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p53‑driven lipidome influences 
non‑cell‑autonomous lysophospholipids 
in pancreatic cancer
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Abstract 

Adaptation of the lipid metabolism participates  in cancer pathogenesis, facilitating energy storage and influencing 
cell fate and control of molecular signalling. The tumour suppressor protein p53 is a molecular hub of cell metabo-
lism, supporting antioxidant capabilities and counteracting oncogene-induced metabolic switch. Despite extensive 
work has described the p53-dependent metabolic pathways, a global profiling of p53 lipidome is still missing. By 
high-throughput untargeted lipidomic analysis of pancreatic ductal adenocarcinoma (PDAC) cells, we profile the 
p53-dependent lipidome, revealing intracellular and secreted lysophospholipids as one of the most affected class. 
Lysophospholipids are hydrolysed forms of phospholipids that results from phospholipase activity, which can func-
tion as signalling molecules, exerting non-cell-autonomous effects and instructing cancer microenvironment and 
immunity. Here, we reveal that p53 depletion reduces abundance of intracellular lysophosphatidyl-choline, -ethanola-
mine and -serine and their secretion in the extracellular environment. By integrating this with genomic and transcrip-
tomic studies from in vitro models and human PDAC patients, we identified potential clinically relevant candidate 
p53-dependent phospholipases. In particular PLD3, PLCB4 and PLCD4 expression is regulated by p53 and chromatin 
immunoprecipitation followed by deep sequencing (ChIP-seq) indicates a direct transcriptional control on their 
chromatin accessible genomic loci. Consistently, PLD3, PLCB4 and PLCD4 expression correlates with p53 mutational 
status in PDAC patients, and these genes display prognostic significance. Overall, our data provide insights into lipi-
dome rewiring driven by p53 loss and identify alterations of lysophospholipids as a potential molecular mechanism 
for p53-mediated non-cell-autonomous molecular signalling that instructs cancer microenvironment and immunity 
during PDAC pathogenesis.
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Introduction
Pancreatic cancer remains one of the deadliest malignan-
cies worldwide, with an extremely low 5-year survival 
rate (< 5%) [1]. Among the diverse types of pancreatic 
cancer, pancreatic ductal adenocarcinoma (PDAC) is the 
most represented. At a genomic level, initial activating 
mutation in KRAS is the key step at the basis of tumour 
initiation, driving the formation of a histologically differ-
entiated pancreatic intraductal neoplasia (PanIN) [2]. The 
subsequent inactivating mutations of TP53, occurring 
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in > 70% of cases, usually drives the final steps of malig-
nancy towards the formation of a metastatic tumour [1, 
2]. Throughout the tumorigenic process, PDAC cells 
undergo an extensive rewiring of metabolic pathways, a 
well-established hallmark of cancer, which is indispensa-
ble to help to sustain their own growth and to adapt to 
microenvironmental stress conditions [3, 4]. Generally, 
metabolic reprogramming proceeds with the acquisi-
tion of driver mutations. For example, mutant KRAS and 
MYC are known to trigger, beyond glucose and amino 
acid, also the rewiring of lipid pathways in a variety of 
tumour models [5–10].

In addition to the crucial role in maintenance of 
genomic integrity [11, 12], the tumour suppressor p53 is 
known to regulate many pathways of intracellular metab-
olism [13–16]. p53 dictates a tumour suppressive pro-
gramme by controlling mitotic and oncogenic signals that 
converge on the beta oxidation of free fatty acids, glucose 
and amino acids metabolism [17, 18]. Mutant forms of 
p53 have also been associated to gain of function effects 
[19–22], whose roles have been ascribed to regulation of 
tumour microenvironment and cellular metabolism [23, 
24], including mevalonate pathway [25]. In the context of 
lipid metabolism, recent evidence from genetically engi-
neered mouse models indicates that mevalonate pathway 
is selectively activated not only in p53 mutant tumours, 
but also p53null tumours. The tumour suppression activ-
ity of p53 is partially exerted by negatively and indirectly 
regulating the aforesaid pathway, by influencing the post-
translational processing of SREBP-2 [26].

While the role of wild-type p53 in the regulation of 
specific metabolic pathways of cancer cells including 
cholesterol and fatty acid metabolism has been dissected, 
a global and effective map of the changes in the lipidome 
profile in the context of PDAC is still missing. Here, by 
using a cell line derived from a mouse model of pancre-
atic adenocarcinoma with the pancreas-specific expres-
sion of KRAS (LSL-KRASG12D) and an inducible short 
hairpin (sh) RNA targeting the endogenous Trp53, we 
attempt to provide a fine and novel map of lipid changes 
occurring after the loss of p53, in the process of patho-
genesis of PDAC. By integrating the lipidomic profiling 
with the transcriptomic of in  vitro models and PDAC 
patients we identify a mechanistic link in the p53 regu-
lation of lysophospholipids. Our findings suggest an 
important involvement of p53 in remodelling the lipi-
dome of pancreatic cancer cells and may direct future 
studies in this field.

Results
p53 remodels the lipidome of pancreatic cancer cells
To explore the role of p53 in remodelling the lipid profile 
of pancreatic cancer, we carried out a global untargeted 

lipidomic profiling in a cell line (KPshp53) derived from 
mouse PDAC, with the pancreas-specific expression 
of KRAS (LSL-KRASG12D) and a doxycycline-regulated 
short hairpin (sh)RNA targeting wild-type p53 expres-
sion. Lipidomic results indicate that loss of p53 exten-
sively remodels the lipidome of pancreatic cancer cells 
(shp53, p < 0.05) (Fig. 1a, b). By clustering lipid species in 
biological classes, we observed that sphinganine, phos-
phatidylglycerol (PG), lysophosphatidylserine (LPS), 
lysophosphatidylcholine (LPC), lysophosphatidyletha-
nolammine (LPE), lysophosphatidylinositol (LPI) and 
lysophosphatidylglycerol (LPG) were the most signifi-
cantly altered classes, displaying a dramatic reduction 
of their abundancies upon p53 depletion (Fig. 1c, d and 
Additional file 1: Fig. S1). Conversely, other lipid classes 
including glucosylceramides, sphingosines, diacylg-
lycerols, triglycerides, ceramides, hexosyl-ceramides, 
palmitate, and phospholipids were generally not com-
prehensively affected by p53 loss, despite displaying 
decreases of specific species (Additional file 1: Fig. S2a). 
Lysophospholipids are a class of lipids exerting signal-
ling roles in a cell-autonomous and non-cell-autonomous 
manner [27], and can function also as signalling mol-
ecules in the microenvironment. Hence, we conducted 
a parallel global untargeted lipidomic profiling of con-
ditioned media from KPshp53 cells. Consistently, we 
observed a massive reduction of lysophospholipid spe-
cies (LPS, LPC, LPE) in the extracellular environment of 
doxycycline treated KPshp53 cells (p53 silenced) (Fig. 1e 
and Additional file 1: Fig. S2b). Hence, overall, these data 
clearly indicate that p53 has an essential role in con-
trolling the lipidome of pancreatic cancer cells and, in 
particular, it can exert an important regulation of intra-
cellular and extracellular signalling lysophospholipids.

p53 regulates production and secretion 
of lysophospholipidome
To better define the changes mediated by p53 on the 
lysophospholipidome, we next conducted a detailed 
analysis comparing the species displaying a differential 
abundance following p53 deficiency in the intracellular 
compartment and in the conditioned media. The most 
significantly altered LPC, showing consistent reductions, 
were the 14:0, 15:0, 17:0, 17:1 and 18:0e species (Fig. 2a,b). 
Our analysis however revealed a larger general cohort of 
intracellular and extracellular LPC species (Additional 
file 1: Figs. S1 and S3a), indicating overall the LPC among 
the mostly affected lysophospholipids. LPC is in general 
the most abundant class of lysophospholipids in plasma 
and body fluids and despite a clear dissection of the role 
of these molecules has not been conducted they appear 
to participate in cytotoxicity, haemostatis and inflamma-
tion [27]. Nanomolar concentrations of LPC can exert 
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Fig. 1  p53 rewires pancreatic cancer lipidome. a, b Heatmap and Volcano plot showing global changes of lipids upon depletion of p53. For 
Volcano plot a p value < 0.05 and a − 1.5 > fold change > 1.5 were used as threshold. Lipid abundancies are sown as signal intensities (AU: arbitrary 
units). N = 5 biological replicates per condition. c, d Violin plots showing the significantly modulated lipid classes after p53 knockdown. p values are 
indicated. e Violin plots showing the significantly modulated lipid classes in the conditioned medium after p53 knockdown. p values are indicated
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chemotactic roles for monocytes and macrophages, while 
saturated and monosaturated LPC can facilitate produc-
tion of inflammatory redox oxygen species [28, 29]. Thus, 

p53 loss dependent reduction of LPC might underlie an 
immune evasion effect in cancer.
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Fig. 2  Lysophospholipids are strongly affected by p53 loss. a–f Box plots showing the most significantly affected lipid species per lysophospholipid 
class intracellularly (white background, a, c, e) and in the conditioned media (light blue background, b, d, f. Lipid abundancies are shown as signal 
intensities (AU: arbitrary units). N = 5 biological replicates per condition, *p < 0.05; ***p < 0.001; ****p < 0.0001. LPC, Lysophosphatidylcholine; LPE, 
Lysophosphatidylethanolammine; LPS, Lysophosphatidylserine
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Similar pattern was observed in LPE and LPS classes, 
where saturated and monosaturated LPE 16:1e, 18:0, 
18:1e and LPS18:0 were strongly reduced in the intracel-
lular compartment and in the conditioned media of p53 
depleted cells (Fig.  2c–f and Additional file  1: Fig. S4a, 
b). LPE is the second most abundant lysophospholipids 
in plasma. LPE can induce an increase of intracellular 
Ca2+ concentration producing proliferative and motili-
ties activities in breast and ovarian cancer cell lines [30]. 
Remarkably, LPE was also shown to stimulate chemotac-
tic migration and cellular invasion in ovarian cancer cells, 
indicating non-cell-autonomous properties [31]. LPS is 
within the less abundant lysophospholipids in the plasma, 
but it can display potent immunomodulatory activities. 
G-coupled receptors belonging to the P2Y purineceptor 
clusters have been identified as LPS receptors and their 
activation was associated to suppression of T cell and 
mast cell degranulation [32, 33]. Finally, specific reduc-
tion in the intracellular content of LPI and LPG was also 
detected, indicating a general alterations of lysophospho-
lipids production (Additional file 1: Figure S4c, d).

Overall, these data indicate the p53-dependent lipi-
dome significantly impinge on production and secretion 
of lysophospholipids. This might represent an unex-
pected, novel level of regulation exerted by p53 on the 
tumour microenvironment and immunity.

p53 transcriptionally regulates phospholipases
In the last decade cancer genomic sequencing studies 
have experienced a massive growth, resulting into the 
formation of datasets containing huge amount of open-
access data [34]. By performing a deep analysis of pub-
licly available datasets of pancreatic cancer, we aimed 
to identify putative phospholipases (PLs) that might 
account for the observed p53-dependent lysophospho-
lipidome. Through this approach, we selected three 
putative phospholipases on the basis of the potential 
regulation by p53 and their clinical relevance for pan-
creatic cancer. These were the phospholipase C delta 4 
(PLCD4), phospholipase C beta 4 (PLCB4) and phospho-
lipase D 3 (PLD3). Interestingly, the expression of the 
three phospholipases was strongly affected in p53 defi-
cient cells (Fig. 3a), suggesting the existence of molecular 
axis downstream of p53 function. We next asked whether 
PLCD4, PLCB4 and PLD3 might be directly regulated 
by p53 via a transcriptional control. To address our 
hypothesis, we looked for binding enrichment of p53 on 
PLCD4, PLCB4 and PLD3 genomic loci, querying avail-
able ChIP-seq datasets. Notably, we identified several 
peaks for p53 in the genomic regions of the three phos-
pholipases, which strongly suggests a direct involvement 
of p53 in their transcription regulation. Furthermore, we 
observed that p53 peaks broadly overlapped with regions 

of enhanced chromatin accessibility (ATAC), which were 
also enriched for permissive histone modifications such 
as trimethylation of lysine 4 of histone 3 (H3K4me3), 
acetylation of histone 4 (H4ac) and acetylation of lysine 
9 of histone 3 (H3K9ac) (Fig. 3b). Thus, these data indi-
cate a direct molecular axis p53/PLs, that might underlie 
a transcriptional reprogramming mediated by p53 for the 
regulation of enzymes involved in lipid metabolism.

PLCD4, PLCB4 and PLD3 correlates with p53 status 
and prognosis of pancreatic cancer patients
By analysing PanCancer genomic data, we then asked 
whether PLCD4, PLCB4 and PLD3 levels correlate to the 
pathogenesis of human pancreatic ductal carcinoma. To 
address this, we performed a bioinformatic analysis of 
available datasets of human pancreatic adenocarcinoma 
(PAAC). Interestingly, with the help of Gene Expression 
Profiling Interactive Analysis (GEPIA), we observed that 
the expression levels of the three phospholipases under-
went a decrease through the different stages of PAAC 
(Fig. 4a). Next, we sought to determine the relationship of 
the selected phospholipases with p53 mutational status, 
which is highly mutated in pancreatic cancer. We there-
fore analysed the expression levels of PLCD4, PLCB4 
and PLD3 in a cohort of 184 patients belonging to the 
TCGA PanCancer Atlas dataset. Interestingly, PLCD4, 
PLCB4 and PLD3 mRNA levels correlate with p53 status 
in PDAC patients (Fig. 4b). These data strongly indicate a 
biologically relevant p53/PLs axis in the pathogenesis of 
PDAC. To further extend our study, we next focused on 
the prognostic significance of this molecular markers. By 
stratifying the patients’ cohort according to the mRNA 
expression of PLCD4, PLCB4 and PLD3 (Low, High), we 
computed a Kaplan–Meier survival analysis. The results 
indicate that higher expression of the PLs represented a 
good prognostic factor (Fig.  4c). Thus, the p53/PLs axis 
displays clinical significance for PDAC pathogenesis and 
integrated with our lipidomic analysis suggests that p53 
mediates a transcriptional programme that influence 
synthesis and secretion of signalling lysophospholipids. 
These data can therefore indicate the lysophospholipids 
as novel mediators of cell-autonomous and non-cell-
autonomous tumour suppressive function of p53.

Discussion
Lipidome reprogramming is observed during cell trans-
formation and tumour progression [35]. Despite a signifi-
cant effort was invested in understanding the role of lipid 
metabolism in different types of cancers, its connection 
with tumour suppressive signalling remains generally 
elusive. Here, we propose a direct connection between 
the p53 function and the regulation of non-cell-autono-
mous lysophospholipids.
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We aimed to expand, beyond the control of antioxidant 
pathways [36–39] and ferroptosis [40, 41], our under-
standing of the tumour suppressor p53 in the regula-
tion of lipidome. We used a modified version of a mouse 
PDAC cell line, which recapitulates the progression of 
human PDAC [18]. By performing mass-spectrometry 
(MS) based lipidomics, we show that loss of p53 in PDAC 

cells associates with a global rewiring of their lipidome. 
Particularly, sphinganine, phosphatidylglycerol and 
lysophospholipid classes show a significant reduction 
upon loss of p53. On the contrary, other lipid classes 
are not comprehensively modulated in cells p53-profi-
cient/deficient. However, an accurate analysis of global 
unchanged classes reveals that specific lipid species, 
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Fig. 3  Phospholipases are regulated by p53 in pancreatic cancer cells. a Quantitative PCR analysis showing the decreased expression of PLCB4, 
PLCD4 and PLD3 after p53 silencing in KPshRNA cells. N = 3, p values are indicated. b ChIP-seq tracks for p53, H4ac, H3K4me3 and K9ac showing 
gene regions of PLCB4, PLCD4 and PLD3 (GSE63666). PLCB4: Phospholipase C Beta 4, PLCD4: Phospholipase C Delta 4, PLD3: Phospholipase D3
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including diacylglycerols, ceramides and phospholipids, 
can also be modulated in a p53-dependent manner. These 
data may reflect the specific adaptation of pancreatic 
cancer cells to metabolic stress under oncogenic signals 
(LSL-KRASG12D). Indeed, lysophospholipid scavenging is 
a particular way of metabolic adaptation documented in 
several cancer types, both in normoxic and hypoxic con-
ditions. Lysophospholipid scavenging has been shown to 
be an alternative source of nutrient to sustain the cancer 
cell proliferation and growth [42, 43].

Lysophospholipids have important biological function 
as they also act as signalling molecules [44]. Their levels 
have been associated with cell migration and invasion 
ability in cancer cells and general regulatory mechanisms 
by sustaining autocrine and paracrine signals at the basis 
of tumour-microenvironment (TME) interaction [45–
47]. All the aforementioned functions of lysophospho-
lipids are dependent on specific phospholipases, whose 
activity is under the control of intra- and extra-cellular 
stimuli [48]. In particular, the family of phospholipases 
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Fig. 4  Phospholipases’ expression influences the PDAC-affected patients’ survival. a Violin plots showing the RNA levels (Transcript per million, TPM) 
of PLCB4, PLCD4 and PLD3 across the different stages of pancreatic adenocarcinoma. Source: GEPIA. b Scatter dot plots showing the expression 
of PLCB4, PLCD4 and PLD3 according to the mutation status of p53. The patient cohort was retrieved from TCGA PanCancer Atlas from cBioPortal 
database. Values are represented as median with interquartile range. P values are indicated. c Kaplan–Meier survival curve according to the mRNA 
expression of PLCB4, PLCD4 and PLD3 in PDAC TCGA dataset. P values are indicated
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C (PLC) is directly linked to the regulation of the intra-
cellular 1-phosphatidylinositol 4,5-bisphosphate/inositol 
1,4,5-trisphosphate (PIP2/IP3) ratio which in turn can 
strongly modulate PI3K/AKT axis activity, thereby regu-
lating cancer cell gene expression and metabolism [49]. 
So, we speculate that PLCD4 and PLCB4 might contrib-
ute to the PDAC tumorigenesis by influencing PI3K/AKT 
axis.

Importantly, several classes of lysophospholipids can 
influence tumour immunity; our data indicate that p53 
loss could correlate with a reduction of pro-inflammatory 
lysophospholipids, suggesting a potential mechanism of 
immune evasion in cancer. However, metabolic adap-
tations leading to the lipidome rewiring appear highly 
cancer type-specific [50, 51]. Hence in our model, the 
observed decrease of lysophospholipids may be a specific 
signature of PDAC progression following p53 inactiva-
tion. By integrating untargeted lipidomics with the analy-
sis of human cancer database, we have also identified 
three phospholipases (PLCB4, PLCD4 and PLD3) with a 
potentially clinical interest in the pathogenesis of PDAC 
and that might explain the decrease in lysophospholipid 
species observed in p53-deficient cells.

Tumour cell membranes are highly saturated as com-
pared to normal cells due to the increase of the de novo 
lipogenesis pathway. Such pathway not only supports 
the enhanced proliferation rate of cancer cells but also 
generates membrane lipids which act as scavengers for 
oxidative stress [52]. Damaged phospholipids are regen-
erated in the Land’s cycle through a two-step reaction: (1) 
removal of the damaged acyl chain by the action of phos-
pholipase A (PLA) activity; (2) re-acylation of the gen-
erated lysophospholipids by specific acetyltransferases 
[53, 54]. Although the phospholipases identified in our 
study do not possess a PLA-like activity, the net increase 
of lysophospholipid species in p53 proficient cells might 
support the hypothesis of a regulatory mechanism driven 
by p53 on Land’s cycle to replenish damaged phospholip-
ids. These observations pave the way to further analyse 
the activity of pancreatic phospholipases in p53 profi-
cient/deficient PDAC cells.

While future work will be required to dissect the role 
of specific types and species lysophospholipids in PDAC 
pathogenesis, our study implicates this class of lipids 
in p53 tumour suppressive function and suggests their 
potential role as mediators of remodelling of microenvi-
ronment and immunity in p53 inactivated cancers.

Materials and methods
Cell culture
Mouse pancreatic inducible KPsh cell line was a kind 
gift of Prof. S. Lowe and was established has previously 

described [18]. KPsh cells were grown in DMEM sup-
plemented with 10% fetal bovine serum (FBS) and 2 mM 
penicillin/streptomycin in presence of 1 ug/ml doxycy-
cline to induce the shRNA targeting Trp53 mRNA.

RNA extraction, RT and qPCR analysis
RNA was extracted using RNeasy Mini Kit (Qia-
gen) according to the manufacturer’s instruction. 
One microgram of RNA was subsequently reverse 
transcribed with the SensiFAST cDNA Synthesis kit 
(Meridian Bioscience, BIO-65054) following the manu-
facturer’s instructions. qRT-PCR was performed using 
Fast SYBR Green PCR Master Mix (Applied Biosys-
tems). The relative gene expression was calculated fol-
lowing the 2−ΔΔct method after normalization to mouse 
TATA-binding protein (TBP). The primers sequences 
are listed as follows: Plcb4 Fw 5′-GGC​CTT​TCT​GAC​
CAA​CAC​AAC-3′, Plcb4 Rev 5′-CTG​TTT​TCC​CTG​
ATG​CGA​AGG-3′; Plcd4 Fw5′-ATG​GAC​CAC​CAG​
GAG​CAA​AT-3′, Plcd4 Rev 5′- TCT​GAA​ACT​CAT​
CCG​GCC​AT-3′; Pld3 Fw 5′-AAG​TAG​CAG​CCA​ACG​
TCT​GA-3′, Pld3 Rev 5′-TCC​TGG​TAC​ATC​AGT​TTG​
GGC-3′.

Lipidomics
For MS-based lipidomics, KPsh cells were cultured in 
presence or not of doxycycline for 4  days. Cells were 
harvested and pellets of 1 × 106 cells per replicate were 
snap-frozen and stored at −80 °C. Five biological repli-
cates per condition were prepared for the analysis via 
Ultra-high-pressure liquid chromatography coupled to 
high-resolution tandem mass spectrometry (UHCPL-
MS/MS – Vanquish and QExactive, Thermo Fisher, San 
Jose, CA, USA), as extensively described in prior tech-
nical notes [55] or studies on pancreatic cancer [56].

Bioinformatic analyses
To analyse the expression of PLD3, PLCD4 and PLCB4 
across the different stages of Pancreatic Adenocarci-
noma, the GEPIA website was used (http://​gepia.​can-
cer-​pku.​cn/​about.​html [57]).

The cBioportal database was interrogated to retrieve 
data about human pancreatic adenocarcinoma (http://​
www.​cbiop​ortal.​org). Specifically, the TCGA PanCan-
cer Atlas dataset was used for the analysis (cohort: 184 
patients).

For Kaplan–Meier survival analysis, the patient 
cohort from PanCancer dataset was divided into two 
groups depending on PLD3, PLD4 and PLCB4 expres-
sion (Low expression, High expression).

The ChIP-seq analysis was performed by ChIP-Atlas 
Database (https://​chip-​atlas.​org/​peak_​brows​er) and 

http://gepia.cancer-pku.cn/about.html
http://gepia.cancer-pku.cn/about.html
http://www.cbioportal.org
http://www.cbioportal.org
https://chip-atlas.org/peak_browser
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Integrative Genomics Viewer (http://​www.​broad​insti​
tute.​org/​igv/) for peaks visualization: ATAC-seq (id: 
SRX4961722), H3K4me3 (id: SRX3710128), H4ac (id: 
SRX4384461), H3K9ac (id: SRX8156791). Further-
more, publicly available ChIP-seq data for p53 were 
reanalysed using the Galaxy tool (https://​usega​laxy.​
org [58]) and are available under the accession number 
GSE63666.

Statistical analysis
All graphs and statistical analyses were prepared using 
GraphPad Prism 8.0 (GraphPad Software Inc.) and Meta-
boAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca/​home.​
xhtml). All results are expressed as the mean ± stand-
ard deviation (SD). RT-qPCR were analysed by t-test 
(*p < 0.05, **p < 0.01, ***p < 0.001). For Kaplan–Meier anal-
ysis, the Mantel-Cox test was applied. All experiments 
were performed with at least three biological replicates.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13062-​022-​00319-9.

Additional file 1: Figure S1. Heatmap showing the lipid species 
significantly affected by p53 loss. For lysophospholipids, only the ten 
most significantly deregulated species are shown. Cer: Ceramides, DG: 
Diacylglycerol, LPC, Lysophosphatidylcholine; LPS, Lysophosphatidyl-
serine; PC, Phosphatidylcholine; SPH, Sphinganine; LPE, Lysophosphati-
dylethanolammine; LPG, Lysophosphatidylglycerol; LPI, Lysophosphati-
dylinositol; PE, Phosphatidylethanolammine; PG, Phosphatidylglycerol; PI, 
Phosphatidylinositol; SM, Sphingomyelin; PS, Phosphatidylserine. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001. Figure S2. a Violin plots showing 
the lipid classes that were not significantly modulated by p53 loss. Lipid 
abundancies are shown as signal intensities (AU: arbitrary units). N = 5 bio-
logical replicates per condition. P values are indicated. b Heatmap show-
ing global changes of lipids in the conditioned media upon depletion of 
p53. Lipid abundancies are sown as signal intensities (AU: arbitrary units). 
N = 5 biological replicates per condition. Figure S3. a Box plots showing 
the most significantly affected lysophosphatidylcholine (LPC) species in 
the conditioned media. Lipid abundancies are shown as signal intensities 
(AU: arbitrary units). N = 5 biological replicates per condition, *p < 0.05; 
**p < 0.01; ***p < 0.001. Figure S4. a–c Box plots showing the most signifi-
cantly affected intracellular lipid species per lysophospholipid class. Lipid 
abundancies are shown as signal intensities (AU: arbitrary units). N = 5 
biological replicates per condition. ****p < 0.0001. LPE, Lysophosphatidyle-
thanolammine; LPS, Lysophosphatidylserine; LPI, Lysophosphatidylinositol; 
LPG, Lysophosphatidylglycerol.
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