Skip to main content
. 2022 Mar 8;30:100908. doi: 10.1016/j.imu.2022.100908

Table 3.

Best hyper-parameters for ML algorithm modeling in prediction of readmission.

Num Algorithms Hyper-parameters f-score
1 HistGradientBoostingClassifier ‘verbose’ = 2, ‘random_state’ = 999, ‘max_leaf_nodes’ = 62, ‘max_iter’ = 150, ‘max_depht’ = 7, ‘learning rate’ = 0.1 93.7
2 BaggingClassifier ‘verbose’ = 2, ‘random_state’ = 999, ‘n_estimation’ = 12, ‘max-samples’ = 0.5, ‘bootstrap’ = ‘true’ 91.28
3 MLP Classifier ‘Learning rate’ = ‘constant’, hidden_layer_size’ = (100,100,100), ‘alpha’ = 0.05, ‘activation’ = ‘rulo’ 91.07
4 SVM (kernel = linear) C = 100,G = 0.0001 90.09
5 SVM (kernel = RBF) C = 10, G = 0.001 89.24
6 XG Boost Classifier ‘min_chid_weigh’ = 1′max_depht’ = 12,‘learning_rate’ = 0.1, ‘gamma’ = 0.4, ‘colsample_bytree’ = 0.3 89.01
7 K Nearest Neighbor Classifier K = 3, ‘n_jobs’ = −1, ‘algorithm’ = ‘auto’ 87.00