Table 3.
Comparison of ML model accuracy to diagnose endometriosis.
Datasets | Random Forest | XGBoost | AdaBoost | Logistic regression | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | AUC | Sensitivity | Specificity | |
1 | 0.935 | 0.871 | 1 | 0.952 | 0.903 | 1 | 0.935 | 0.871 | 1 | 0.887 | 0.774 | 1 |
2 | 0.984 | 0.968 | 1 | 0.984 | 0.968 | 1 | 0.984 | 0.968 | 1 | 0.968 | 0.935 | 1 |
3 | 0.984 | 0.968 | 1 | 0.952 | 0.903 | 1 | 0.984 | 0.968 | 1 | 0.984 | 0.968 | 1 |
4 | 0.912 | 0.935 | 0.889 | 0.896 | 0.903 | 0.889 | 0.912 | 0.935 | 0.889 | 0.919 | 0.839 | 1 |
5 | 0.967 | 0.933 | 1 | 0.967 | 0.933 | 1 | 0.9 | 0.9 | 0.9 | 0.933 | 0.867 | 1 |
6 | 0.896 | 0.903 | 0.889 | 0.896 | 0.903 | 0.889 | 0.88 | 0.871 | 0.889 | 0.912 | 0.935 | 0.889 |
7 | 0.984 | 0.968 | 1 | 0.984 | 0.968 | 1 | 0.984 | 0.968 | 1 | 0.984 | 0.968 | 1 |
8 | 0.952 | 0.903 | 1 | 0.968 | 0.935 | 1 | 0.935 | 0.871 | 1 | 0.919 | 0.839 | 1 |
9 | 0.968 | 0.935 | 1 | 0.968 | 0.935 | 1 | 0.935 | 0.871 | 1 | 0.864 | 0.839 | 0.889 |
10 | 0.983 | 0.967 | 1 | 0.967 | 0.933 | 1 | 0.95 | 0.9 | 1 | 0.883 | 0.767 | 1 |