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Abstract

In this review, we discuss the utility of quantitative electroencephalography (qEEG) parameters 

for detection of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage in the 

context of the complex pathophysiology of DCI and the limitations of current diagnostic methods. 

Due to the multifactorial pathophysiology of DCI, methodologies solely assessing blood vessel 

narrowing (vasospasm), are insufficient to detect all DCI. qEEG has facilitated the exploration of 

EEG as a diagnostic modality of DCI. Multiple qEEG parameters such as alpha power, relative 

alpha variability, and alpha/delta ratio show reliable detection of DCI in multiple studies. Recent 

studies on epileptiform abnormalities suggest their potential for detection of DCI. qEEG is a 

promising continuous, non-invasive monitoring modality of DCI implementable in daily practice. 

Future work should validate these parameters in larger populations, facilitated by the development 

of automated detection algorithms and multimodal data integration.
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1. Introduction

Aneurysmal subarachnoid hemorrhage (SAH) accounts for only 3% of all stroke types 

but carries high morbidity and mortality (1). Delayed cerebral ischemia (DCI) occurs 

in 33–50% of SAH patients with the peak incidence between 3–14 days after ictus (2–

4). DCI increases the risk of poor long-term outcomes including decreased instrumental 

activities of daily living (IADL), cognitive deficits, and reduced quality of life (4). DCI 

is preventable with timely intervention only if it is detected before clinical deterioration 
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or radiographic infarction. While frequent clinical examinations are important for detecting 

new neurological deficits indicating ischemia, their utility is limited in high-grade SAH 

patients who have the highest risk of DCI. Furthermore, SAH is associated with multiple 

complications such as rebleeding, seizures and hydrocephalus, which can confound clinical 

examinations. Hence, much effort has focused on discovering accurate tests and parameters 

to predict impending DCI. Sonographic or radiographic modalities, which have varying 

degrees of accuracy, display changes in blood vessel caliber or blood flow and are the 

accepted standard of care measures for DCI surveillance. However, these studies can only 

be performed once or twice a day at best. Given the need for a diagnostic modality with the 

ability to provide real-time, noninvasive monitoring for DCI, continuous EEG has emerged 

as a valuable tool in assessing risk of impending DCI.

2. Definition of DCI

Historically, several terms have been used to describe DCI including delayed ischemic 

neurological deficits, symptomatic vasospasm, secondary cerebral ischemia, and cerebral 

infarction. To address confusion generated from these various terms and inconsistency in 

clinical study definitions, a multidisciplinary expert group proposed a unified definition of 

DCI as: cerebral infarction identified on CT or MRI or proven at autopsy after exclusion 
of procedure-related infarctions; or the new occurrence of focal neurological impairment, or 
a decrease of at least two points on the Glasgow Coma Scale, with or without radiological 
findings, that cannot be attributed to other causes by means of clinical assessment, CT, or 
MRI scanning of the brain and appropriate lab studies (5). This definition combines both 

clinical and radiographic criteria for DCI, thereby capturing the full breadth of patients who 

suffer from this complication. To provide clarity in our terminology for this review, we will 

be using the term “DCI” as defined here, whereas any reference to observations limited to 

blood vessel narrowing assessed by radiographic or sonographic imaging will be referred to 

as “vasospasm.”

3. Pathophysiology of DCI

The exact pathophysiology of DCI remains incompletely understood, contributing to the 

varied descriptions of DCI above. Conventionally, vasospasm, was believed to be the sole 

cause of DCI, but accruing evidence suggests DCI is secondary to other phenomena such as 

cortical spreading depolarization (CSD), impaired cerebral autoregulation, microcirculatory 

dysfunction, microthrombosis, and neuroinflammation (6–9).

3.1. Vasospasm

In 1949, Robertson first suggested temporary vasospasm as the cause of infarction in an area 

of the brain remote from the ruptured aneurysm (10), an observation which has since been 

supported by both radiographic and sonographic evidence of vasospasm after SAH (11–15). 

Current diagnostics and therapeutic strategies, such as endovascular treatment, are largely 

targeted at reducing vasospasm to reduce DCI and poor functional outcome (16)

However, the causal link between vasospasm and DCI has been questioned due to 

observations that DCI can occur without vasospasm and not all patients with vasospasm 
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develop DCI (17–19). Failed treatment trials also call into question this relationship, such 

as recent trial failures of clazosentan, an endothelin-receptor antagonist, which induced 

significant reduction of moderate to severe vasospasm from 66% to 23% without changing 

the incidence of DCI (p=0.315) (20,21). This conflicting data alludes to more complex 

mechanisms of DCI not ascribed to vasospasm alone.

3.2. Cortical spreading depolarization (CSD)

CSD is a wave of depolarization spreading across the cortex propagating over minutes 

(22). This phenomenon has received more recent attention as a potential contributory 

mechanism of DCI as its presence has been observed in cases of DCI without vasospasm 

(23). Drier et al. used electrocorticography (ECoG) to assess the presence of CSD in 

18 SAH patients and noted that DCI occurred in a time-locked fashion to CSD in 13 

patients (24). CSD is proposed to cause DCI via increased metabolic demand during the 

CSD at an unsustainable level in the injured brain state of SAH, thereby directly causing 

neuronal injury and death (25,26). Simultaneously, persistent CSD triggered by insults to 

the brain such as SAH can induce vasoconstriction in contradiction to the normal response 

of vasodilation upon increased metabolism, which precipitates ischemia and accelerates the 

vicious cycle of prolonged CSD causing flow-metabolism uncoupling and energy failure, 

making it difficult to recover from CSD to the normal state (27,28). Moreover, the persistent 

excitation results in increased extracellular glutamate and the subsequent activation of 

NMDA-receptors which can lead to excitotoxic injury in energy-compromised neurons 

(Aiba and Shuttleworth, 2012). The trigger for CSD after SAH remains unclear. However, 

theories about relative ischemia and decreased extracellular nitric oxide levels suggest that in 

some cases there is a potential interplay by which vasospasm may induce CSD and increase 

the risk of DCI (29,30). While CSD is typically detected using ECoG, continuous EEG 

could prove useful. One study of CSD in TBI patients with simultaneous ECoG and cEEG 

recording found that spreading depolarizations induced a spread of depression on the order 

of minutes to hours (31). However, scalp EEG is limited as it is generally only sensitive 

to clustered spreading depolarizations (32). Future research is needed to better characterize 

scalp EEG signatures of CSD after SAH.

3.3. Impaired cerebral autoregulation and Microcirculatory dysfunction

Cerebral autoregulation (CA) is a mechanism to regulate regional cerebral blood flow 

(rCBF) with cerebral vasoconstriction and vasodilation to maintain constant cerebral 

perfusion pressure (CPP) under different physiologic conditions. Impaired cerebral 

autoregulation has been observed in SAH and may contribute to the development of 

DCI (33,34). Patients who deviated from autoregulation-based blood pressure targets had 

worse functional outcomes at 90 days compared to those who did not, suggesting that the 

disruption of CA contributes to post-bleed complications (35). Previous studies showed 

that vasospasm itself does not always result in reduced rCBF (36). It was postulated that 

impaired CA in microvasculature distal to the restricted segments of vasospasm plays a 

crucial role in failure to preserve rCBF, leading to the development of DCI (7,37). Some 

studies proposed that an independent process of microvascular spasm and dysfunction which 

is perpetuated by CSD in SAH with or without proximal vasospasm may cause cerebral 

infarction (38,39). One study found that patients who develop DCI and vasospasm have 
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distinct autoregulation patterns from those who develop only DCI, implying that impaired 

autoregulation of cerebral blood flow might be an independent pathological process that can 

lead to DCI (40).

Impaired regional CBF was investigated in relation to microcirculatory dysfunction. 

While transcranial doppler (TCD) or conventional angiogram can visualize large cerebral 

vessels, they are poor at detecting changes in microcirculation. Abnormal measures of 

microcirculatory function were observed in DCI irrespective of vasospasm (41). This 

impaired microcirculation in DCI is believed to be related to endothelial dysfunction in 

SAH causing microthrombi, which can lead to infarction (41–44).

3.4. Neuroinflammation

Recently, inflammation-based mechanisms of DCI have gained attention. One study 

implicated the role of matricellular proteins (MCP) periostin, osteopontin, and galectin-3 

in DCI; machine learning models incorporating plasma levels of these MCPs achieved 

approximately 90% prediction accuracy for DCI (45). As components of the extracellular 

matrix, MCPs affect vascular permeability and cell death, thereby contributing to other 

dysfunctional processes such as microcirculatory dysfunction and neuroinflammation (45). 

Overall, these results indicate that MCPs may comprise part of DCI pathology.

Several inflammatory biomarkers are elevated after SAH in patients who develop DCI 

(29,46,47). For example, the sulfonylurea receptor 1–transient receptor potential melastatin 

4 (Sur1-Trpm4) channel is upregulated after SAH, and inhibition of this receptor in 

rats reduces neuroinflammation and cognitive impairment after SAH (48,49). Some 

inflammatory biomarkers, such as soluble growth stimulation expressed gene 2 (ST2), can 

independently predict DCI (50,51). Notably, ST2 is linked to new epileptiform abnormalities 

after SAH, making continuous EEG a useful tool to detect inflammation and predict DCI 

(52). Inflammation can also interact with thrombosis to create a positive feedback loop 

wherein a pro-inflammatory state can induce the formation of microthrombi and vice versa 

(53). Altogether, these results suggest an inflammatory pathology underlying DCI although 

they do little to elucidate the precise mechanism.

The above evidence supports that DCI has multifactorial pathophysiology (Figure 1). 

Therefore, diagnostic tools designed to detect vasospasm alone are insufficient to capture 

all cases of DCI, necessitating the development of novel diagnostic methods that directly 

assess known DCI contributors.

4. Transcranial doppler (TCD) for monitoring vasospasm

Despite the emergence of other mechanisms of DCI, vasospasm is still the best understood 

mechanism contributing to DCI, and its detection and treatment is critical in reducing 

the devastating consequences of DCI. Thus, multiple modalities are used to screen for 

vasospasm including: TCD, CT or MR angiography, CT perfusion, and catheter-based 

digital subtraction angiography (DSA). While DSA remains the gold standard for detecting 

vasospasm (54), TCD is the most commonly used diagnostic tool for monitoring vasospasm 

as recommended in 2012 by the American Heart Association and American Stroke 
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Association (AHA/ASA). Support for using TCDs is based on class IIa/level B evidence 

as it provides a rapid, noninvasive and portable modality without radiation exposure (55).

4.1. TCD parameters

Introduced in 1982, TCD detects differences in frequency between emitted ultrasonic waves 

and the reflected echoes which are proportional to the velocity of a moving object (56). 

Assuming that CBF is laminar and constant, according to the continuity equation, the 

velocity of blood flow and the area of the blood vessel are in inverse relationship, and thus, 

the increased speed of blood flow can reflect a narrowed blood vessel diameter such as 

seen in vasospasm (57,58). Several different parameters of TCD are used for monitoring 

vasospasm including mean flow velocity (MFV), pulsatility index (PI), and the Lindegaard 

Ratio (LR). MFV is measured in the bilateral middle (MCA), anterior (ACA), and posterior 

cerebral arteries (PCA), internal carotid arteries (ICA) as well as the basilar artery (BA); 

its increased value can be a surrogate marker of vascular narrowing (59). PI is calculated 

with peak systolic velocity (PSV) and end-diastolic velocity (EDV) to assess distal vascular 

resistance, and a low value can reflect dilated arteries distal to the narrowed segment of 

vasospasm (60). The caveat in assessing the diameter of the blood vessel with velocity is the 

assumption of constant CBF; in case of hyperemia, MFV can be elevated without changes 

of the diameter. LR, a ratio of MFVs in MCA and ICA, helps to differentiate between 

hemodynamic changes and narrowed blood vessels in the setting of high velocity; LR < 3 

indicates hyperdynamic status while LR > 3 is more likely to represent vasospasm (59,61).

4.2. Limitations of TCD

TCD does not detect vasospasm equally for all blood vessels and is known for low 

sensitivity in detecting ACA or PCA vasospasm (59). Even for MCA vasospasm, accuracy 

fluctuates depending on the parameter threshold; only for the range of MFV <120 or >200 

cm/s did it show reliable predictive values (62,63). Although LR is used to differentiate 

hyperemia and vasospasm, it is common that both states coexist and its interpretation can 

be affected by various clinical factors such as blood pressure (64). Additionally, TCD is 

highly dependent on the manual skills of the operator to insonate the maximal velocity 

signals. Anatomical variations of patients’ bony anatomy can limit insonation due to poor 

acoustic windows (65). Most importantly, even at the most resource-rich hospitals, TCDs are 

often done only once or twice a day (with guidelines recommending only every other day 

monitoring), thereby limiting assessment of vasospasm to the time of day performed. With 

these limitations and the increased recognition that vasospasm is only one of the contributors 

to DCI, there is broad interest in exploring other tools which circumvent these limitations.

5. EEG and Cerebral ischemia

Since the advent of scalp EEG, multiple studies have tried to identify unique patterns that 

reflect cerebral ischemia. Normal human CBF is estimated to be >50–54ml per 100g of 

brain tissue per minute (66). Early research observed the correlation between EEG changes 

and cerebral ischemia upon clamping the carotid artery during carotid endarterectomy 

(67,68). These studies noted abnormal EEG activity at CBF <17–18ml/100g/min and 

isoelectricity with a further decrease of CBF to <10–12ml/100g/min. As CBF progresses 
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from normal to the range of anoxia, EEG showed a spectrum of gradual changes including 

emergence of delta activity and suppression of fast alpha and beta activities depending on 

the duration of the insult (68,69) (Figure 2). Subsequent studies using positron emission 

topography (PET) and MRI revealed that the CBF threshold for permanent infarction was 

around 8ml/100g/min albeit dependent on the duration of decreased CBF (70,71). Therefore, 

based on the observed EEG alterations during carotid endarterectomy, gradual predominance 

of slow activities along with disappearance of fast activities reliably indicates early cerebral 

ischemia.

5.1. Emergence of quantitative EEG (qEEG)

Although several studies reliably show notable EEG patterns associated with cerebral 

ischemia, it is challenging to utilize EEG for prolonged periods in real time. Furthermore, 

interpretation requires specific training and subtle changes can be missed with visual 

inspection alone (72). Therefore, qEEG has been pursued as a time-saving method by which 

to process and display various trends calculated from the EEG signal. Dietsch first attempted 

to perform qEEG with Fourier analysis in 1932, but it was not until the widespread use 

of digital EEG and the invention of the Fast Fourier Transformation (FFT) in 1965 that 

raw EEG data could be compressed into a density spectral array (73). Since then, multiple 

qEEG parameters have been developed such as spectrograms, asymmetry, and power band 

assessments.

5.2. EEG and DCI

Reports of EEG changes in relation to DCI after SAH were first published in the 1970s 

(74,75). The emergence of qEEG and the advances of commercial software facilitate our 

ability to define features of EEG associated with DCI (Table 1).

6. The EEG/qEEG parameters related to DCI

6.1. qEEG absolute power parameters

6.1.1. Total Power (TP)—Innovative work in the early 1990s showed that TP, a 

summation of all frequency band powers (1–30 Hz in this study), was well-correlated (100% 

sensitivity) with clinical and radiographic changes in all grades of SAH; a decrease in TP 

confirmed cerebral ischemia (76). Subsequent studies have not replicated these findings, 

although differing research methodologies including varying number of electrodes and SAH 

severity may have impacted the results (77,78).

6.1.2. Alpha Power—In addition to TP, power of the alpha frequency band (variably 

defined as 8–12, 8–12.5, or 8–13 Hz) has been explored in multiple studies (77,79,80). In 

one study, a decrease in alpha power was the strongest predictor of vasospasm (Optimal 

cut-off 40%, AUC=0.66, Se=89%, Sp=77%) (80). Similarly, Rots and colleagues showed 

a decrease in alpha power as a distinct EEG feature in DCI (p=0.008) (78). Others have 

confirmed these associations and have gone on to show that a decrease in daily alpha 

power can precede clinical deterioration by more than 24 hours among assessed parameters 

including focal slowing, decreasing alpha/delta ratio, and epileptiform abnormalities (81).
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6.1.3. Delta and Theta Power/Focal slowing—Early observations of increased 

slowing associated with progressive cerebral ischemia increased attention to these 

parameters in DCI. Parkes and James evaluated slowing on raw EEG and noted a significant 

increase in theta power with vasospasm (p<0.02) (82). However, a later study reported a 

reduction in theta power similar to alpha power decreases observed in DCI patients (80). 

While the utility of theta power in DCI prediction is unclear, delta power, and especially 

alpha/delta ratio as discussed below, show a strong correlation with DCI (p=0.003) (77). A 

recent study combining delta and theta powers in the definition of focal slowing, showed 

a positive trend of focal slowing on DCI prediction, but this did not reach statistical 

significance (Rosenthal et al., 2018). Thus, while there is some suggestion that absolute 
measures of low frequency bands are associated with DCI, their utility is mixed emphasizing 

the potential importance of assessing relative changes in the power of each frequency band.

6.2. qEEG relative power parameters

6.2.1. Relative Alpha Variability (RAV)—RAV, defined as the percentage of 6–14 Hz 

over the total 1–20 Hz frequency, is another qEEG feature found to change preceding or 

concomitant to vasospasm after SAH (Vespa et al., 1997). In this first study, all patients who 

were found to develop vasospasm on TCD or angiogram (19 out of 32) showed decreased 

RAV around the time of vasospasm. Moreover, for 10 of 19 patients, it was detected more 

than two days prior to vasospasm. Similarly, Rots et al. showed that decrease in RAV (8–

12.5/1–30 Hz) strongly predicted DCI up to 7 hours before clinical or radiographic changes 

occurred especially involving all eight studied patients with the cut-off value of 38% (Rots 

et al., 2016). This close association was upheld in a study performed exclusively for high 

grade SAH patients (p=0.004) (Claassen et al., 2004). In a recent study assessing the 

diagnostic accuracy of EEG for detection of DCI, a decrease in RAV was found to have the 

lowest false positive rate of 2% and highest odds ratio (36.7 [4.70, 286.11], p<0.01) among 

assessed parameters including focal slowing, decreasing alpha/delta ratio, and epileptiform 

abnormalities (Rosenthal et al., 2018).

6.2.2. Alpha/delta ratio (ADR)—ADR is one of the most common parameters assessed 

for early detection of DCI combining the observations of a decrease in alpha and an increase 

in delta power as a reflection of DCI. A prior study shows the strongest association of ADR 

both globally and in affected territories with DCI (AUC=0.83, p<0.0001) for multiple EEG 

measures including those mentioned in the preceding sections (77). Subsequent studies with 

different methodologies support the correlation between a decrease in ADR and DCI but 

with varying sensitivity (78,80,81). A recent meta-analysis of five studies shows moderate 

correlation of ADR with DCI (AUC=0.84, Se=0.83, Sp=0.74) (83). An example of ADR 

reduction during DCI is illustrated in Figure 3.

6.2.3. Alpha-theta/delta ratio (AT/D)—Most recently, AT/D was evaluated as an 

indicator of DCI in high-grade SAH (84). The potential relation of AT/D with DCI was 

postulated from the previous reports on the association of decreases in ADR and theta power 

with DCI (77,80). In a small study by Balança and colleagues, a transient decrease in AT/D 

was noted even in patients without DCI. However, prolonged decrease for the minimum 

3.7 hours and 1.4 hours with cut-off values of 30% and 50%, respectively, showed the best 
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prediction for DCI (AUC=0.94, Se=1, Sp=0.83). Moreover, in 6 of 9 patients with confirmed 

cerebral infarction, a decrease in AT/D was noted in the in the same region of infarction at 

least one day earlier.

6.3. Other

6.3.1. Epileptiform abnormalities (EA)—Most studies to date have focused on 

changes in background activity, but more recently investigators have begun to explore 

the relationship between DCI and epileptiform abnormalities including seizure, sporadic 

epileptiform discharge (ED), and periodic/rhythmic activity (85). All abnormal activities 

except seizure and generalized rhythmic delta activity (GRDA) showed statistically higher 

cumulative incidence in the DCI group compared to the non-DCI group for each abnormal 

activity. Seizure was also found to occur more frequently in patients with DCI, but 

presumably it did not reach statistical significance due to the small number, 7 out of 124 

combining both groups. The study further investigated the temporal association of EAs with 

DCI. Most abnormalities occurred prior to the development of DCI, thereby suggesting the 

potential of EAs to predict DCI. In exploring the predictive value of all types of EAs, except 

seizure, new or increasing EAs were a strong predictor of impending DCI (63.5%) (81). The 

presence of either EA or abnormal background activity were even more predictive of DCI 

(96.2% vs 19.6%, DCI vs no DCI, OR = 102.5, 95% CI = 21.3–494, p<0.001) (81).

6.3.2. Combination of multiple parameters—Some groups assessed the composite 

measures of the suggested parameters as a marker for DCI. Rots and colleagues confirmed 

the findings of the prior studies using the ADR and RAV to predict DCI (AUC=0.90 

and 0.73, respectively) (78). The receiver operating characteristic (ROC) curve of these 

two parameters combined resulted in better performance (AUC 0.92). Another study 

assessed the product of mean alpha power and its standard deviation (Composite Alpha 

Index, CAI) (79). This study showed changes in CAI were responsive to intravenous 

milrinone, a phosphodiesterase 3 inhibitor. CAI increased with milrinone initiation and 

maintenance, while a decrease was observed during weaning and discontinuation. Rosenthal 

and colleagues reported that combining new focal slowing, decreased ADR, and decreased 

RAV predicted DCI in 63.5% of cases. These studies suggest multiparameter qEEG may 

improve predictive power of DCI (81).

7. Discussion

qEEG is a valuable modality for monitoring DCI as it addresses the limitations of 

conventional tools such as TCD or DSA. It provides non-invasive, real-time continuous 

assessment of brain activity and requires a relatively shortened time for review compared to 

raw EEG assessment. With increasing availability of software capable of calculating these 

qEEG features in real time, there is great clinical potential for the timely treatment of DCI 

using this technology. It may even be used as a screening tool to specifically enroll patients 

with high-risk qEEG features in clinical trials testing novel therapies to mitigate and prevent 

DCI (32).

However, there are still gaps limiting its widespread utilization. While the above studies 

show the value of various qEEG parameters in predicting DCI, many of these studies use 
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a limited number of patients with various definitions of DCI. Thus, these features must be 

validated as reliable markers on a larger scale under the unified definition of DCI. Moreover, 

the accuracy of the parameters has yet to be studied based on the location of ischemia or the 

involved vascular territories.

Constructing a DCI management algorithm with qEEG for daily clinical practice renders 

significant logistical challenges even if the qEEG parameters indicating DCI are validated. 

The interpretation of those parameters still necessitates real-time individual inspection in the 

context of the changes in raw EEG by neurophysiologists specially trained for reviewing 

qEEG and the recorded parameters. Therefore, an automated detection alarm system using 

these qEEG parameters should be developed for the widespread use of qEEG, sparing a 

continuous review of qEEG by an expert but still enabling real-time detection of DCI. 

However, these measures can be confounded by other concurrent pathologic states such 

as high intracranial pressure, hydrocephalus, surgery, or medications and thus must be 

contextualized. Furthermore, due to the prevalence of artifacts in the ICU, automated 

calculation of these qEEG features without a priori selection of artifact-free segments of 

data or manual review by trained neurophysiologists, is challenging for fully automated 

DCI detection algorithms (86). This limitation was demonstrated in a study attempting to 

automate an algorithm for DCI detection using ADR and RAV qEEG parameters (87). They 

found suboptimal sensitivity and specificity with significant drop offs in either parameter 

depending on the chosen threshold of ADR or RAV changes. Thus, further work needs to be 

done to improve automated calculations in combination with artifact reduction algorithms. 

Designing a multi-feature algorithm based on all qEEG features mentioned above including 

the incorporation of epileptiform activity is the next step in optimizing a DCI prediction 

algorithm that can be clinically implemented.

A multi-modal approach, incorporating TCDs along with qEEG features may improve upon 

the performance of either diagnostic tool alone. Although TCD was used as a modality to 

confirm vasospasm in a few previous studies, the predictive value of combining TCD and 

qEEG for DCI detection has not been studied. Newer technologies such as near-infrared 

spectroscopy (NIRS) may serve as another modality by which to improve DCI prediction. 

NIRS is another non-invasive real-time bedside modality for monitoring regional cerebral 

ischemia. It uses a characteristic of oxyhemoglobin and deoxyhemoglobin absorbing a 

specific spectrum of light wavelengths for detection of tissue oxygenation and has been used 

mainly in vascular and cardiac surgeries (88). Its use is technically limited to the frontal 

areas of the brain and is a technology not yet widely available at many institutions with 

controversy on its utility and unestablished protocols. However, a few small studies have 

shown that NIRS may serve a useful tool in DCI detection (89,90). Thus, incorporating TCD 

and newer monitoring modalities, such as NIRS, with qEEG may improve DCI prediction.

Ultimately, qEEG is a promising modality implementable in daily practice allowing real-

time, non-invasive monitoring with global coverage across the brain. It simultaneously has 

the potential benefit of cost- and time-efficiency, especially with the future development of 

automated systems, which could facilitate prompt detection and early intervention on DCI. 

Clinical trials testing novel interventions specifically targeted at those with high-risk EEG 

signatures, can then be developed to improve patient outcomes in SAH.
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Figure 1. 
Multifactorial Pathophysiology of DCI. After aneurysmal subarachnoid hemorrhage, 

delayed cerebral ischemia can occur due to multifactorial pathophysiology. Vasospasm 

and microemboli, which can form as a result of a proinflammatory, hypercoagulable state 

after aneurysm rupture, produce regional hypoxia that can progress to infarction. Cortical 

spreading depressions, or waves of excitation propagating across the injured brain, can 

induce an inverse hemodynamic response wherein there is diminished blood flow to areas 

with increased metabolic demand. Persistent excitation leads to an increase in extracellular 

potassium and glutamate and an increase in intracellular calcium, which can lead to 

excitotoxic injury. When tissue at risk for infarction does not receive sufficient oxygen, 

DCI can result. Adapted from Leng, Fink, and Iadecola (2011).
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Figure 2. 
The changes of EEG activities in relation to the cerebral blood flow (CBF, ml/100g/min). 

As CBF decreases from the normal threshold of 50–54 ml/100g/min, fast activities are lost 

while slow activities become more prominent. If CBF is reduced below 10–12 ml/100g/min, 

EEG becomes nearly isoelectric.
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Figure 3. 
qEEG parameters of a 57-year old woman at the time of DCI who presented with SAH 

of Hunt Hess grade 3 and modified Fisher scale 3. She developed vasospasm in the left 

middle meningeal artery on post-bleed day 3. The trends displayed above were generated via 

Persyst software version 13 (Persyst Development Corporation, Prescott, AZ). Alpha power 

is decreased in the left hemisphere compared to the right hemisphere while delta power is 

increased in the left hemisphere. The left temporal lobe shows poor relative alpha variability 

(RAV) but the right temporal lobe maintains good RAV (A). Alpha/delta ratio (ADR) is 

decreased in the left temporal lobe compared to the right temporal lobe (B).
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Table 1.

Summary of original studies on the features of raw EEG or qEEG. RAV, relative alpha variability; ADR, 

alpha/delta ratio; AT/D, alpha-theta/delta ratio; IIC, ictal-interictal continuum; GRDA, generalized rhythmic 

delta activity; mFS, modified Fisher scale; WFNS, World Federation of Neurosurgical Societies grading.

Study type N. of vasospasm or 
DCI / total N

SAH grade EEG methods EEG/qEEG features

Parkes et al., 1971 Prospective 6/13 angiographic or 
clinical

All 8-channel raw EEG Increases in the percent 
time of theta and delta 
activity

Rivierez et al., 1991 Retrospective 104/151 angiographic Fisher 1–3 8-channel raw EEG Prognostic values of 
localized delta wave, delta 
diffuse wave, “axial bursts”

Labar et al., 1991 Prospective 8/11 clinical or 
radiographic

H-H 1–4 2-channel qEEG Decreases in the total 
power

Vespa et al., 1997 Prospective 19/32 angiographic or 
sonographic

All 8 electrodes, 10–20 
system, qEEG

Decreases in RAV

Claassen et al, 2004 Prospective 9/34 angiographic, 
clinical, or 
radiographic

H-H 4–5 F3–C3 and F4–C4, or 
Fp1–F3 and Fp2–F4, or 
F7–T3 and F8–T4 for 
the anterior circulation, 
P3–O1 and P4–O2, or T5–
O1 and T6–O2 for the 
posterior circulation

Decreases in ADR, 
increases in the delta/total 
power ratio

Rathkrishnan et al., 
2011

Prospective 8/12 clinical or 
radiographic

All H-H, mFS 
3–4

20 electrodes, 10–20 
System, qEEG. Analysis 
restricted to anterior 
quadrants

Composite alpha index 
(CAI)

Gollwitzer et al., 
2015

Prospective 6/12 clinical or 
radiographic

All 10 electrodes, 10–20 
System, qEEG

Decreases in the alpha and 
theta powers

Rots et al., 2016 Prospective 11/21 clinical or 
radiographic

All 8 electrodes, 10–20 
system, qEEG

Decreases in either 
ADR, alpha power, alpha 
variability, combination of 
ADR and alpha variability

Kim, et al., 2017 Retrospective 53/124 clinical or 
radiographic

H-H 4–5, 
Fisher 3

10–20 system, qEEG Late onset of any type of 
IICAs except GRDA

Rosenthal et al., 
2018

Prospective 52/103 clinical or 
radiographic

H-H 4–5, 
mFS 3–4

10–20 System, qEEG Worsening focal slowing, 
ADR, or RAV

Balança et al., 2018 Retrospective 9/15 radiographic H-H or 
WFNS 4–5

10–20 system, qEEG Decreases in AT/D
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