Skip to main content
. 2022 Mar 7;23(Suppl 1):88. doi: 10.1186/s12859-022-04612-2

Table 2.

Results of CNN-DDI using different features

Feature ACC AUPR AUC F1 Precision Recall
T 0.7915 0.8470 0.9953 0.6099 0.6932 0.5716
P 0.7820 0.8381 0.9952 0.5805 0.6822 0.5364
E 0.6580 0.7098 0.9897 0.3344 0.4419 0.2957
C 0.8702 0.9139 0.9966 0.7421 0.7994 0.7125
T + P 0.8227 0.8898 0.9969 0.6778 0.7589 0.6375
T + E 0.8242 0.8712 0.9956 0.6360 0.7373 0.5849
T + C 0.8792 0.9185 0.9960 0.7627 0.8167 0.7405
P + E 0.8255 0.8747 0.9958 0.6227 0.7130 0.5781
P + C 0.8796 0.9179 0.9961 0.7440 0.7955 0.7485
E + C 0.8496 0.8895 0.9948 0.6928 0.7726 0.6488
T + P + E 0.8243 0.8690 0.9947 0.6489 0.7332 0.6063
T + P + C 0.8797 0.9199 0.9960 0.7490 0.8164 0.7232
T + E + C 0.8539 0.8899 0.9933 0.6938 0.7726 0.6539
P + E + C 0.8559 0.8919 09,939 0.6845 0.7575 0.6485
T + P + E + C 0.8871 0.9251 0.9980 0.7496 0.8556 0.7220

The bold values indicate the result of CNN_DDI with four types of features. So it can be concluded that the drug category is effective as a new feature type and multiple features can imporve the performanced of CNN-DDI