Table 4.
Classifier | Mean Accuracy | Mean Specificity (%) | Mean Sensitivity | Mean F- measure | Kappa Statistic (KS) | AUC | |
---|---|---|---|---|---|---|---|
HGB Classifier | Mean | 0.8176 | 0.814 | 0.8296 | 0.8201 | 82.4% | 0.8233 |
95% CI | (0.81, 0.83) | (0.8, 0.82) | (0.81, 0.85) | (0.81, 0.83) | (0.82, 0.86) | (0.81, 0.83) | |
STD | 0.0154 | 0.0127 | 0.0296 | 0.0148 | 0.0257 | 0.0157 | |
Bagging Classifier | Mean | 0.847 | 0.841 | 0.847 | 0.845 | 84.36% | 0.843 |
95% CI | (0.84, 0.85) | (0.84, 0.85) | (0.84, 0.85) | (0.85, 0.85) | (0.84, 0.85) | (0.84, 0.85) | |
STD | 0.0172 | 0.0116 | 0.00128 | 0.0194 | 0.0127 | 0.0182 | |
MLP Classifier | Mean | 0.886 | 0.889 | 0.884 | 0.881 | 88.6% | 0.882 |
95% CI | (0.88, 0.89) | (0.88, 0.89) | (0.88, 0.89) | (0.88, 0.89) | (0.88, 0.89) | (0.88, 0.89) | |
STD | 0.0027 | 0.0112 | 0.0134 | 0.00140 | 0.010 | 0.0129 | |
XGBoost Classifier | Mean | 0.917 | 0.913 | 0.916 | 0.918 | 91.37% | 0.9145 |
95% CI | (0.91, 0.92) | (0.91, 0.92) | (0.91, 0.92) | (0.91, 0.92) | (0.91, 0.92) | (0.91, 0.92) | |
STD | 0.0146 | 0.0138 | 0.0147 | 0.0175 | 0.01924 | 0.0126 | |
SVM (kernel = linear) | Mean | 0.8896 | 0.8733 | 0.912 | 0.892 | 88.7% | 0.892 |
95% CI | (0.87, 0.90) | (0.66, 0.88) | (0.90, 0.93) | (0.88, 0.90) | (0.88, 0.89) | (0.88, 0.90) | |
STD | 0.0174 | 0.0167 | 0.0129 | 0.0182 | 0.0140 | 0.01864 | |
SVM (kernel = RBF) | Mean | 0.857 | 0.850 | 0.861 | 0.859 | 86.7% | 0.863 |
95% CI | (0.85, 0.86) | (0.84, 0.86) | (0.85, 0.87) | (0.85, 0.87) | (0.86, 0.87) | (0.86, 0.87) | |
STD | 0.0127 | 0.01734 | 0.0129 | 0.0134 | 0.0118 | 0.01727 | |
K Nearest Neighbor Classifier | Mean | 0.8835 | 0.8785 | 0.892 | 0.8937 | 88.3% | 0.886 |
95% CI | (0.88, 0.89) | (0.87, 0.89) | (0.89, 0.90) | (0.89, 0.90) | (0.88, 0.89) | (0.88, 0.89) | |
STD | 0.0014 | 0.0174 | 0.018 | 0.0162 | 0.0183 | 0.0163 |