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Abstract

One of the main challenges in drug discovery is predicting protein-ligand binding affinity. 

Recently, machine learning approaches have made substantial progress on this task. However, 

current methods of model evaluation are overly optimistic in measuring generalization to 

new targets, and there does not exist a standard dataset of sufficient size to compare 

performance between models. We present a new dataset for structure-based machine learning, 

the CrossDocked2020 set, with 22.5 million poses of ligands docked into multiple similar binding 

pockets across the Protein Data Bank, and perform a comprehensive evaluation of grid-based 

convolutional neural network (CNN) models on this dataset. We also demonstrate how the 

partitioning of the training data and test data can impact the results of models trained with 

the PDBbind dataset, how performance improves by adding more lower-quality training data, 

and how training with docked poses imparts pose sensitivity to the predicted affinity of a 

complex. Our best performing model, an ensemble of five densely connected CNNs, achieves 

a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity prediction task, an 

AUC of 0.956 at binding pose classification, and a 68.4% accuracy at pose selection on the 

CrossDocked2020 set. By providing data splits for clustered cross-validation and the raw data for 

the CrossDocked2020 set, we establish the first standardized dataset for training machine learning 

models to recognize ligands in non-cognate target structures while also greatly expanding the 

number of poses available for training. In order to facilitate community adoption of this dataset for 

benchmarking protein-ligand binding affinity prediction, we provide our models, weights, and the 

CrossDocked2020 set at https://github.com/gnina/models.
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Introduction

Protein-ligand scoring is a key component of the drug-discovery pipeline, as it provides 

a way to narrow the scope of all of chemical space down to a much more feasible 

set of compounds to evaluate. A common approach is to utilize structure-based methods 

to score potential molecules with respect to the binding site of a given target protein 

structure to produce a ranked list of hits.1–5 The scoring function is responsible for 

evaluating the correctness of the pose of the molecule in the binding site and predicting 

its binding affinity. Traditionally, scoring functions fall into one of three categories: 

force-field based,6–9 empirical,10,11 or knowledge-based.12,13 Force-field based methods 

utilize parameters estimated from experimental and simulated data that aim to model the 

intermolecular potential energies through bonded and nonbonded terms.14 Empirical scoring 

functions are constructed from manually selected interaction terms, such as hydrophobicity 

and hydrogen bonding, that are parameterized to available data. Knowledge-based methods 

are constructed from entirely non-physical statistical potentials derived from known protein-

ligand complexes. Each of these approaches commonly uses a linear fit of the input features 

to its target prediction. Lately, machine learning (ML) models have emerged as their own 

class of scoring which fit a non-linear function of their input to the target prediction.15–20

Often, ML approaches to scoring rely on predefined features to characterize protein-ligand 

binding, similar to knowledge-based empirical scoring functions. This overt featurization 

requirement possibly limits the performance of these scoring functions. This limitation can 

be avoided by using a direct representation of the protein-ligand structure as the input to a 

machine learning model. One such representation is a 3D grid (i.e., a 3D ‘picture’ of the 

complex) where the only features are the choice of atom types and how atom occupancy 

is represented in the grid. Several recent efforts have demonstrated success combining grid 

representations with convolutional neural networks (CNNs)21–25 which allow the model to 

learn its own representation of the protein-ligand interaction in order to determine what 

makes a strong binder.

Our previous work with CNNs21 showed good performance in identifying correct ligand 

poses, but did not directly predict binding affinity. Successive methods22–24 directly predict 
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the binding affinity. DeepDTA22 showed reasonable performance with representations of 

the input complex consisting of the protein’s sequence and the ligand’s SMILE string. 

KDeep23 uses a 3D grid of chemical descriptor channels, rather than simple atom identities. 

Pafnuncy24 extends an atom type representation with additional atomic properties such as 

partial charge, SMARTS patterns, and hybridization. Imrie et al.25 improved on our original 

work by utilizing densely connected CNNs,26 transfer learning, target-specific models, and 

model ensembles to great effect on the DUD-E set.27 In addition to these approaches, there 

have been considerable advancements in utilizing graph-based representations and other ML 

models to predict protein-ligand binding affinity.28,29

Partially inspired by these successes, here we extend our original network21 to jointly 

train for pose selection, i.e. classifying poses as having a low root mean squared deviation 

(RMSD) to the true crystal pose or not, and affinity prediction, a regression problem. We 

expect that these two outputs should be related as both are ultimately a function of molecular 

interactions. Machine learning models for pose selection and affinity prediction have largely 

relied on the PDBbind dataset30 which curates the Protein Data Bank for high quality 

protein-ligand structures with published binding affinities. However, the ultimate goal of 

protein-ligand pose scoring is not to recapitulate the known pose of a ligand with respect 

to its cognate structure (redocking) but to predict the poses of novel ligands in a given 

structure. Here we present a new CrossDocked2020 training set that both augments and 

expands available data and better mimics the drug discovery process by including ligand 

poses cross-docked against non-cognate receptor structures as well as poses purposely 

generated to be counterexamples.

Additionally, it is important to note that the available data for protein-ligand binding is 

inherently biased and does not span all of available chemical space. Cleves and Jain31 

looked into the inductive bias present for ligand-based modeling methods and found notable 

differences between 2D and 3D methods. They also note that the available data is the result 

of specific human design choices, e.g. drug campaigns for a specific receptor.31 Xia et al.32 

provides a review of common biases encountered in virtual screening datasets: ‘analogue 

bias’ (highly similar active compounds), ‘artificial enrichment’ (poor property matching 

between actives and decoys leading to easier classification), and ‘false negatives’ (assumed 

decoys that were later experimentally verified to be active). With the recent successes of 

machine-learning based methods, there has been renewed interest in controlling for the 

biases in available datasets.33–37 Sieg et al.33 report that ML-based methods tend to fit to 

the initial biases of their training data and report on the importance of domain biases. Chen 

et al.36 show that there are numerous biases still present in the DUD-E dataset,38 and that 

ligand-only models achieve comparable performance to 3D CNNs on DUD-E, despite the 

lack of a receptor to inform the model’s predictions.

To partially address and measure bias, we evaluate a ligand-only version of our models, 

which are trained without a receptor structure. These versions of our models allow for 

a general model trained exclusively on ligand features and indicate to what extent our 

models are making predictions from purely cheminformatic information, including analogue 

bias and artificial enrichment, versus protein-ligand interactions. We further include limited 

comparisons with a variety of other common regression methods (linear regression with 
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Lasso regularization, K-nearest neighbors, a decision tree, a random forest, gradient boosted 

decision trees, and support vector regression) that use simple chemical descriptors as 

input and are assessed on the same training and test sets. We also adopt clustered cross-

validation34,39 on the PDBbind datasets, as well as our CrossDocked2020 set, to more 

rigorously evaluate generalization error. This is necessary since random data set splits do 

not measure a model’s ability to generalize to a new target, and, in the best case, are only 

appropriate for evaluating targets with a significant amount of known ligands.40

In order to assess a grid-based 3D CNN’s ability to predict protein-ligand binding affinity 

and perform pose selection, we designed a series of experiments. First, in order to 

help compare our method with other approaches, we tested on the PDBbind Core set 

using a variety of training sets. Next, we evaluated generalization to new targets using a 

clustered-cross validation analysis of the PDBbind. Additionally, we evaluated the impact of 

increasing training data by including lower quality structures as this strategy has been shown 

to be effective for random forest models.41 We also examined the impact on our models 

of including cross-docked poses, as well as counterexamples, in the CrossDocked2020 

training set. We then assess pose sensitivity of our models by examining models trained 

with a ligand-only version of our training data and different pose selection approaches 

for affinity prediction. Lastly, we examined how an ensemble of models gives a boost to 

performance, as well as how a different Dense architecture performs at pose selection and 

protein-ligand binding affinity prediction. All data splits, trained models, and evaluation 

scripts are available at https://github.com/gnina.

Methods

Here we describe our grid-based 3D CNN model architectures, the construction of our 

datasets, our training procedure, and our evaluation metrics.

Model Architectures

We evaluate five distinct CNN model architecture variations shown in Figure 1. All models 

take a 3D grid of Gaussian-like atom type densities as input that is generated using 

our libmolgrid CUDA-accelerated library for molecular grid generation.42 There are 14 

ligand atom types and 14 receptor atom types, including distinct types for oxygen/nitrogen 

hydrogen donor/acceptors and aliphatic/aromatic carbons. A cubic grid with dimension 

23.5Å and 0.5Å resolution is used. Default 2017 (Def2017) is our originally proposed CNN 

architecture.21 Default 2018 (Def2018), HiRes Pose, and HiRes Affinity were discovered 

via an extensive hyper-parameter search where the goal was to maximize performance 

on clustered cross-validated splits of the PDBbind Refined set. The HiRes models were 

optimized strictly for a specific task and without particular regard to run-time performance, 

resulting in substantially more parameters (see Table 1). The Def2018 model was chosen 

based on its combined performance on affinity prediction, pose selection, and evaluation 

time. Additional details of the semi-automatic hyperparameter search used to discover these 

models are provided in the Supporting Information. Dense is a densely connected CNN26 

derived from a model previously used for the virtual screening task.25
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All models consist of a series of 3D convolutional and/or pooling layers followed by two 

separate fully connected layers whose outputs are the pose score and affinity prediction. 

Pose selection (classification) is trained with a logistic loss to distinguish between low 

RMSD (< 2Å) and high RMSD (> 2Å) poses. Affinity prediction is trained using an L2-like 

pseudo-Huber loss that is hinged when evaluating high RMSD poses. That is, the model is 

penalized for predicting both a too low or too high affinity of a low RMSD pose, but only 

penalized for predicting a too high affinity for a high RMSD pose.

PDBbind Datasets

Traditionally, machine learning models have been evaluated using the predefined ‘Core’ set 

as a test set and the remainder of the PDBbind as the training data. As the PDBbind consists 

of both a curated (Refined) and expansive (General) set, we created several partitions of 

PDBbind v2016 for training and evaluation purposes: Refined\Core, General\Core, clustered 

cross-validated (CCV) Refined, and CCV General. Complexes were discarded if the ligand 

molecular weight was greater than 1000Da or if the ligand name was ambiguous. Each 

receptor and ligand was downloaded directly from the PDB as an SDF through the 

downloadLigandFiles service to avoid ambiguities in bond orders and protonation states 

present in the full PDB file. The receptor had its water and all atoms identified by the 

HETATM tag stripped via the ProDy Python package.43

Docked poses were generated by docking ligands into their cognate receptor with smina.44 

Up to 20 poses were generated per receptor-ligand pair and poses were docked in a box 

defined using the autobox option with the crystal ligand. Otherwise, default settings were 

used. In order to increase the likelihood of each complex having a low RMSD pose in the 

training set while still ensuring that all training poses have the same geometric properties 

of a docked pose, an energy minimized crystal ligand was included in the training set. 

The crystal ligand was refined using the UFF force-field45 in RDKit,46 which is the same 

force-field used when generating conformers for docking, and then minimized with respect 

to the receptor structure using the Vina scoring function as implemented in smina, just as 

with the docked poses. Thus, there are two sets of poses when utilizing the PDBbind data: 

crystal poses and generated poses. The direct crystal pose is utilized in models trained with 

the “Crystal” dataset, and the generated poses (e.g. docked, and energy-minimized crystal 

pose) are utilized in models trained with the “Docked” data.

This filtering process resulted in the Refined set, with 3,805 complexes and 66,953 

generated poses, the General set, with 11,324 complexes and 201,839 generated poses, 

and the Core set, with 280 complexes and 4,618 generated poses. We trained for affinity 

prediction using the pK reported in the PDBbind. Dataset information is shown in Table 2.

In order to test for model generalizability, we need to avoid similar protein structures as well 

as similar chemotypes existing in both the training and the test sets. To achieve this, we 

create splits for clustered cross-validation. Thus Clusters were created by grouping together 

receptors with over 50% sequence similarity or with over 40% sequence similarity and 

90% ligand similarity, as computed with RDKit’s46 FingerprintMols. That is, complexes 

with highly similar ligands will only be placed in distinct clusters if the receptors have 
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less than 40% sequence similarity. Clusters were then randomly assigned to folds for 3-fold 

cross-validation.

CrossDocked2020 Dataset

The CrossDocked2020 set was generated by downloading the PDB structures specified by 

Pocketome v17.12.47 Pocketome groups structures from the PDB based on the similarity 

of their ligand binding sites, with all identified receptors and ligands forming a “pocket.” 

Ligands with over 1000Da molecular weight were removed, and structures were stripped 

of water and aligned to the Pocketome binding sites using ProDy.43 Ions, as identified by 

ProDy, were retained and assigned as receptor atoms, unlike with the PDBbind data. The 

ligands associated with a given pocket were then docked into each receptor assigned to that 

pocket by Pocketome using smina,44 as previously described, resulting in a combinatorial 

expansion of docked poses. Binding data (pK) for the CrossDocked2020 set was taken from 

PDBbind v2017, where we assumed that a given ligand’s binding affinity would be the same 

for all receptors of a given pocket. We also assume the aligned co-crystal can be used to 

evaluate the pose quality of cross-docked ligand structures. Although these assumptions are 

commonly made during structure-based virtual screening, they are not necessarily valid and, 

as a result the labels of cross-docked poses are inherently noisier.

Unlike the PDBbind based data, the CrossDocked2020 dataset has already defined cluster 

centers of similar protein-ligand interactions from the Pocketome database. Leveraging this, 

we can compare across the already defined protein-ligand complex groupings sharing the 

same pocket. Clustered cross-validated sets were generated by grouping pockets into clusters 

using the ProBiS48 algorithm with the z-score parameter set to 3.5. Clusters were randomly 

assigned to folds for cross-validation. In total, the CrossDocked2020 set contains 13,780 

unique ligands, 41.9% of which have binding affinity data, 2,922 pockets, and 18,450 

complexes. Note that we grouped this data into complexes labeled by ‘pocket-ligand’ pairs, 

meaning the same ligand can be found among multiple complexes. The CrossDocked2020 

set contains a total of 22,584,102 poses, 11,892,173 of which are counterexamples added 

through our iterative training set approach (outlined in the next section). A ReDocked subset 

was created by only including poses where the ligand was docked to its cognate receptor. 

The ReDocked set contains the same pockets and ligands as the CrossDocked2020 set, but 

only has 18,369 complexes and 786,960 poses of which 391,137 are counterexamples (see 

Table 2).

Iterative Training Set Preparation

We have shown that an iterative approach to the generation of training data improves the 

robustness of the trained model.49 In this approach, we train a model utilizing all of the 

available training data and use it to optimize the docked poses from the training data 

with respect to the newly trained model. This results in poses that the model generally 

considers to be good. Since we have the true crystal structure, we can identify those 

poses the model is most challenged by. We update the dataset with poses that scored high 

(above 0.9) while being more than 2Å RMSD away from the crystal pose, or scored low 

(below 0.5) while being less than 2Å RMSD away from the crystal pose. This provides 

a set of counterexamples that are specifically designed to confuse the model.50 Only 
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unique counterexample poses are added to the training set (a new pose must be more 

than 0.25Å RMSD different relative to any pose already in the training set). This process 

was performed twice on the CrossDocked2020 set. Each iteration added fewer poses (Table 

2) and the impact of the second iteration did not justify the computational expense of an 

additional iteration (see Supporting Information for more details). Tools for generating these 

counterexamples are provided at http://github/gnina/scripts.

Training Procedure

Models were trained using our custom fork of the Caffe deep learning framework51 

with libmolgrid integration42 using the train.py script available at https://github.com/gnina/

scripts. Training examples were randomly shuffled and each training iteration used a batch 

size of 50. Batches were balanced with respect to class labels (low RMSD vs high RMSD 

poses) and examples were stratified with respect to their receptor so that targets are sampled 

uniformly during training regardless of the number of docked poses per a target. Since 

grids are inherently coordinate frame dependent, input structures were randomly rotated 

and translated (up to 6Å as long as the ligand did not translate outside the box). This data 

augmentation by pose modification is essential to achieve good performance with grid-based 

CNNs.21 The stochastic gradient descent (SGD) optimizer with an initial learning rate of 

0.01 and momentum 0.9 was used with a weight decay of 0.001.

Models were trained utilizing an early stopping criteria that seeks to dynamically reduce 

the learning rate and terminate training when the model appears to be converging. Early 

stopping hyperparameters for each training set are provided in Table S1. Early stopping 

evaluates the loss of the trained network every 1000 iterations on a sample of the training 

set. The size of this sample is determined by the percent_reduced parameter to train.py. The 

training set is used for the stopping criterion instead of a test set since we use the same 

procedure when training on the entire dataset with no held-out information. If there is no 

reduction in the training loss during the last step_when evaluations, then the learning rate is 

lowered by a factor of 10. We select this parameter so that the network will see the entire 

training set or 200,000 examples, whichever is smaller, before updating the learning rate. 

The learning rate is lowered step_end_cnt times.

For each dataset, we trained 5 models using 5 different random seeds to assess the 

variability of model performance. Additionally, for the clustered cross-validated PDBbind 

data, each seed utilized a different 3-fold split of the data. This was not the case for the 

CrossDocked2020 and ReDocked2020 datasets where the 5 different seeds were tested on 

the same 3-fold split of the data, due to the computational cost and time required to create 

a split of this much larger dataset. Cross-validated model performance is reported as the 

average of the three validation sets. We emphasize that validation sets used for reporting 

performance never overlap with the training set of the model being evaluated.

Evaluation Metrics

To evaluate pose selection performance we consider both the area under the curve (AUC) 

of the receiver operating characteristic (ROC) curve and the ‘Top1’ percentage. The AUC 

indicates how well the model separates low RMSD poses from high RMSD poses overall 
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and provides a measure of inter-target ranking power, while Top1 is the percentage of low-

RMSD (< 2Å) poses among the top-ranked poses, and is a measure of intra-target ranking 

power (i.e., how often docking is successful). The meaning of Top1 depends significantly on 

the underlying ratio. If not all complexes have a low RMSD pose, which can happen when 

evaluating docked poses, the best possible Top1 will be less than 100%. Additionally, the 

expected Top1 of a random classifier will vary depending on the percentage of low RMSD 

poses sampled. To provide context for our Top1 results, we provide the best possible Top1 

and the expected performance of random selection. When evaluating cross-docked poses, 

we consider all docked poses of a ligand across multiple receptor structures as a single set, 

emulating ensemble docking.52

Our models aim to both score the quality of binding pose and predict its affinity. In order to 

evaluate affinity prediction, we must first select which docked pose of a ligand to evaluate. 

Unless stated otherwise, we select a pose for a given complex (receptor:ligand for PDBbind, 

or pocket:ligand for Pocketome) by taking the pose with the highest pose score (the same 

pose used to generate the ‘Top1’ statistic) or best Vina score when evaluating the Vina 

scoring function. The predicted affinity of this pose is then used to calculate the Pearson’s 

R and root mean squared error (RMSE) with the experimental affinity in pK units. We 

also analyzed the effect of selecting the pose with the highest predicted affinity, the best 

pose (lowest RMSD to the crystal), the worst scoring pose, or a random pose on affinity 

prediction.

As a baseline, we evaluate poses using the Autodock Vina53 scoring function. In order to 

compare to binding affinities from PDBbind, we convert the Vina score, which is in units of 

kcal/mol, to pK units using the formula

pK = − log10 e
vina
T ⋅ R

. Where T = 295K and R = 1.98720 · 10−3kcal mol−1K−1 is the ideal gas constant.

Results

We show that our models achieve comparable performance to other ML models for 

protein-ligand scoring. We then show the benefits of training and evaluating on larger and 

more sophisticated datasets, while evaluating how well models generalize across different 

datasets. We also evaluate ligand-only models, model ensembles, and the architecturally 

distinct Dense model.

Our models achieve comparable performance to other ML models

In Table 3 we compare our models with previously published work. Models are trained 

on the PDBBind (with the Core set removed) and tested on the Core set. Pafnucy24 and 

KDeep23 are both CNNs based on grids similar to our models, RF-Score16 is a random 

forest, and 1D2D CNN29 is a CNN with a distinct input representation based off of the 

topology of the input. Vina is included as a representative of a traditional scoring function. 

Our best performing models show similar results to the previous grid-based CNN methods 
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as well as RF score, although precise comparisons are not possible due to differences in the 

training and test sets.

Training on docked poses has little effect on affinity prediction

We consider the effect of using docked poses versus crystal poses for affinity prediction 

using the PDBbind Refined-Core set and testing on Core. We trained on two versions of this 

data: one with only the crystal poses, Crystal, and another with only docked poses, Docked. 

When training with Crystal the pose score layer of the model is omitted and the only loss 

computed is the L2-like loss of affinity prediction. The Docked set includes both low (< 2Å) 

and high (> 2Å) RMSD poses where the high RMSD poses are trained using a hinge loss as 

described in the Methods.

Affinity prediction performance on these two sets, as measured by Pearson’s R and RMSE, 

is shown in Figure S8. All four models achieve comparable performance on both the 

Crystal and Docked datasets, with average R values in the range of 0.72 to 0.75. This 

shows that the inclusion of docked poses does not reduce affinity prediction performance, 

despite the presence of high RMSD poses. We also demonstrate that models trained on 

the Crystal dataset and evaluated on the Docked dataset, and vice versa, display only 

minimal differences in performance. This indicates these models are insensitive to small 

perturbations of ligand positions. In other words, a low RMSD pose is scored similarly to 

a crystal pose. This stands in contrast to the performance of the empirical AutoDock Vina 

scoring function, which performed particularly poorly on the Crystal data. This is due to 

several crystal structures with short intermolecular distances that result in a large repulsion 

term. Vina does significantly better predicting the affinity of the low RMSD docked poses, 

which are all at local minima with respect to the Vina scoring function and so do not have 

these artifacts. This is especially apparent when isolating the minimized crystal poses out of 

all docked poses, upon which Vina performs the best.

Extensive hyperparameter tuning yielded limited benefit

As shown in Figure S8, the hyperparameter optimized models behave similarly to the 

Def2017 model. In successive analyses we find that the hyperparameter optimized models 

generally exhibit a modest performance improvement relative to the original Default 2017 

model. The HiRes models are the best at the task and dataset (Refined) they were optimized 

for, but this pattern is not conserved across different training and test sets. This suggests 

these models may have been selected based on their ability to overfit a specific training 

regime. The consideration of model complexity and run-time performance in the selection of 

Def2018 may have had the effect of regularizing the hyperparameter search as this model is 

consistently close to the best model in all the evaluations. As all four models demonstrate 

similar trends and the Def2018 model generally performs best, for the remaining evaluations 

we present results only for the Def2018 model, with evaluations for all four models 

available in Figures S9, S10, S11, S13, and S14. The limited improvement achieved 

via hyperparameter search with these models motivated the evaluation of a substantially 

different network architecture, the Dense model, which we evaluate in Figure 11.
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Training on docked poses increases pose sensitivity

As training on docked poses has little effect on affinity prediction (Figure S8), we sought to 

evaluate how sensitive affinity prediction is to the choice of pose selected for evaluation. We 

evaluated 5 different pose selection methods: Best (selecting the pose with the lowest RMSD 

to the crystal pose), CNNscore (selecting the pose with the highest predicted CNNscore, 

the default), CNNaffinity (selecting the pose with the highest predicted affinity), Random 

(selecting a random pose), and Worst (selecting the pose with the highest RMSD to the 

crystal pose). Figure 2 shows the results of this analysis for the Def2018 model trained with 

either the Refined\Core Crystal set or the Refined\Core Docked set and tested on the Core 

set made up of docked poses. Note that Crystal trained models do not generate a pose score 

(CNNscore) since they are not trained for this task.

As the quality of the selected pose decreases, both the correlation and RMSE performance of 

affinity prediction worsens. This effect is more pronounced for the Docked trained models, 

and the impact on RMSE is particularly notable. With the Docked trained models, high 

RMSD poses are assigned significantly lower affinity predictions on average, so that while 

some correlation is retained (Figure S12), the RMSE increases significantly. Interestingly, 

while using the highest RMSD pose reduces affinity prediction performance, the Crystal 

trained Def2018 model still achieves an R of 0.60 compared to 0.70 with the best possible 

pose. This suggests the model is making minimal use of protein-ligand interactions in 

making its affinity prediction. In contrast, models trained on Docked poses are more pose 

sensitive. Not only does affinity prediction quality better correlate with pose quality (Figure 

2), the affinity prediction by itself is significantly better at selecting low RMSD poses. This 

is shown in Figure 3 where the CNNaffinity selection is only 43% successful at selecting a 

low RMSD pose when trained on Crystal poses compared to the 68% success rate of this 

selection method using the Docked trained model.

Expanding training data with PDBbind General improves performance

The PDBbind Refined set is filtered from the PDBbind General set to exclude complexes 

where there are concerns about the quality of the structure or the binding data.54 In order 

to investigate the effect of adding more, but lower quality, training data on predicting 

the Core set, we compare models trained using PDBbind Refined\Core to those trained 

using PDBbind General\Core in Figure 4. For all models and metrics, training on PDBbind 

General improves Core set predictions, suggesting the quality controls used to create the 

Refined set may be overly strict for the purposes of training machine learning models.

Clustered cross-validation reveals Core set evaluations are overly optimistic

We compare the performance of models trained on the PDBbind General set and tested on 

the Core set with models trained and evaluated using 3 fold clustered cross-validation of 

the entire PDBbind General set in Figure 5. For each of our three metrics, the clustered 

cross-validated models perform substantially worse. Pearson R drops from 0.78 to 0.56, 

AUC from 0.94 to 0.89, and Top1 from 0.77 to 0.62. This drop is not due to the reduced size 

of the training set in each of the cross-validation folds, as these sets are still substantially 

larger than the PDBbind Refined set (Table 2), and yet the clustered cross-validation 

metrics are also substantially worse than Refined set performance (Figure 4). As clustered 
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cross-validation measures the performance of models on new target classes, the most likely 

explanation for this performance difference is that testing on the Core set is a poor measure 

of a model’s ability to generalize. The Core set is embedded in the same chemical and 

target space as the Refined/General set by design, and, by virtue of its intentionally reduced 

size, only samples a portion of the full protein-ligand landscape. Furthermore, the Core set 

is constructed so there are low/medium/high affinity examples for each target class. This 

results in a distinctly different distribution of affinity values that produces artificially high 

correlations of affinity prediction performance (as shown in Figure 5). These factors suggest 

a significant portion of the measured performance on the Core set is due to overfitting to the 

training data, or at least not generalizing beyond a narrow domain of applicability. Machine 

learning models that seek to generalize to new targets and chemotypes should use a more 

rigorously constructed test set than the Core set.

Expanding training data beyond PDBbind improves performance

Motivated by the improved performance of the larger, but lower quality, PDBbind General 

set, and with the goal of training models that are appropriate to use in prospective docking 

studies, we created the even larger CrossDocked2020 set (Table 2). The CrossDocked2020 

set is greatly expanded by including cross-docked poses, by including complexes that 

lack affinity data, and by including counterexamples. For a more apt comparison to the 

PDBbind datasets, we also consider models trained only on the ReDocked2020 subset 

when evaluating clustered cross-validation performance. As shown in Figure 6, as more 

redocked poses are added, performance increases for all metrics. Notably, affinity prediction 

performance increases despite the inclusion of complexes without affinity data, which are 

omitted from the loss calculation. However, we caution that as the underlying datasets are 

different, it isn’t possible to definitively conclude that the improvement is due to the volume 

of data. In fact, Vina also sees a significant improvement on the ReDocked2020 dataset. 

Nonetheless, it is reassuring that expanding the dataset with additional redocked poses does 

not reduce performance, despite the minimal filtering applied.

As expected, pose selection performance on the full CrossDocked2020 set is substantially 

reduced. Cross-docked poses are inherently noisier and there are many more poses to select 

from. This results in a more challenging task. However, it is also a more realistic assessment 

of a model’s performance in a prospective docking experiment, and the drop in docking 

accuracy for the CNN model is less than that exhibited by Vina. Interestingly, affinity 

prediction performance is less affected by the inclusion of cross-docked poses in the training 

set. Since there is not a performance decrease, we can conclude that the model’s predictive 

power for affinity is not hampered by the inclusion of extra negative examples and noisier 

pose labels. We investigated this further by evaluating models trained on Redocked2020 and 

tested on CrossDocked2020 and vice-versa in Figure 8. The difference in Pearson R between 

models is not statistically significant (p > 0.05, Student’s t-test), and the CrossDocked2020 

trained model has a slightly better AUC and slightly worse Top1 than the ReDocked2020 

model. However, models trained with CrossDocked2020 have a performance boost when 

evaluated on the ReDocked2020 test set, whereas models trained with ReDocked2020 have a 

performance drop when evaluated with CrossDocked2020. This suggests that models trained 

with the cross-docked poses are more robust.
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Training on redocked poses is less effective when targeting apo receptor conformations 
than training on cross-docked poses

In order to asses the impact of training with cross-docked poses, we tested our models 

trained with the clustered cross validated PDBbind General or on CrossDocked2020 on the 

other’s test sets, as well as CrossDocked2020 without the counterexamples (it0). In addition, 

we compared models trained with only the redocked poses of CrossDocked2020 and models 

trained on the whole set on various splits of CrossDocked2020. Note that since the data 

splits of the PDBbind General set are different per seed, each corresponding swapped test 

set has a different amount removed in order to avoid test-on-train. This is the reason for 

the varying Best and Random performances of the swapped test sets in Figure 7, and 

means that each column cannot be directly compared. Thus we can only comment on the 

trends of the results. As shown in Figure 7, models trained with PDBbind data alone are 

fooled by the counterexamples provided in CrossDocked2020, whereas models trained on 

CrossDocked2020 generalize well to the PDBbind data. If the counterexamples are removed, 

then the PDBbind trained model generalizes well for affinity prediction, but the performance 

drop on pose selection is only slightly alleviated showing that pose selection is sensitive 

to the inclusion of cross-docked poses, as expected, unlike affinity prediction. Additionally, 

when comparing the CrossDocked2020 test set without the iteratively generated poses (the 

grey column) models trained with the CrossDocked2020 data exhibit a small performance 

gain on AUC, Pearson’s R, and Top1, while also having a substantial improvement on 

RMSE. This suggests that models trained with only the redocked PDBbind data are not as 

equipped to handle the cross-docking tasks.

In order to investigate if the performance differences in Figure 7 were caused by differences 

in model performance due to the inclusion of cross-docked poses or just from differences 

between the PDBbind based data and CrossDocked2020 data, we tested models trained 

on the redocked subset of CrossDocked2020 and compared them to models trained on 

all of CrossDocked2020. Figure 8 reports the performance of these models on test sets 

escalating in receptor deviation from the cognate receptor. We expect that the apo structures 

present in the CrossDocked2020 dataset represent both the most challenging examples, as 

we are trying to fit a ligand into a structure with no ligand present, as well as a common 

use case scenario for a drug discovery pipeline. We show that training on CrossDocked 

poses allows for a small performance boost on affinity prediction for the apo structures 

(R from 0.378 to 0.398, and RMSE from 1.90 to 1.82), AUC (0.867 to 0.891), and Top1 

(0.289 to 0.317). Additionally R and RMSE give similar performance on the other sets, 

whereas the CrossDocked2020 trained models perform better than the ReDocked models 

on CrossDocked data, while only having a minor loss of performance on ReDocked data. 

Lastly, CrossDocked2020 trained models have a small performance drop in Top1 for all but 

the most challenging dataset.

Counterexamples yield limited performance benefit but are necessary to support pose 
optimization

The CrossDocked2020 set included two iterations of counterexample generation. To 

evaluate the influence of these counterexample poses, we consider models trained using 
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our initial “Iteration 0” CrossDocked2020 set, without any counterexamples, and our full 

CrossDocked2020 set, “Iteration 2” in Figure 9.

When evaluating a test set without counterexamples, models trained with counterexamples 

perform worse than their counterparts trained without them at the pose selection task (0.885 

to 0.845 AUC and 0.577 to 0.556 Top1), indicating that the counterexamples hurt absolute 

pose predictive power. In contrast to this worse pose selection performance, models trained 

with counterexamples exhibit slight performance improvements in affinity prediction (0.577 

to 0.587 Pearson’s R and 1.463 to 1.457 RMSE) when evaluated on the initial set (light 

blue Figure 9), indicating that the inclusion of the confusing counterexamples is potentially 

beneficial to affinity prediction. Taken together, these two results suggest that adding 

counterexamples into the training regime does not strictly improve model performance on 

the original data.

However, the motivation for including counterexamples was not primarily to improve model 

performance; rather, it is to improve the model’s robustness to out-of-distribution poses. 

Training without counterexamples and testing on a set containing them (orange columns in 

Figure 9) results in a drastic performance dropoff across all metrics for both pose selection 

and affinity prediction. We expected the pose selection performance drop as more than half 

of the poses (Table 2) are specifically selected to confuse the initial model. Additionally, 

we expected a small performance drop in affinity prediction, as the model first has to 

select a pose for its affinity prediction. The performance drop we observed was higher 

than expected, which indicates that there is a link between the pose of a complex and its 

predicted affinity, as desired, and that the confusing pose counterexamples also serve to 

confound the affinity prediction task. Taken together, these results imply that the inclusion 

of our counterexamples have little effect on the absolute performance of the models as long 

as they are evaluated on poses generated using the same protocol as the training set. The 

main benefit of including counterexamples when training a model is their effect on pose 

optimization. This is shown by the improved distribution in RMSD from the crystal structure 

exhibited after optimizing poses with a model trained with counterexamples (see Figure 

S4). Without counterexample training, most poses get optimized to a significantly worse 

pose, whereas with counterexample training poses improve on average. Counterexamples 

constructed from one model (Default2018) also improve optimization performance when 

used to train a different model architecture (Dense), as shown in Figure S5. However, this 

improvement in optimization is not as significant as when training with counterexamples 

generated using an identical network architecture, suggesting that for best results when 

training models for pose optimization the CrossDock2020 set should be extended with 

custom counterexamples. Tools for generating such model-specific counterexamples are 

provided at http://github/gnina/scripts.

Ligand-only information is a significant factor in affinity prediction

The expectation in training a structure-based model is that its output is primarily a function 

of protein-ligand interactions, as is the case with classical scoring functions. However, 

recent work33,36,55 demonstrated that ligand-only, cheminformatic information can explain 

much of the performance of structure-based machine learning methods. We investigate this 
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effect in Figure 10 (CrossDock) and Figure S15 (General) by comparing results between 

versions of our model trained using only ligand information with models trained with the 

full complex. Note that models trained with no receptor information will have the weights 

that would deal with those channels set to zero during training due to weight regularization. 

Additionally,when evaluating a model trained with receptor and ligand information, but 

testing on only ligand information, we zeroed out the receptor, which eliminates the weights 

that would interact with the receptor channels as we are multiplying them by zero. We seek 

to quantify the amount of performance that can be gained by a general model using only 

the ligand information available in our datasets. Unsurprisingly, models trained without the 

receptor information have unchanged performance when tested on a set with the receptors. 

Models trained without the receptor performed better than models trained with the receptor 

on the ligand-only test set, indicating that receptor-trained models are using receptor 

information to make their predictions. Consistent with previously reported results,35,36,55 

models trained without any receptor information still achieve a significant correlation 

in affinity prediction, although there is a significant decrease in the average Pearson’s 

correlation coefficient, with the PDBbind General set decreasing from 0.56 to 0.52 and 

the CrossDocked2020 set from 0.58 to 0.49. This suggests that protein-ligand interactions 

play more of a role in affinity prediction for models trained with the CrossDocked2020 

data. Further evidence suggesting that cheminformatic information has a greater role in 

driving good performance for the PDBbind datasets than the CrossDocked2020 set is shown 

in Table S3; a variety of models trained on simple descriptors can obtain a correlation 

of 0.51 on average for the PDBbind General set, but only a correlation of 0.27 on 

CrossDocked2020.

As expected, since pose selection is inherently a function of the pose of the ligand 

relative to the receptor, models trained without a receptor have a Top1 metric equal to 

random performance. Models trained with a receptor exhibited close to random AUCs and 

substantially reduced correlations when evaluated on the ligand-only test set. However, 

surprisingly, the AUC of ligand-only models is significantly higher than the expected 0.5 

of a random classifier, with the PDBbind General trained model exhibiting an AUC of 

0.59. As there is no receptor, this non-random performance must be due to differences 

in ligand conformation or a general cheminformatic descriptor. Scoring poses using their 

internal energy, as calculated by the UFF force field, classified poses from the General 

set with an AUC of 0.55 (Figure S16). This suggests that ligand strain may provide some 

signal into the quality of a docked pose, but does not fully explain our ligand-only models’ 

performance. We also evaluated using a 2D-only Morgan fingerprint of the molecule with a 

linear regression model, which resulted in an AUC of 0.60 on the General set, matching 

the performance of our ligand-only model. As fingerprints are independent of ligand 

conformation, this result is achieved despite different poses of the same ligand producing 

identical scores. The reason this does not result in an AUC of 0.5 is that not all ligands 

have the same percentage of low RMSD poses. For example, rigid molecules that bind to 

fully enclosed protein pockets have fewer high RMSD poses, as the steric constraints of 

the system prevent them from being sampled during docking. It appears the model can 

identify these ‘highly dockable’ chemotypes resulting in the non-random AUC. Since Top1 

strictly evaluates ordering of the poses of the same ligand, unlike AUC which evaluates pose 
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ordering across the entire dataset, it is not affected by this source of artificial enrichment. 

See the Supporting Information for additional analysis of this effect.

Individual Dense models improve pose selection but not affinity prediction

Finally, we evaluate the computationally demanding Dense model on the CrossDocked2020 

dataset in Figure 11. The Dense model has nearly twice as many parameters as Def2018 and 

takes ten times as long to evaluate (Table 1). This extra computation enables a significant 

improvement in pose selection performance, with an average Top1 percentage on the 

CrossDocked2020 set of 61.5% compared to 53.7% for the Def2018 model. Interestingly, 

individual models perform worse at affinity prediction, with an average R of 0.55 compared 

to 0.58 with Def2018. However, as we see next, the use of an ensemble of models, rather 

than individual models, rescues this decrease in affinity prediction performance.

An ensemble of models improves performance.—Typically training an ensemble of 

deep learning models results in a small performance gain. This is indeed the case for our 

models, as shown in Table 4 and Figure 11. The ensemble model predicts the average of the 

five individual models, each of which was trained using a different random seed on the same 

training set. We evaluated ensembles of up to ten Def2018 models on the CrossDocked2020 

dataset, but found diminishing returns after five models were used, as shown in Figure 

S17. An alternative means of generating an ensemble that is potentially more efficient 

than using multiple models is to exploit the coordinate frame dependent nature of the grid 

representation and evaluate an ensemble of random rotations of the input using the same 

model. However, as shown in Figure S18, this strategy does not meaningfully improve 

model performance. In all cases, an ensemble of models is equal or superior to the average 

performance of the individual models. Smaller training sets tend to benefit more from the 

use of an ensemble than the larger datasets, with the notable exception of the Dense model, 

which had the best gains via an ensemble approach. This is not necessarily surprising, as 

the much larger number of parameters suggests that the Dense models are more overfit to 

their training data and ensembling is an effective method for compensating for overfitting.56 

Our best performance overall is achieved with an ensemble of Dense models, which has a 

Top1 of 0.684 and R of 0.612 on the CrossDocked2020 set, compared to 0.413 and 0.419 

respectively for Vina.

Discussion

We have presented several grid-based 3D CNN model architectures for affinity prediction 

and pose selection and trained and evaluated them using a variety of datasets. The 3D 

grid representation has the advantage that it does not require overt featurization (although 

the inclusion of additional chemical information may improve performance23) and, since 

a CNN is differentiable, poses can be optimized with respect to the model using standard 

optimization techniques. Our models exhibit competitive performance relative to similar 

methods (Table 3), although an exact comparison is complicated by differences in test set 

selection, even when the same PDBbind Core set is used. Our best performing single model 

at affinity prediction is the Def2018 models trained with the PDBbind General Set with a 

Pearson’s R of 0.79. This can be compared to KDeep, the best performing grid-based CNN 
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model with a Pearson’s R of 0.82, as Jiménez Luna et al.23 reported that training on the 

General set did not improve KDeep’s performance.23 We note that KDeep uses 1,340,769 

parameters, which is about triple that of the Def2018 model. We substantially outperform a 

popular empirical scoring function, AutoDock Vina. When evaluated on cross-docked poses, 

our best model successfully selects a low RMSD pose as its best pose 65% more often than 

Vina (0.684 Top1 vs. 0.413).

Consistent with conventional wisdom that machine learning models struggle to extrapolate 

beyond the domain they are trained for, we have shown the difficulty these models have 

generalizing. Models trained to predict binding affinity using only crystal structures will 

struggle to correctly select low RMSD docked poses (Figure 3), despite performing well 

on crystal poses (Figure S8). Using Docked poses and jointly training with pose selection 

does not improve affinity prediction performance (Figure S8), but it does make the affinity 

prediction model more pose sensitive (Figure 2). Models trained with docked poses can 

perform well at the pose selection task as long as poses are generated using the same method 

as during training. However, if the model is integrated into the sampling strategy of a typical 

docking routine and is driving the generation of new poses, it will likely fail unless it is 

iteratively trained with counterexamples generated by this sampling strategy (Figure S4, 

Figure 9). This strongly cautions that the performance of models trained using crystal poses 

and affinity prediction in truly prospective structure-based drug discovery efforts may fall far 

short of what is expected from validation set performance.

A significant trend across all our evaluations is that expanding the training set, both with 

more data and with more diverse representations of the underlying data, expands the domain 

of applicability of the model and makes it more robust to variations in the construction 

of the input (e.g., docked vs. crystal or redocked vs. cross-docked poses). We believe 

our CrossDocked2020 dataset provides a close approximation of the desired domain of 

a general-purpose model for structure-based drug design. Importantly, although the set 

is large, with more than 22 million protein-ligand poses, every ligand is associated with 

an experimental structure so labels can be accurately assigned (modulo inconsistencies 

introduced by cross-docking). However, we suspect even CrossDocked2020 trained models 

would struggle if presented with ligand poses whose geometries were optimized using a 

different force field or were docked with a different algorithm. Care should be taken to 

ensure the prospective application of a model matches as closely as possible to the training 

domain.

We have similar concerns about the generalizability of affinity prediction. The substantial 

performance drop when evaluating affinity prediction using clustered cross-validation 

compared to the Core set (Figure 5), the minimal importance of the receptor structure 

(Figure 10), and the relative success of affinity prediction even using high RMSD poses 

(Figure 2) strongly suggest these models will not generalize well to new chemotypes. Since 

it is not possible to augment affinity training sets to the same degree as when training for 

pose selection, where additional poses can be generated and labeled, expanding the domain 

of applicability of structure-based affinity prediction models remains an open challenge. One 

possibility is to use binding affinity data from ligands without a known structure. However, 

previously we have shown that training models on such data by simply using the top-ranked 
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docked poses results in entirely pose-insensitive (i.e. cheminformatic) models.21 A more 

careful process for generating putative ligand poses, such as template-based docking,57 

may yield better results. Alternatively, a different input representation, model architecture, 

or training regime might force a model to only predict using protein-ligand interaction 

information,58 although it is not clear this necessarily results in a more generalizable model 

as ligand-only information is embedded in protein-ligand interaction information.

Protein-ligand scoring functions traditionally struggle to balance pose selection and affinity 

prediction performance.59–63 A unique feature of our models is the affinity prediction 

and pose selection score share a significant amount of computation (all but the last fully 

connected layer - see Figure 1), but are still uniquely computed outputs. This results in 

a affinity predictions that both seem to be more robust to perturbed poses while still 

being sensitive to the ligand pose. Figures 2 and 7 suggest that our models’ affinity 

predictive power is unaffected by the inclusion of negative poses in the training data. 

Additionally, all of our experiments on swapped test sets (Figures 7, 9, S8, 8, and S15) 

show that performance losses on affinity prediction metrics were less severe than on pose 

prediction metrics. Specifically, in Figure S15 we show that when trained with receptor 

information, performance is worse than when trained on ligands alone when evaluated 

on ligand-only structures. This demonstrates the model predictions are dependent on the 

receptor input. The use of receptor information improves affinity prediction (0.577 vs 0.487) 

and CNN ligand-only models outperform ligand-only models trained on simple descriptors 

(STable S3). This shows that, although ligand-only information substantially contributes to 

affinity prediction performance, CrossDock2020 performance can be improved through the 

inclusion of structural and receptor information.

We show that our models’ affinity predictions are indeed pose sensitive in Figure S12, as 

using the worst available pose has a large negative impact on affinity prediction correlation. 

Additionally, Figures 3 and S11 show that selecting a pose by taking the highest predicted 

CNNaffinity can recover most of the pose predictive performance of selecting by the highest 

CNNscore for the complex. We suspect that an underlying reason for the affinity predictions 

to behave this way is due to our training procedure. During training, we penalize the affinity 

prediction in two ways: for getting the affinity incorrect on a good pose or over-predicting 
the affinity on a bad pose. Thus, the model is not penalized for under-predicting the affinity 

of a bad complex, whereas correct complexes need to get the affinity correct. This allows the 

predicted affinity to have a great deal of pose predictive power, as the best predicted affinity 

would tend to be good poses as they are penalized for both under and over predicting the 

binding affinity.

We find there are several subtleties involved in training and evaluating these models. We 

were surprised to see a better than random AUC on pose selection using ligand-only models. 

Unlike affinity prediction, where cheminformatic models are routinely successful, pose 

selection seems like it should be entirely dependent on the receptor structure, and there 

should be no relevant information available from the ligand alone. This better than random 

performance is in part due to the construction of the training set. Some ligands had a higher 

percentage of low RMSD poses than others, so a model can learn a ‘dockablity’ index for 

each ligand. This may be a useful prior to learn since ligands that are inherently easier to 
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dock, e.g. rigid ligands, will be scored more confidently, but, if desired, it should be possible 

to eliminate this effect by resampling the training set so that every ligand has the same 

ratio of low to high RMSD poses. This effect is also due to the use of AUC as a metric, 

which measures how well a classifier separates positive from negative poses across the entire 

set of ligands. Typically, when docking, the goal is to correctly rank poses for the same 

ligand, and comparing the scores of different ligands is irrelevant for the purposes of pose 

prediction. This intra-target ligand ranking is precisely what the Top1 metric measures and 

is a better representation of docking performance. Unfortunately, the significance of both the 

AUC and Top1 metrics is highly dependent on the construction of the test set. For example, 

although a random classifier has an expected AUC of 0.5, its Top1 will depend on the 

average fraction of low RMSD poses available for each ligand. Conversely, expanding the 

set with trivial-to-predict high RMSD poses (e.g., ligand poses that don’t interact with the 

protein or overlap it completely) will artificially increase the AUC while leaving the Top1 

metric unchanged. Thus, for pose selection, precise comparisons between methods can only 

be made if the identical test set is used. As an example of the difficulty in comparing pose 

selection performance, consider the PDBbind-based evaluation of the graph-based model 

of Lim et al.28. This model achieves an AUC of 0.968, which is higher than any of our 

PDBbind evaluations, but also exhibits a Top1 of less than 50%, which is substantially lower 

than our worse Top1 PDBbind statistic (77%, Figure 4). However, we do not know the 

underlying distribution of positive to negative examples in their test set, making a direct 

comparison between our Top1 and their Top1 impossible as we do not know what the best 

possible performance nor the performance of a random classifier on their test set is. As an 

example, if only half of their test set had sampled a positive example, then a Top1 of 50% is 

actually perfect performance.

In an effort to help standardize comparisons of structure-based machine learning models, 

we provide all of our training and test sets (Table 2) both as standard SDF/PDB files 

and in a custom ‘molcache’ format that can be efficiently used via libmolgrid42 (https://

github.com/gnina/libmolgrid) to enable replication of and direct comparisons to our results. 

Our recommendation is that practitioners train and evaluate using the CrossDocked2020 set 

without the iteratively generated poses (unless the model will be used for pose optimization) 

as this best emulates real-world usage for scoring a ligand’s pose and predicting its affinity. 

However, if this is too computationally demanding, we provide the ReDocked and PDBbind 

datasets as well as an intelligently downsampled version of the CrossDocked2020 set. The 

DownsampledCD2020 set contains up to ten randomly selected positive examples and up to 

twenty randomly sampled negative examples per Pocket:Ligand pair that sampled at least 

one positive pose for each train/test fold. This results in a dataset that is 2.25% of the size 

of CrossDocked2020. Table S2 shows that the reduced set achieves similar performance 

on RMSE (1.45 vs 1.47), Pearson’s R (0.59 vs 0.58), and AUC (0.91 vs 0.89), but has a 

much higher Top1 (0.89 vs 0.54). The Top1 metric is not comparable due to the different 

distribution of positive and negative poses in the reduced set. Note that the purpose of our 

CrossDocked2020 set is orthogonal to cross-docking benchmark datasets64 as the goal is 

not to evaluate docking algorithms, but to provide a standard set of already generated poses 

for training, evaluating, and comparing machine learning models. In all cases, the clustered 

cross-validation train/test splits should be used, as we have shown (Figure 5) that using 
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PDBbind Core as a test set results in an over-optimistic evaluation of performance on new 

targets. Additionally, we recommend our iterative training procedure for generating new 

poses as counterexamples for a model if that model will be used to optimize ligand poses. 

When training a new model architecture or for a different training task, we recommend 

this counterexample generation procedure be repeated. While our provided counterexamples 

show some benefit with different model architectures, and therefore serve as a good starting 

point, the overall benefit is less than using model-specific counterexamples (Figure S5). We 

also do not expect our datasets and splits to be appropriate for every task. For example, 

our clustered cross-validation splits primarily use target identity for creating clusters, since 

our primary concern is the ability of models to generalize to new targets, but this may 

result in an undesirable amount of ligand similarity between train and test sets for some 

applications. We also purposely retain unequal ratios of low to high RMSD poses among 

ligands, resulting in a ligand-specific ‘dockability’ prior. Nonetheless, our hope is that a 

standard dataset for structure-based machine learning will aid the development of more 

effective models while also illuminating additional improvements that are needed in such a 

dataset.

We have shown that 3D CNN models can substantially outperform a conventional empirical 

scoring function (Vina) at affinity prediction and pose selection, but do not necessarily 

generalize beyond the domain they are trained on. To partially address this issue and 

to provide a resource for structure-based machine learning models, we created the 

CrossDocked2020 set of more than 10 million poses. This dataset better approximates the 

domain of prospective structure-based drug design where a ligand is evaluated against a non-

cognate structure. In Figure S15 we demonstrate that models trained with CrossDocked2020 

are more pose-sensitive, as their performance drop is more substantial when the receptor 

is removed. We additionally showed that models trained with CrossDocked2020 are more 

robust (Figure 8, Figure 7, and Figure 9). We have deployed models trained on the entire 

CrossDocked2020 set within the latest version of our open source gnina (https://github.com/

gnina) deep learning framework for molecular docking so they can be easily used for pose 

scoring and minimization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
CNN model architectures. Code is available at http://github.com/gnina.
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Figure 2: 
Affinity prediction performance for Def2018 model with different pose selection methods 

when trained on Crystal or Docked poses of PDB Refined and tested on Core. Best is the 

lowest RMSD pose to the crystal pose, CNNscore is the highest predicted scoring pose (not 

applicable for Crystal trained models), CNNaffinity is the highest predicted affinity, Worst is 

the highest RMSD pose to the crystal pose, and Random is taking a pose at random.
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Figure 3: 
Intra-target pose ranking performance of various pose selection methods with the Def2018 

model when trained on Crystal or Docked poses of PDB Refined and tested on Core.
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Figure 4: 
Performance on Core when the training set is expanded from PDB Refined to General.
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Figure 5: 
Performance when utilizing different train/test splits. Models were either trained on 

PDBbind General and tested on PDBbind Core (Core) or trained with clustered cross-

validation splits of the PDBbind General. Note the same data is in both sets, but is divided 

differently among train and test.
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Figure 6: 
Clustered cross-validation performance of the Def2018 model trained with our various 

datasets. Training and testing set size increases along the horizontal axis. Note, as each test 

set is distinct the performance of each method cannot be directly compared. Instead compare 

with performance relative to Vina
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Figure 7: 
Performance of training and testing with and without cross-docked poses. Def2018 

models were trained on either the clustered cross-validated PDBbind General set or the 

CrossDocked2020 set. They were then evaluated on either the PDBbind General set, the 

CrossDocked2020 set without counterexamples, or only the full CrossDocked2020 set. Note 

that each test set here is unique, due to varying splits of PDBbind General having different 

overlap with CrossDocked2020
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Figure 8: 
Performance of training and testing with and without cross-docked poses. Def2018 models 

were trained on either the ReDocked2020 set or the CrossDocked2020 set. They were then 

evaluated on either the ReDocked2020 set, the CrossDocked2020 set, only the cross-docked 

poses in the CrossDocked2020 set (CDonly), or only the apo receptors of the CDonly set.
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Figure 9: 
Effect of counterexamples on Def2018 clustered cross-validated performance. The models 

were trained on the CrossDocked2020 set either without counterexamples (Iteration 0) or 

with counterexamples (Iteration 2). They were then evaluated on the test set without or with 

the counterexamples. Note same colors indicates the same test set.
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Figure 10: 
Ligand-only model performance. Def2018 models were trained with or without receptors 

(w/ Rec or w/out Rec) and evaluated on test sets with or without receptors (With Receptor or 

No Receptor).
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Figure 11: 
Dense model compared to Def2018 on the CrossDocked2020 set. The performance of the 

ensemble of both sets of five models is also shown.
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Table 1:

Number of parameters and time for a forward pass and backwards pass on a NVIDIA TITAN Xp for each 

model. The reported time is the average time per a single input complex averaged across 10 runs where each 

run consisted of 1000 iterations of batch size 50.

Model Parameters Forward ± SD (ms) Backward ± SD (ms)

Def2017 383,616 1.110 ± 0.0259 1.151 ± 0.0286

Def2018 388,736 1.147 ± 0.0334 1.369 ± 0.0363

HiRes Affinity 1,106,560 10.375 ± 0.181 20.640 ± 0.360

HiRes Pose 964,224 5.452 ± 0.0597 8.381 ± 0.918

Dense 684,640 8.116 ± 1.550 15.712 ± 0.180
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Table 2:

Composition of the datasets used in this paper. ReDocked2020 and CrossDocked2020 both have model-

generated counterexample. CrossDocked Iteration 0 is the CrossDocked2020 set without any counterexamples 

added. ReDocked2020 and CrossDocked Only form a non-overlapping partition of CrossDocked2020 into 

redocked and cross-docked poses. Affinity Data refers to the percentage of poses with associated binding 

affinities from the PDBbind.

Dataset Pockets Complexes Poses Ligands Affinity Data %

PDBbind Core – 280 4,618 280 100

PDBbind Refined – 3,805 66,953 2,972 100

PDBbind General – 11,324 201,839 8,757 100

ReDocked2020 2,916 18,369 786,960 13,780 32.7

CrossDocked Iteration 0 2,922 18,450 10,691,929 13,839 39.9

CrossDocked Iteration 1 2,922 18,450 19,182,423 13,839 41.3

CrossDocked Only 2,767 18,293 21,797,142 13,786 42.2

CrossDocked2020 2,922 18,450 22,584,102 13,839 41.9

J Chem Inf Model. Author manuscript; available in PMC 2022 March 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Francoeur et al. Page 37

Table 3:

Affinity prediction performance on PDBbind Core (N=280) for a variety of models.

Model RMSE R

Def2018 Refined Crystal 1.50 0.73

Def2018 Refined 1.50 0.72

Def2018 General 1.38 0.79

Def2018 General Ensemble 1.37 0.80

Dense General 1.49 0.73

Dense General Ensemble 1.35 0.79

Pafnucy24* 1.42 0.78

KDeep23† 1.27 0.82

RF Score16‡ 1.39 0.80

1D2D CNN29† 1.64 0.848

Vina 2.22 0.41

*
Train: PDBbind General and Refined v2016 crystal structures (N=11,906). Removed Nucleic Acid+Protein, Protein+Protein, and Nucelic 

Acid+Ligand from all sets. Test: remaining Core set (N=290).

†
Train: PDBbind Refined v2016 crystal structures (N=3767). Test: PDBbind Core set crystal structures (N=290)

‡
Train: PDBbind Refined v2007 crystal structures (N=1300). Test: PDBbind Core set crystal structures (N=195)
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Table 4:

Effect of using an ensemble of models compared to average of individual model performance. BP: Best 

possible fraction of low RMSD poses; Rand: expected fraction of randomly sampled low RMSD poses.

Train Test Model Evaluation RMSE R AUC Top1 BP Rand

CrossDock CCV Dense
Average 1.55 0.547 0.944 0.615 0.970 0.0321

Ensemble 1.42 0.612 0.956 0.684 0.970 0.0321

CrossDock CCV Def2018
Average 1.47 0.577 0.906 0.537 0.970 0.0321

Ensemble 1.45 0.587 0.914 0.574 0.970 0.0321

General Core Dense
Average 1.490 0.733 0.942 0.788 0.946 0.135

Ensemble 1.348 0.788 0.960 0.836 0.946 0.135

General Core Def2018
Average 1.383 0.787 0.943 0.802 0.946 0.135

Ensemble 1.368 0.796 0.946 0.814 0.946 0.135

Refined Core Def2018
Average 1.503 0.720 0.932 0.766 0.946 0.135

Ensemble 1.438 0.749 0.941 0.800 0.946 0.135

J Chem Inf Model. Author manuscript; available in PMC 2022 March 08.


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Model Architectures
	PDBbind Datasets
	CrossDocked2020 Dataset
	Iterative Training Set Preparation
	Training Procedure
	Evaluation Metrics

	Results
	Our models achieve comparable performance to other ML models
	Training on docked poses has little effect on affinity prediction
	Extensive hyperparameter tuning yielded limited benefit
	Training on docked poses increases pose sensitivity
	Expanding training data with PDBbind General improves performance
	Clustered cross-validation reveals Core set evaluations are overly optimistic
	Expanding training data beyond PDBbind improves performance
	Training on redocked poses is less effective when targeting apo receptor conformations than training on cross-docked poses
	Counterexamples yield limited performance benefit but are necessary to support pose optimization
	Ligand-only information is a significant factor in affinity prediction
	Individual Dense models improve pose selection but not affinity prediction
	An ensemble of models improves performance.


	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

