Skip to main content
. 2022 Mar 8;30:100908. doi: 10.1016/j.imu.2022.100908

Table 4.

10-fold CV Classification performance of different classifiers on selected features.

Classifier Mean Accuracy Mean Specificity (%) Mean Sensitivity Mean F- measure Kappa Statistic (KS) AUC
HGB Classifier Mean 0.8176 0.814 0.8296 0.8201 82.4% 0.8233
95% CI (0.81, 0.83) (0.8, 0.82) (0.81, 0.85) (0.81, 0.83) (0.82, 0.86) (0.81, 0.83)
STD 0.0154 0.0127 0.0296 0.0148 0.0257 0.0157
Bagging Classifier Mean 0.847 0.841 0.847 0.845 84.36% 0.843
95% CI (0.84, 0.85) (0.84, 0.85) (0.84, 0.85) (0.85, 0.85) (0.84, 0.85) (0.84, 0.85)
STD 0.0172 0.0116 0.00128 0.0194 0.0127 0.0182
MLP Classifier Mean 0.886 0.889 0.884 0.881 88.6% 0.882
95% CI (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) (0.88, 0.89) (0.88, 0.89)
STD 0.0027 0.0112 0.0134 0.00140 0.010 0.0129
XGBoost Classifier Mean 0.917 0.913 0.916 0.918 91.37% 0.9145
95% CI (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) (0.91, 0.92) (0.91, 0.92)
STD 0.0146 0.0138 0.0147 0.0175 0.01924 0.0126
SVM (kernel = linear) Mean 0.8896 0.8733 0.912 0.892 88.7% 0.892
95% CI (0.87, 0.90) (0.66, 0.88) (0.90, 0.93) (0.88, 0.90) (0.88, 0.89) (0.88, 0.90)
STD 0.0174 0.0167 0.0129 0.0182 0.0140 0.01864
SVM (kernel = RBF) Mean 0.857 0.850 0.861 0.859 86.7% 0.863
95% CI (0.85, 0.86) (0.84, 0.86) (0.85, 0.87) (0.85, 0.87) (0.86, 0.87) (0.86, 0.87)
STD 0.0127 0.01734 0.0129 0.0134 0.0118 0.01727
K Nearest Neighbor Classifier Mean 0.8835 0.8785 0.892 0.8937 88.3% 0.886
95% CI (0.88, 0.89) (0.87, 0.89) (0.89, 0.90) (0.89, 0.90) (0.88, 0.89) (0.88, 0.89)
STD 0.0014 0.0174 0.018 0.0162 0.0183 0.0163