as most closely relevant to disease
phenotypes in the omics family (Guijas et al. 2018). Therefore,
metabolic disruption caused by exogenous chemical exposure in
pregnancy has been studied in relation to pregnancy outcomes in
humans (Yang et al. 2020; Zhao et al. 2020). In our study, we iden-
tified 1,245 significant associations between chemical exposure in
the first trimester and metabolism in the third trimester, providing
potential insights into the association between the exposome in

early pregnancy and later metabolic perturbations (Figure S3;
Excel Table S2). Many of the chemicals we identified as related to
metabolic changes, to our knowledge, have not been studied in
relation to health effects in the setting of pregnancy. Therefore,
given the current and deepening understanding of biological signif-
icance ofmetabolites in pregnantwomen, the associationswe iden-
tified may be useful for prediction of risk from these exposures
during pregnancy (Figures 5 and 6). Among all the exposures,
4-tert-octylphenol showed the largest number of metabolic associ-
ations (Figure S3). This aligns with previous reports that
4-tert-octylphenol is one of the most potent endocrine-disrupting
chemicals in vitro (Bonefeld-Jørgensen et al. 2007; Routledge and
Sumpter 1997) . Among all the elements, Ti had the second largest
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Figure 6. Connection of environmentally determined urinary metabotypes of pregnant women in Jiangsu Province from April 2013 to July 2016 based on the
KEGG metabolic pathways. The figure was built by MetScape (version 3.1.3; National Center for Integrative Biomedical Informatics) plugin for Cytoscape
software (version: 3.6.1; National Center for Integrative Biomedical Informatics). The sample size for the environmentally determined urinary metabotypes
according to the organic exposome was 1,024; the sample size for the environmentally determined urinary metabotypes according to the inorganic exposome
was 963. The pie chart named “Original proportion” shows the original constituent ratios of numbers of profiled chemicals in the exposome classified into
macro and trace essential element, potential toxic and other element, organic pollutant, and plant metabolite and phytoestrogen. The pie charts in the pathway
were built based on constituent ratios of numbers of chemicals in the exposome that were significantly associated with this metabolite classified into macro and
trace essential element, potential toxic and other element, organic pollutant, and plant metabolite and phytoestrogen, and the size of the pie charts reflects the
number of chemicals in the exposome that were significantly associated with this metabolite. Other profiled metabolites without significant association with
any exposome chemical in our study were colored purple in the pathway map. The data underlying this figure can be found in Figure S3 and Excel Table S2.
Note: cAMP, cyclic adenosine monophosphate; KEGG, Kyoto Encyclopedia of Genes and Genomes; PGE2, prostaglandin E2.
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number of significant metabolic associations. Ti alloy is widely
used in sporting goods, daily necessities, medical supplies, and
building materials (Markowska-Szczupak et al. 2020). Titanium
dioxide (TiO2) is a white pigment used in coatings, plastics, inks,
paper, chemical fibers, ceramics, rubbers, cosmetics, spices,
sunscreens, soaps, toothpastes, and food additives. There is rising
concern over exposure to TiO2 nanoparticles (NPs) during criti-
cal windows, such as pregnancy (Wu et al. 2020). Notably, the
steroid hormone metabolites, including cholesterol, estriol,
androstenedione, and estrone, were disproportionally related to

the exposome. They were predominantly associated with pesti-
cides, such as atrazine, phenols and phthalates, which are major
endocrine-disrupting chemicals (Roy et al. 2009). Figure S4
depicts the metabolic connection of the major findings of our
study, which highlight current findings in our study in the whole
metabolism network, providing suggested avenues for future
study on the effects of maternal exposome on metabolome during
pregnancy.

Metabolic changes during pregnancy can be used to explain the
mechanisms underlying the relationships between chemical

Figure 7. Associations between the exposome and maternal and offspring outcomes that might be mediated by environmentally determined urinary metabo-
types. The graph was established by using the literature search strategy described in the “Methods” section. The maternal and offspring outcomes that had con-
sistent associations with the exposome and the metabolome during pregnancy are shown in different colors and textures. The directions of associations
between exposome/metabolome and outcomes are indicated as “+” and “–”. The detailed results underlying this graph can be found in Excel Table S3. Note:
BP3, benzophenone-3; DHA, docosahexaenoic acid; 4-T-OP, 4-tert-octylphenol; MeHP, mono(2-ethylhexyl) phthalate; PGE2, prostaglandin E2.
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exposure and maternal and offspring health, as recently described in
humans (Yang et al. 2020). We integrated the metabolic associa-
tions with exposures identified in our data with published reports of
associations of exposures and health outcomes in pregnancy to
explore mechanisms, generating a large volume of information on
possible mechanisms underlying the relationships between chemi-
cals and various outcomes (Figure 7). With respect to birth weight,
for 4-tert-octylphenol, which had the largest number of metabolic
associations in our study (Figure 5), exposure during pregnancy has
been reported to be related to decreased birth weight in humans (Lv
et al. 2016). Exposure in the first trimester was negatively related to
levels of androstenedione in the third trimester in our study, and
androstenedione/dehydroepiandrosterone during pregnancy has
been reported to be positively related to birth weight in male
offspring in humans (Mitsui et al. 2018), suggesting prenatal
4-tert-octylphenol exposure might decrease birth weight through
decreasing androstenedione in the third trimester. Androstenedione
belongs to the steroid hormone biosynthesis pathway, and 4-
tert-octylphenol has an potent endocrine-disrupting effect in vitro
(Bonefeld-Jørgensen et al. 2007; Routledge and Sumpter 1997) that
could explain the observed association between 4-tert-octylphenol
and androstenedione in our study. Exposure to 4-tert-octylphenol in
the first trimester was positively related to homocysteine in the third
trimester in our study. Homocysteine during pregnancy has been
reported to be negatively related to birthweight in humans (Liu et al.
2020), suggesting prenatal 4-tert-octylphenol exposure might
decrease birth weight through increasing homocysteine in later
pregnancy. Similarly, with respect to gestational age, the relation-
ships of three exogenous chemicals, including As, atrazine, andMg,
on gestational age might be mediated by their associated metabo-
lites, including L-Lysine, docosahexaenoic acid, and prostaglandin
E2 (Excel Table S3). With respect to fat deposition, benzophenone-
3 during pregnancy has been reported to be negatively related to fat
deposition during childhood in humans (Buckley et al. 2016). This
could be potentially explained by its positive association in our
studywith ascorbic acid, which has been reported to have a negative
association with fat deposition in offspring in humans (Horan et al.
2016). With respect to neurodevelopment, exposure to atrazine
(Rastegar-Moghaddam et al. 2019) and mercury (Hg) (Wang et al.
2019) during pregnancy has been reported to be related to deficits in
neonatal neurobehavioral development in a mouse model and
humans, respectively. In our study, these chemicals were negatively
associated with ascorbic acid, docosahexaenoic acid, and pyridoxal.
In humans and rodent models, ascorbic acid (Nam et al. 2019;
Sirasanagandla et al. 2014), docosahexaenoic acid (Hibbeln et al.
2007; Jayashankar et al. 2012), and pyridoxal (Virk et al. 2018)
have been reported to exert positive effects on neurobehavioral de-
velopment. Thus, it is possible that some of the deleterious effects of
atrazine and Hg could be explained by the toxicant-induced meta-
bolic alternations. With respect to immunological disorders, in
mouse models, atrazine exposure during pregnancy increases
immunopotentiation in offspring (Rowe et al. 2006). In humans,
inverse (i.e., protective) relationships have been reported between
ascorbic acid (West et al. 2012) and docosahexaenoic acid (Olsen
et al. 2008) in pregnancy and infant allergic outcomes. In our study,
atrazine was negatively related to ascorbic acid and docosahexae-
noic acid, suggesting possible mediating mechanisms for the
reported adverse effects of this exposure in the experimental study.
With respect to hypertension, in a rat model, exposure to atrazine
during pregnancy elevated blood pressure in childhood and adult-
hood (Rogers et al. 2014). In another rat model, ascorbic acid during
pregnancy protected against hypertension in offspring (Wang et al.
2016). In our study, atrazine was negatively related to ascorbic acid,
suggesting a potential role for this micronutrient in the association
between prenatal atrazine exposure and offspring hypertension. In

reviewing the literature, we added the criterion that the associations
and their directions in the included publication should be biologi-
cally reasonable and supported by other evidence. We believe that
we did not have a biased selection of literature because what was
included was generally consistent with the majority of studies.
Meanwhile, we included papers reporting metabolite levels in
blood, whereas our measurement was of levels in urine. However,
the association between outcome and metabolite in the cited article
might reflect the association between outcome and the exposure to
these metabolites in the body, which could be reflected by blood as
well as urine because urine production involves filtration of the
blood. The positive correlation of concentrations of glycine between
urine and blood was supported by previous reports (Oshima et al.
2019). As more associations between prenatal exposure and preg-
nancy and offspring outcomes are reported, the metabolic associa-
tions identified in our study will be useful for exploring potential
mechanisms of thesefindings.

Our goal for this study was to perform exploratory analyses to
establish a knowledge base that could be useful to others.
Therefore, having the individual contaminant and metabolite
association might be more robust and interpretable for our study
design. The type of exploratory study we conducted was modeled
on a previous paper that used this approach to study the metabo-
lome in relation to metabolomic outcomes and genetic variation
(Suhre et al. 2011). However, the development and use of expo-
sure mixtures analysis methods, such as dimension reduction
analysis, are of increasing interest. Therefore, we further used
PLS-DA to identify the key associations by analyzing all of the
exposome information together. We found the almost all signifi-
cant associations in the individual analysis remained so in the
PLS-DA, suggesting that the environmentally determined urinary
metabotypes identified in this study were robust from both indi-
vidual and mixed perspectives. The study of the associations
between exposome and metabolome with a full use of exposure
mixture analysis and data reduction approaches is an important
and interesting topic for future work.

Our study had some limitations. We analyzed only on a spot
urine sample rather than repeated samples for exposure measure-
ment, which can lead to misclassification. Because of the difficulty
of implementation, therewas no requirement of fasting for urine col-
lection in our study, which also might increase the uncertainty of
measurement and cause the misclassification of chemical exposure.
However, if this misclassification is nondifferential, as we would
expect, it would generally lead to attenuation of observed associa-
tions (Mendiola et al. 2010). Although food intake could cause
some metabolic changes, the urine collection time and food intake
time were very close in our study, which should decrease the effect
of nonfasting condition on the urine metabolome. Nonfasting sam-
ples are also commonly used samples inmetabolomics-based epide-
miological studies in women during early pregnancy (Voerman
et al. 2020). Another limitation is that we were not able to quantify
the concentration of organic chemicals in our study. The profiling of
chemical exposure in pregnant womenwithout quantitative analysis
is still new technology (Wang et al. 2018). Development of expo-
some technologies that can measure the concentration of organic
chemicals should be a priority in the future. Ideally, we would have
individual data on all of the health outcomes considered in the litera-
ture integration. These data were not available in our study.
Therefore, given the fact that metabolome abnormalities are often in
the upstream of diseases (Lee-Sarwar et al. 2020), we used the
approach in previous large-scale integration of metabolomic data
with genomic data to identify potential metabolic mechanisms for
health effects of genetic variants in humans (Suhre et al. 2011),
which also did not include individual data on the health outcomes
considered. This strategy of integrating information from the
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literature information provided comprehensive insights into metab-
olome mediated various outcomes affected by genetic factors
(Suhre et al. 2011). The first trimester of pregnancy is a vulnerable
period of development when chemical exposures may be especially
important and have long-lasting effects (Hu et al. 2006).
Meanwhile, in the third trimester, a number of maternal (Salonen
Ros et al. 2001) and fetal abnormalities (Drukker et al. 2021) related
to pregnancy become apparent. A previous report also found that
pregnancy outcomes included in the “Literature Search for
Interpreting Health Implications of Identified Associations” section
were closely related to metabolome changes in the third trimester
(Heazell et al. 2012). Therefore, we studied the exposome in the first
trimester and correlated it to the metabolome in the third trimester;
this design also greatly increased the likelihood that the exposure
predated the metabolic outcomes. However, if perturbations of me-
tabolism resulting from exposure are short term, our study design
would not capture these. That is one of the limitations of our study.
Our study had a number of important strengths, including the large
sample size, longitudinal cohort study design, and comprehensive
measurement of the urinary exposome and metabolome, as well as
their integration.

In conclusion, by conducting an exposome- and metabolome-
wide association study during pregnancy, we provide a comprehen-
sive assessment of exposure to elements and organic chemicals ex-
posure in a large sample of pregnant women. This study identified
many associations between chemical exposures and maternal me-
tabolism during pregnancy from an omics-wide perspective with
large sample size and interpreted potential health implications of
identified associations. This integration advances our knowledge of
the environmental basis ofmetabolic variation in pregnant women.
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