Skip to main content
. 2022 Mar 7;60(4):1211–1222. doi: 10.1007/s11517-022-02523-1

Table 2.

Performance of CNN models used for IARI intensity classification

Method Accuracyavg (%) Precisionavg Recallavg F1–scoreavg Kappa Time(s)
w/o w w/o w w/o w w/o w w/o w w/o w
AlexNet 92.6 92.8 0.905 0.897 0.955 0.965 0.929 0.930 0.919 0.921 0.019 0.006
VGG 92.4 90.5 0.903 0.872 0.942 0.984 0.922 0.925 0.917 0.896 0.070 0.091
ResNet 91.3 93.0 0.878 0.907 0.954 0.960 0.914 0.933 0.905 0.924 0.029 0.032
Inception 94.6 94.6 0.922 0.929 0.974 0.975 0.948 0.951 0.941 0.941 0.023 0.077
DenseNet 92.9 93.1 0.908 0.919 0.953 0.927 0.930 0.923 0.923 0.925 0.043 0.049
Ensemble Model 99.6 99.8 ↑ 0.972 0.975 ↑ 0.987 0.991 ↑ 0.979 0.983 ↑ 0.987 0.991 ↑ 0.078 0.094

Note: w/o represents CNN without CBAM; w represents CBAM-CNN; Ensemble Model denotes the results of the proposed model; “↑” indicates that the result of CBAM-CNN is better than that of the original CNN