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Abstract

Elucidating physical mechanisms with statistical confidence from molecular dynamics simulations 

can be challenging owing to the many degrees of freedom that contribute to collective motions. To 

address this issue, we recently introduced a dynamical Galerkin approximation (DGA) [Thiede et 
al. J. Phys. Chem. 150, 244111 (2019)], in which chemical kinetic statistics that satisfy equations 

of dynamical operators are represented by a basis expansion. Here, we reformulate this approach, 

clarifying (and reducing) the dependence on the choice of lag time. We present a new projection 

of the reactive current onto collective variables and provide improved estimators for rates and 

committors. We also present simple procedures for constructing suitable smoothly varying basis 

functions from arbitrary molecular features. To evaluate estimators and basis sets numerically, we 

generate and carefully validate a data set of short trajectories for the unfolding and folding of the 

trp-cage miniprotein, a well-studied system. Our analysis demonstrates a comprehensive strategy 

for characterizing reaction pathways quantitatively.
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1 Introduction

Molecular dynamics simulations enable atomic-resolution investigation of complex 

processes. These investigations are often carried out by direct simulation: the equations 

of motion are numerically integrated forward in time to generate trajectories (times series 

of atomic positions and, as needed, momenta) for as long as possible given available 

computational resources. Since most events of interest occur on timescales longer than those 

accessible by direct simulation, many enhanced sampling schemes have been developed to 

allow more extensive interrogation of an event of interest without sacrificing model fidelity. 

Splitting methods, for example, branch and prune a collection of simultaneously evolving 

trajectories to promote progress in a small number of order parameters (or collective 

variables, CVs).1–6 Regardless of whether trajectory data are generated by direct simulation 

or enhanced sampling, an essential question remains: How can these data be analyzed to 

yield new understanding about the process under study?

We recently introduced dynamical Galerkin approximation (DGA)7 to analyze trajectory 

data generated by direct simulation, as well as many enhanced sampling schemes. In 

this approach, conditional expectations such as committor functions are cast as solutions 

to equations involving the operator determining the statistics of the underlying process, 

its transition operator. The solution to the equation is then approximated as a linear 

combination of basis functions. This approach builds on an extensive literature from the 

last decade that shows that the eigenvalues and eigenvectors of the transition operator 

can be approximated from trajectory data, subject to a Markov assumption.8–21 These 

spectral estimation methods aim to characterize the slowest dynamical features of the system 

(e.g., transitions between metastable states) as eigenvectors corresponding to the largest 

eigenvalues of the transition operator. When the goal is to study a particular event of 

interest, the indirect relationship between the eigenvectors of the transition operator and the 

specific event of interest is a weakness of the spectral estimation approach. Indeed, for many 

complex systems the true slowest dynamical features of the system are too slow to be of any 

physical interest.

In contrast, the aim of DGA is not to extract spectral information. Instead DGA aims to 

compute statistics that directly characterize a particular event under study. For example, 

when transitions between particular metastable states are of interest, the statistics that 

DGA yields can be combined within the framework of transition path theory (TPT)22–24 

to obtain reactive fluxes and in turn reaction mechanisms. Because DGA analyzes short 

trajectory fragments, it can be used to process the data generated by many splitting schemes. 

Alternatively, the trajectory data can be generated by seeding initial conditions for short 

direct simulations throughout state space.

Though most often employed as a spectral estimation tool, Markov State Models 

(MSMs)25–27 and related methods28 have also been used to approximate TPT quantities. 

DGA can be viewed as an extension of these MSM variants to a more general class of target 

quantities and to more general representations (basis set expansions) of those quantities. 

However, even with parameters chosen as in MSMs, the DGA estimators introduced in this 

Strahan et al. Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2022 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



article improve upon their MSM counterparts in several ways including reduced dependence 

on the crucial lag time parameter and lower variance estimates of certain TPT quantities.

In our previous study,7 we compared diffusion map29 and indicator basis sets for predicting 

mean first-passage times and committors for the Müller-Brown model30 and the folding 

of the protein Fip35 using six long equilibrium trajectories from D. E. Shaw Research.31 

Because there were only a few folding events within those trajectories, it was difficult to 

assess the performance of the method. One goal of the present study is to generate a protein 

folding data set that enables robust application of the approach and to compare different 

basis sets and estimators systematically.

To this end, we study the trp-cage miniprotein, a 20-residue fast-folding artificial sequence 

(asn-leu-tyr-ile-glu-trp-leu-lys-asp-gly-gly-pro-ser-ser-gly-arg-pro-pro-pro-ser) that has been 

studied extensively both experimentally and computationally.32–38 In solution at 298 K, the 

protein folds on a 4 μs timescale and unfolds on a 12 μs timescale,32 which makes these 

processes difficult but not impossible to simulate directly. In particular, D. E. Shaw Research 

produced a 208 μs equilibrium simulation of the K8A mutant of trp-cage using the Anton 

supercomputer with the CHARMM 22* force field.36 Although, like the Fip35 data, this 

trajectory contains relatively few folding events, it has been the subject of previous MSM37 

and variational approach for Markov processes (VAMP) studies.38 These earlier studies 

serve as valuable points of comparison and enable us to identify CVs that provide good 

control over sampling. Though DGA does not depend directly on any choice of CV, its 

performance is strongly affected by the quality of the data set of sampled trajectories. We 

use our chosen set of CVs together with enhanced sampling methods to generate a new data 

set comprised of many short trajectories that are distributed evenly throughout the CV space.

In this article we reformulate DGA in terms of the transition operator of the underlying 

Markov process. This has two primary advantages relative to our previous formulation 

in terms of the generator of the process.7 First, it clarifies the role of lag time in DGA 

estimates, showing that correctly constructed estimators should have no dependence on lag 

time in the infinite-basis, infinite-sampling limit. Second, the formulation in terms of the 

transition operator leads directly to estimators that correctly account for boundary conditions 

by stopping underlying trajectories appropriately. Using our improved DGA estimators we 

introduce new estimators for TPT reaction rates and reactive currents. To make computation 

of the reactive current tractable and the result readily interpretable, we introduce a projection 

formula for the reactive current onto a CV space which allows us to assign relative 

weights to transition paths in arbitrary CV spaces. We also introduce a new procedure for 

constructing a basis set from arbitrary molecular features (here, primarily pairwise distances 

between Cα atoms, though we also explore CVs with delay embedding) and compare it with 

two basis sets that are used widely in the MSM literature: indicator functions on molecular 

features and indicator functions on time-lagged independent component analysis (TICA) 

coordinates.39–41 We show that our DGA estimators with selected basis sets can robustly 

yield remarkably good agreement with published results for committors and pathways, even 

though the total simulation time of our trp-cage data set is only 30 μs, with a maximum 

trajectory length of 30 ns. The projection of the reactive currents on CVs facilitates 

both visualization and quantification of information about pathways, enabling immediate 
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identification of the defining properties of transition states. This makes our approach an 

efficient one for exploring mechanisms.

2 Long time phenomena from short trajectory data

In this section, we introduce key dynamical statistics and explain how they can be defined 

in terms of an evolution operator (Section 2.1). An emphasis on forms that lead directly 

to practical and accurate numerical estimators causes several departures from the standard 

presentation of this material. We present our approach for solving the operator equations 

numerically by Galerkin (basis expansion) approximation7 (Section 2.2), and distinguish 

forward-in-time statistics (Section 2.2.1) from backward-in-time statistics involving the 

adjoint of the evolution operator (Section 2.2.2); this is followed by a discussion of basis sets 

(Section 2.2.3) and an approach for constructing an approximately Markovian process when 

the molecular representation does not adequately capture the dynamics (delay embedding, 

Section 2.2.4). Finally, guided by TPT, we combine the dynamical statistics estimated by 

DGA to yield approximations of reaction rates and currents. (Section 2.3).

2.1 The transition operator and Feynman-Kac representation

The dynamics of a Markov process X(t) can be encoded in its associated transition operator, 

Tt, which specifies the evolution of the expectation of a function f over some interval of 

time t ≥ 0:

Ttf(x) = E[f(X(t)) ∣ X(0) = x] . (1)

The time index t can be continuous or discrete. The transition operator (also known as 

the Koopman operator), and in particular its eigenvectors and eigenvalues, are the key 

quantities in well-established methods for discovering slowly decorrelating features of a 

Markov process.42 The transition operator is also central to the DGA approach.7 However, in 

DGA, instead of estimating the spectrum of the transition operator, the goal is to solve linear 

equations representing certain conditional expectations.

In ref. 7, we presented DGA in terms of the generator which, for a continuous time process 

is defined by the limit:

ℒf(x) = lim
t 0

Ttf(x) − f(x)
t . (2)

For a discrete time process the limit is removed and t in (2) is replaced by the unit of a single 

time step. A presentation in terms of the generator has the advantage that it results in very 

concise equations for quantities of interest. For example, consider the (forward) committor, 

q+(x), which is the probability of entering a product state B before a reactant state A starting 

from x ∉ A ∪ B:

q+(x) = ℙ X TA ∪ B ∈ B ∣ X(0) = x , (3)
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where TA∪B = min{t ≥ 0 : X(t) ∈ A∪B} is the time of first entrance into A∪B. For x ∈ A, 

q+(x) = 0, and, for x ∈ B, q+(x) = 1. The committor satisfies the Feynman-Kac relation

ℒq+(x) = 0  for  x ∉ A ∪ B,     q+(x) = 1B(x) = 1, x ∈ B
0, x ∉ B  for  x ∈ A ∪ B (4)

(see Eqs. (18) and (19) of ref. 7).

In this article we choose to work directly with the transition operator instead of the generator 

because it facilitates the implementation of numerical formulas. It also greatly simplifies 

our description of TPT and clarifies the relationship between DGA and the well-established 

VAC approach to approximating spectral properties of the transition operator (see ref. 42). 

In the case of the committor, we integrate (4) until a chosen time τ to obtain the equivalent 

form of the Feynman-Kac relation,

TA ∪ B
τ q+(x) − q+(x) = 0  for  x ∉ A ∪ B,   q+(x) = 1B(x)  for  x ∈ A ∪ B . (5)

In this expression we have introduced the notation TA ∪ B
t  for the transition operator of the 

stopped process X(t ∧ TA∪B), i.e.,

TA ∪ B
t f(x) = E f X t ∧ TA ∪ B ∣ X(0) = x . (6)

Here and below t ∧ TA∪B = min{t, TA∪B}, indicating that the evolution process does not 

proceed beyond escape.

For a more general domain D and TDc = min t ≥ 0:X(t) ∉ D , the conditional expectation

u(x) = E b X TDc − ∫
0

TDc
a(X(t))dt ∣ X(0) = x   for  x ∈ D (7)

solves the equation

TDcτ u(x) − u(x) = ∫
0

τ
TDct a(x)dt  for  x ∈ D,     u(x) = b(x)  for  x ∉ D . (8)

To obtain (5) for the committor, choose D = (A∪B)c, b = 1B, and a = 0. In (7) and (8) we 

assume for simplicity that a(x) = 0 for x ∉ D. For a discrete-time process the time integral in 

these expressions should be interpreted as a sum.

Crucially, (8) holds for any choice of τ ≥ 0 including relatively small values. For very large 

values of τ, (8) converges to (7). However, in most cases of interest, the escape time TDc is 

very large, making estimation of u in (7) by direct simulation of sample trajectories of X(t) 
prohibitively expensive. In the context of DGA, the significance of (8) is that it expresses u 
in terms of an expectation over short trajectories. The catch is that (8) must be “inverted” to 

solve for u.
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2.2 Dynamical Galerkin Approximation (DGA)

We now describe a Galerkin approach to approximating conditional expectations from 

short trajectory data. We first introduce a “guess” function ψ that satisfies the boundary 

conditions (i.e., ψ(x) = b(x) for x ∉ D). Our approximation has the form

u(x) ≈ ψ(x) + ∑
j = 1

n
ϕj(x)vj, (9)

where {ϕj(x)} is a set of n basis functions satisfying ϕj(x) = 0 for x ∉ D, and v is a vector of 

n coefficients.

2.2.1 Forward-in-time predictions—We begin by approximating predictions of 

quantities forward-in-time as in (7) by expanding the solution u of (8) at a particular user 

chosen value of τ called the lag time. While the solution u itself is independent of τ in 

(8), the quality of our approximation of u with a finite basis may depend on the choice 

of lag time (even in the absence of sampling error). A similar phenomenon has recently 

been explained in detail in the context of the VAC algorithm.42 Substituting (9) into (8), 

multiplying by ϕi and integrating over the distribution of sampled points μ to form the inner 

product f, g = ∫ f(x)g(x)μ(dx), we obtain the linear system of equations:

Cτ − C0 v = rτ, (10)

with matrices Cs ∈ ℝn × n for s = 0, τ,

Cij
s = ϕi, TDcs ϕj μ (11)

and vector rτ ∈ ℝn,

riτ = ϕi, ψ(x) − TDcτ ψ(x) + ∫
0

τ
TDct a(x)dt

μ
. (12)

Given (11) and (12), (10) can be readily solved for v by standard methods of linear algebra.

In models that represent molecules with high fidelity, (11) and (12) cannot be evaluated 

directly because a closed form of TDcτ  is not known. DGA overcomes this issue by 

approximating the action of the transition operator using short molecular dynamics 

trajectories: if X(0) is a sample drawn from μ and X(t) t = 0
τ  is a trajectory segment of 

length τ starting from X(0), then we can estimate Cij
s  (for s = 0, τ) and riτ as

Cij
s ≈ 1

M ∑
m = 1

M
ϕi X(m)(0) ϕj X(m) s ∧ TDc (13)
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riτ ≈ 1
M ∑

m = 1

M
ϕi X(m)(0) ψ X(m)(0) − ψ X(m) τ ∧ TDc + Δ ∑

p = 0

N − 1
ℎ X(m)(pΔ) (14)

where m indexes trajectory segments, Δ is the sampling interval, and N satisfies 

NΔ = τ ∧ TDc. To avoid overhead, it is advantageous to generate trajectories much longer 

than τ (but still much shorter than typical values of TDc) and use a rolling window to 

generate short trajectories of length τ. We further note that in practice configurations are not 

saved at every molecular dynamics step. This limits the resolution of both the lag time and 

the stopping time, which we take to be the time of the first saved configuration outside the 

domain D.

2.2.2. Adjoints, the steady state, and backward-in-time predictions—To 

compute many important quantities we need not only to solve equations involving the 

transition operator but also equations involving its adjoint Tt
μ
†
 in the μ-weighted inner 

product, which by definition satisfies

∫ f(x)Ttg(x)μ(dx) = ∫ g(x) Tt
μ
†f(x)μ(dx) . (15)

One such equation is for the change of measure w = dπ/dμ, which can be used to reweight 

from the sampling distribution μ to the stationary distribution π:

∫ f(x)π(dx) = ∫ f(x)w(x)μ(dx), (16)

assuming μ and w are normalized such that ∫ w(x)μ(dx) = 1. Owing to the time translational 

invariance of averages over the stationary distribution π, (15), and (16), the change of 

measure satisfies the equation

Tτ
μ
†w(x) − w(x) = 0. (17)

(17) can be solved analogously to (8), but, in this case, there are no boundary conditions. 

The introduction of a basis leads to a linear system of equations of the form

Cτ − C0 ⊤
v = 0, (18)

with Cs (for s = 0, τ) differing from Cs only in the choice of basis (which is no longer 

restricted to D) and the use of Ts in place of TDcs ; ⊤ denotes the transpose. We note that 

by including ϕ1(x) = 1 in the basis we can guarantee that the equation for v has a solution. 

Given an approximate w, (16) can be computed as
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∫ f(x)π(dx) ≈ ∑
j = 1

M
f X(j)(0) w X(j)(0) , (19)

with the weights normalized such that

∑
j = 1

M
w X(j)(0) = 1. (20)

That the change of measure can be estimated from short nonequilibrium trajectory data was 

previously observed in ref. 16.

Another important quantity expressible in terms of an equation involving an adjoint of the 

transition operator is the backwards committor

q−(x) = ℙ X −TA ∪ B
− ∈ A ∣ X(0) = x ,     TA ∪ B

−

= min t ≥ 0:X( − t) ∈ A ∪ B ,
(21)

for x ∉ A ∪ B, where X(−t), t ≥ 0 is the steady-state backward-in-time process governed by 

the transition operator

T−tf(x) = Tt
π
†f(x) = 1

w(x) Tt
μ
†[fw](x) (22)

(the last equality can be verified using (15)). The backward committor is the probability that 

a trajectory currently at position x last came from the reactant state A rather than the product 

state B. It satisfies the Feynman-Kac relation

TA ∪ B
−τ q−(x) − q−(x) = 0  for  x ∉ A ∪ B,     q−(x) = 1A(x)  for  x ∈ A ∪ B . (23)

Consistent with our definition of TA ∪ B
t  above, TA ∪ B

−t  is the transition operator for the 

steady-state backward-in-time process stopped upon first entrance in A ∪ B.

To expand and approximate q− according to the DGA recipe described above, we need to 

estimate μ-weighted inner products involving TA ∪ B
−t . To that end we note that, as long as g 

= 0 on A ∪ B,

g, TA ∪ B
−t f μ = ∫ E f X SA ∪ B(t) g(X(t))

w(X(t)) ∣ X(0) = x w(x)μ(dx) (24)

where

SA ∪ B(t) = max s ≤ t:X(s) ∈ A ∪ B (25)

(with SA∪B(t) = 0 if X(s) ∉ A ∪ B for all 0 ≤ s ≤ t). We provide a derivation of (24) in 

Appendix A. Just as for the forward committor, we expect that use of a sampling measure 

μ with high resolution in transition regions will lead to higher approximation accuracy (i.e., 
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better ability of a finite basis to capture the dynamics). However, in our experience the 

factor of w−1(X(t)) in (24) leads to significant sampling errors for larger values of t. For our 

backward committor calculation we therefore weight inner products by π, using the formula

g, TA ∪ B
−t f π = ∫ E f X SA ∪ B(t) g(X(t)) ∣ X(0) = x w(x)μ(dx) . (26)

(26) allows inner products involving TA ∪ B
−t  to be computed using forward trajectories of X 

initiated according to μ, i.e., exactly the same ingredients required to make forward-in-time 

predictions by DGA.

Following our procedure for forward quantities outlined in Section 2.2, given a guess 

function ψ satisfying ψ = 1 on A and ψ = 0 on B and basis functions ϕj that are zero on A ∪ 
B, we can build an approximation

q−(x) ≈ ψ(x) + ∑
j = 1

n
ϕj(x)vj (27)

by solving

C−τ − C0 v = r−τ (28)

with

Cij
−τ = ϕi, TA ∪ B

−τ ϕj π = ∫ E ϕj X SA ∪ B(τ) ϕi(X(τ)) ∣ X(0) = x w(x)μ(dx) (29)

and

ri−τ = ϕi, ψ π − ϕi, TA ∪ B
−τ ψ π

= ∫ E ψ(X(τ)) − ψ X SA ∪ B(τ) ϕi(X(τ)) ∣ X(0) = x w(x)μ(dx)
(30)

where the second equality in each display follows from (26).

Along with the forward committor q+ and the stationary change of measure w, the backward 

committor is a key ingredient of TPT. In Section 2.3 we describe how DGA estimates of 

these quantities can be combined with TPT to reveal key properties of steady-state transition 

paths from the reactant state A to the product state B. However, before that, we complete 

our presentation of DGA with a discussion of molecular representations and basis sets, with 

emphasis on those that we employ in the present study to analyze trp-cage miniprotein 

unfolding and folding.

2.2.3 Basis functions—A key determinant of the performance of DGA is the choice 

of basis set. Constructing a basis set that respects the boundary conditions of the problem 

and captures the dynamics with relatively few functions requires care. Here we discuss how 
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we generated the basis sets that we compare later in our numerical experiments, and explain 

why we chose them over alternatives.

In addition to the choice of functions, there is also a choice of molecular representation 

(i.e., the features that serve as inputs to the functions). Although molecular dynamics 

trajectories are generally recorded as sequences of Cartesian coordinates, the inputs to 

the basis functions are generally internal coordinates. This removes the effects of trivial 

translations and rotations, and it can improve the statistics. The internal coordinates that we 

use are pairwise distances between all Cα atoms, except those pairs which are less than 

three sequence positions apart; for trp-cage, there are 153 such distances. In other words, the 

process X(t) to which we apply DGA (and TPT) is the length 153 vector of pairwise distance 

values. In our tests we found that including additional features, such as backbone dihedral 

angles, did not improve performance. We assume that the reactant state A and product state 

B of interest can be characterized in terms of these variables. We construct basis functions 

of these variables that satisfy the homogeneous boundary condition on the domain D = (A ∪ 
B)c.

In this work, we compare three choices of basis set: indicator functions on the pairwise 

distances, indicator functions constructed on the top 10 TICA coordinates39–41 computed 

from the pairwise distances at a lag time of 0.5 ns, and smooth functions of pairwise 

distances that satisfy the boundary conditions. We refer to these henceforth as the distance 

indicator, TICA indicator, and modified distance basis sets. We constructed the distance 

indicator and TICA indicator basis sets and their guess functions as follows:

1. For the distance indicator basis set, we constructed 200 indicator functions by 

mini-batch k-means clustering as implemented in PYEMMA on the values of 

the 153 pairwise distances. For the TICA indicator basis set, the clustering was 

performed on the top 10 TICA coordinates constructed on the pairwise distances.

2. We retained all resulting indicator functions with non-zero regions fully 

contained in (A ∪ B)c as the basis set. We split any indicator functions with 

non-zero regions overlapping with A or B, and we redefined them to be non-zero 

only in the portions in (A∪B)c. For the change of measure calculations, boundary 

conditions are not present, so we used all indicator functions unmodified.

3. For the forward committor calculation we took the the guess function to be 

ψ(x) = 1B(x). For the backward committor calculation we took the guess function 

to be ψ(x) = 1A(x).

With an indicator basis, the DGA and MSM estimator (with appropriate state definitions) 

of the forward committor q+ and change of measure w become similar.7 We note however 

that the DGA (as formulated here) and MSM approaches diverge both in DGA’s use of 

stopped trajectories and in the way q+ and w (and q−) are used to estimate TPT quantities as 

described in Section 2.3.

We constructed the distance basis set and its guess function as follows:
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1. We computed dA and dB as the distance in feature space (i.e. in 153-dimensional 

Euclidean space) to the sampled points in states A and B, respectively.

2. We set h(x) = dAdB/(dA + dB)2, which obeys the homogeneous boundary 

conditions by construction.

3. We computed basis functions obeying the boundary conditions by multiplying 

each coordinate of the pairwise distance vector x by h(x): ϕi(x) = xi h(x). For the 

change of measure calculation, we use ϕi = xi and add the constant function into 

the set of chosen features.

4. To remove any linear dependencies introduced by enforcing the boundary 

conditions, and to ensure numerical stability, we orthogonalized the basis set 

ϕi with respect to the sampling measure (up to sampling error) using a singular 

value decomposition.

5. For the forward committor calculation we took the guess function to be 

ψ(x) = dB
2 / dA + dB

2. For the backward committor calculation we took the guess 

function to be ψ(x) = dA
2 / dA + dB

2.

Although here we use the backbone pairwise distances, we note that this construction 

procedure could be used to generate basis sets obeying the homogeneous boundary 

conditions for a choice of variables other than the pairwise distances such as dihedral angles, 

radial basis functions, or soft indicator functions.

The indicator and TICA basis sets are the most widely used in the MSM literature. Various 

alternatives have been proposed specifically in the context of spectral estimation.43–46 In our 

previous work,7 we considered a basis set based on diffusion maps.29 Due to the size of 

our trp-cage data set (~106 datapoints), the O(N3) scaling of the matrix diagonalization 

associated with the diffusion map proved prohibitively computationally costly without 

subsampling and out of sample extension.

2.2.4 Delay Embedding—Application of DGA as described so far assumes that the 

underlying process X(t) is Markovian; the conditional expectations that DGA seeks to 

approximate are not fully defined if X(t) is not Markovian. Yet, in the previous section we 

described an approach to building a basis set for DGA consisting of functions of only a 

subset of the full collection of variables (selected pairwise distances). Though the dynamics 

of this subset are not strictly Markovian, in Section 4 we show that, at least in the specific 

context of the trp-cage system, the remaining degrees of freedom relax sufficiently fast that 

DGA yields accurate results.

However, in some circumstances, one may only have access to a small number of variables 

that are insufficient to specify the dynamics. This situation is typical when the data are 

from an experiment. In this case, we can construct a more expressive representation of 

the system from time-lagged images, i.e., if X(t) is not itself Markovian we can instead 

apply DGA to the augmented process X(t) = (X(t − Mδ), X(t − (M − 1)δ), …, X(t)).7 For large 

enough M one can expect X(t) to be nearly Markovian. State space augmentation was 

also used in the history-augmented MSM (haMSM) approach of ref. 47 to obtain accurate 
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MFPT estimates at all lag times. Our approach differs in that we construction our basis 

on the delay embedded space, whereas in the haMSM approach the transition probabilities 

are conditioned on visiting multiple clusters in sequence. In principle, one can explicitly 

include memory as defined by the Mori-Zwanzig formalism,48 though our delay-embedding 

approach is computationally more straightforward because it does not require choosing a 

form for the memory kernel and then estimating it from data, both of which are quite 

challenging.49,50

In Section 4.5, we show that delay embedding can significantly improve DGA estimates 

when a small number of CVs is used to characterize molecular configurations. Writing the 

values of the CVs at time t as the vector X(t), we construct the delay embedded process 

X(t). We then construct a basis set following the recipe in Section 2.2.3 for the modified 

distance basis, but replacing X with X. We then extend other functions f of the CV space to 

the delay-embedded space by f(X(t)) = f(X(t − M /2 δ)). This allows us to extend the states 

A and B (which can both be defined in terms of the CVs) as well as the functions a and b in 

(7). We then apply DGA as outlined above directly on the delay-embedded space.

2.3 Reaction rates and currents

Estimates of rates from simulations are frequently of interest because they can be compared 

directly with experimental measurements, and they can provide indirect information about 

mechanisms. TPT in principle provides not just rate estimates but reactive currents or fluxes, 

which provide direct information about mechanisms. However, previous calculations of 

reactive current have been limited to toy models and depictions of the reactive flux between 

metastable states can been difficult to interpret. Working within the TPT framework and 

building upon DGA approximations of w, q+, and q−, in this section we introduce robust 

estimates of the reaction rate and of an easily interpretable projection of the reactive current 

onto CVs (as opposed to over the network of metastable states).

There are various expressions for the rate in TPT. One approach is based on the rate at which 

trajectories transition from A to B, RAB. If U is any set for which A ⊂ U and B ⊂ Uc then, 

for a continuous time process,

RAB = lim
t 0

1
t ∫ 1U(x)Tt 1Ucq+ (x) − 1Uc(x)Tt 1Uq+ (x) q−(x)π(dx)

= lim
t 0

1
t ∫ 1U(x)Ttq+(x) − Tt 1Uq+ (x) q−(x)π(dx),

(31)

where the second line is obtained by noting that 1Uc(x) = 1 − 1U(x). Here and below, for a 

discrete time process the limit is removed and t is replaced by the unit of a single time step.

Expression (31) simply counts trajectories with forward crossings of the surface dividing 

U and Uc, weighted by their probabilities that they start in A and end in B. Consequently, 

when using this formula to estimate rates from data, only those trajectories that cross 

the surface dividing U and Uc contribute. Because these trajectories are generally a small 

fraction of the data, this results in relatively large variances in estimates. We can obtain 

considerably better estimates by considering the isocommittor surfaces: U(z) = {x : q+(x) 
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≤ z, x ∈ D} for z ∈ (0, 1), and noting that RAB is independent of z. Integrating (31) with 

respect to z,22 then exchanging integrals over z with applications of Tt and noting that 

∫0
11[0, z] q+(x) dz = 1 − q+(x), we find that

RAB = lim
t 0

1
t ∬0

1
1[0, z] q+(x) Ttq+(x) − Tt q+1[0, z] q+ (x) dz q−(x)π(dx)

= lim
t 0

1
t ∫ 1 − q+(x) Ttq+(x) − Tt q+ 1 − q+ (x) q−(x)π(dx)

= lim
t 0

1
t ∫ Ttq+2 (x) − q+(x)Ttq+(x) q−(x)π(dx),

(32)

where we have made use of the fact that the integral of the Heaviside function (which enters 

through the indicator functions) is the ramp function. This expression for RAB immediately 

suggests the estimator:

RAB ≈ 1
t ∑

i
q+ X(i) t ∧ TA ∪ B q+ X(i) t ∧ TA ∪ B − q+ X(i)(0) q− X(i)(0) w

X(i)(0)
(33)

for some small choice of t. Note the use of stopped trajectories in (33). For very small values 

of t the inclusion of the stopping time TA∪B has no impact. However, in our numerical 

experiments we find that use of stopped trajectories improves the accuracy of (33) and, in 

particular, (37) below, for most choices of t. Given an estimate of RAB, the rate constant is

kAB = RAB
∑iq− X(i)(0) w X(i)(0)

. (34)

The denominator in 34 is the mean of the backward committor, which is the fraction of time 

the system spends having last visited state A.

As noted above, we can also use simulations to understand how reactive trajectories flow 

through a CV space. One way to do this is to partition the space into discrete states and 

then estimate the reactive fluxes between pairs of states.24 However, the resulting directed 

graph can be complicated and difficult to interpret. When the sample paths are continuous 

the reactive flux between neighboring values in CV space is can be summarized as a single 

vector field in CV space. If θ is a vector-valued CV and ds is a bin in CV space of volume 

|ds|, the reactive current at point s is

JAB
θ (s) = lim

t, ds 0
1

2t ds ∫ Tt θq+ (x) − θ(x)Ttq+(x) 1 θ ∈ ds (x)q−(x)π(dx)

+ Tt 1 θ ∈ ds θq+ (x) − θ(x)Tt 1 θ ∈ ds q+ (x) q−(x)π(dx)
(35)

In Appendices B and C, we show that JAB
θ (s) = ∫ JAB ⋅ ∇θ(x)δ(θ(x) − s)π(dx), and we 

establish that the projected reactive current satisfies
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∫
∂CθJAB

θ (s) ⋅ nCθdσCθ = ∫
∂C

JAB ⋅ nCdσC, (36)

where Cθ is any region of CV space such that its inverse image (under the CV mapping) in 

the full configuration space, C, contains A and does not intersect B. To estimate JAB
θ  from 

trajectory data we have the following estimator:

JAB
θ (s) ≈ 1

2t ds ∑
i = 1

M
q+ X(i) t ∧ TA ∪ B θ X(i) t ∧ TA ∪ B − θ X(i)(0)

× 1θ ∈ ds X(i)(0) q− X(i)(0) w X(i)(0)

+ 1
2t ds ∑

i = 1

M
q+ X(i)(t) θ X(i)(t) − θ X(i) SA ∪ B(t)

× 1θ ∈ ds X(i)(t) q− X(i) SA ∪ B(t) w X(i)(0)

(37)

Note that the lag time t in (33) and (37) need not be the same as the lag time τ used to 

estimate the committors q+ and q−. Even with perfect sampling and a perfect basis, estimates 

of TPT quantities will depend on t, in contrast to τ. Several considerations are involved 

in the choice of t. For larger values of t (33) and (37) incur significant bias due to poor 

approximation of the t → 0 limit in (32) and (35). On the other hand, for small values of 

t, we found that (33) and (37) suffer large statistical errors. Alternative estimators for the 

rate and reactive current based on expressions that are exact at any lag time up to error from 

the discrete sampling interval Δ are given in Appendix D. A full analysis of error sources is 

beyond the scope of this work, and in practice we choose a lag time that gives reasonable 

results for the change of measure and reasonable smoothness in the vector field.

3 Simulation methods and choices

In this section, we specify the computational procedure to generate and analyze the data 

set for the unfolding and folding of trp-cage. We describe preparing the system and its 

underlying dynamics (Section 3.1), choosing collective variables based on their ability to 

distinguish metastable states (Section 3.2), generating and validating the data set of short 

trajectories (3.3), and defining the unfolded and folded states (Section 3.4).

3.1 System setup

Unless otherwise noted, all molecular dynamics simulations were performed with 

GROMACS 5.1.451 and PLUMED 2.352–54 using the CHARMM36m force field55–57 in 

the NVT ensemble at 300 K using the Langevin thermostat with a temperature coupling 

constant of 10 ps−1 applied to all atoms, and a time step of 2 fs. Bonds to hydrogen atoms 

were constrained using the LINCS algorithm.58 Electrostatic interactions were computed 

using particle-mesh Ewald summation with a cutoff of 1.2 nm. Lennard-Jones interactions 

were switched off from 1.0 to 1.2 nm using the default GROMACS switching function.

The system was prepared from an NMR structure of trp-cage (PDB code 1L2Y59). The 

protein was solvated in a 50 Å cubic box with the TIP3P water model60 using CHARMM-
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GUI 3.0.61,62 10 K+ and 11 Cl− ions were added, bringing the system to charge neutrality 

and 150 mM KCl. The energy of the system was minimized until the maximum force was 

below 1000 kJ/mol nm. The system was then equilibrated for 1 ns in the NVT ensemble 

with position restraints (using a 1 fs timestep), 10 ns in the NPT ensemble with harmonic 

restraints on non-hydrogen atom positions (force constant 400 kj/mol nm2 for backbone 

atoms and 40 kj/mol nm2 for side chain atoms.) and a Parrinello-Rahman barostat with a 

pressure coupling constant of 5 ps−1, 5 ns in the NPT ensemble without position restraints, 

and then 10 ns in the NVT ensemble without position restraints. The cubic box length was 

determined from the restraint-free NPT equilibration run to be 4.48 nm and fixed at that 

value after that run.

3.2 Choice of CVs

The performance of DGA rests on having a data set with good sampling of all states 

that contribute to the reaction mechanism. As mentioned in the Introduction, the available 

physically weighted molecular dynamics data for trp-cage36 contain few unfolding and 

folding transitions. We thus sought to use enhanced sampling methods to generate a data set 

with improved representation outside the stable states. To this end, we evaluated CVs for 

their ability to control sampling and resolve the unfolded and folded states.

Based on previous studies,34,38 we considered five CVs:

1. The radius of gyration of the Cα atoms (Rg);

2. The root mean squared deviation (RMSD) of all Cα atoms from their positions in 

an equilibrated structure (RMSDfull);

3. The RMSD of the Cα atoms of residues 2 to 9, which make up the α helix in the 

native state (RMSDhx);

4. The RMSD of the Cα atoms of residues 11 to 15, which make up the 3–10 helix 

in the native state (RMSD3–10);

5. The end-to-end distance (d).

Rg, RMSDfull, and RMSDhx were used in ref. 34, and RMSD3–10 was used in ref. 38 (there 

defined only to residue 14), where they found that it was able to resolve several metastable 

states identified by spectral clustering.

To explore how these collective variables change as trp-cage unfolds, we ran a series of 

Adiabatic Bias Molecular Dynamics (ABMD)63 simulations to drive unfolding from the 

equilibrated native structure. ABMD uses a ratchet-and-pawl-like bias to trap spontaneous 

fluctuations that move the system forward in selected CVs. By applying ABMD with 

different combinations of the CVs above, we found that RMSDfull and RMSD3–10 

yielded reasonable control of the system and enabled exploration of all metastable states 

characterized in previous studies.

3.3 Generation of the DGA data set

To initialize a data set of short trajectories for DGA, we defined a grid of 64 points in 

the space of RMSDfull and RMSD3–10 (Figure 1). We then used 64 independent ABMD 
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simulations to steer the system to each of these points from the final structure from the 

equilibration simulations described in Section 3.1. We ran each ABMD simulation for 1 ns, 

saving the structure every 5 ps; the force constants were 1.25 kJ/(mol Å2) and 1.0 kJ/(mol 

Å2) for RMSDfull and RMSD3–10, respectively. From the set of all recorded structures, we 

chose the 64 structures closest to the targets and equilibrated each for 1 ns with a harmonic 

restraint with the same force constants as in the AMBD simulations. From each of the 

resulting structures, we then launched 14 free simulations (with different random number 

generator seeds) of length 30 ns each, saving structures every 5 ps.

From this data set, we computed all possible two-dimensional potentials of mean 

force (PMFs) involving the CVs listed in Section 3.2. We compared these PMFs with 

corresponding ones from replica exchange umbrella sampling (REUS). Based on the DGA 

PMFs, we used the RMSD of the α helix (RMSDhx), and the RMSD of the 3–10 helix 

(RMSD3–10), and the end-to-end distance (d) to control the sampling. REUS window centers 

were placed on a uniform 8 × 8 × 8 grid of these three CVs, with RMSDhx ranging from 

0.3 to 2.8 Å, RMSD3–10 ranging 0.3 to 3.3 Å, and d ranging from 6 to 38 Å. This grid 

fully covered the relevant areas of CV space identified by previous simulations. The force 

constants for the harmonic potentials for each window were 29.2 kJ/(mol · Å2) for RMSDhx, 

20.3 kJ/(mol · Å2) for RMSD3–10, and 0.178 kJ/(mol · Å2) for d, following ref. 64. To 

initialize each window, structures were taken from the DGA database that were closest to 

each window center. The built-in replica exchange functionality of GROMACS was used 

to create a three-dimensional replica exchange procedure, where structures from nearby 

windows were periodically exchanged.65 Every window was first simulated for 100 ps, 

with swaps attempted between adjacent windows in d space (i.e., window centers with the 

same RMSDhx and RMSD3–10 values, but neighboring d values) every 10 ps. This was 

repeated for a total of three 100 ps iterations, with the second and third iterations proposing 

swaps between neighboring windows in RMSDhx and RMSD3–10, respectively. This 300-ps 

procedure was repeated until a total simulation time of 10 ns was reached for each window, 

with structures saved every 10 ps. Following this protocol, structures were exchanged across 

all of the three-dimensional grid, with exchange probabilities in the range 10–60%. The 

PMF was constructed by using the Eigenvector Method for Umbrella Sampling (EMUS)66 

extended to REUS.67 The REUS simulations were run until the asymptotic variance of the 

PMF dropped below 0.1 (kBT)2 (Figure S1).

The REUS PMFs suggested that the initial DGA data set did not adequately sample 

configurations with RMSDhx > 1.5 Å (Figure S3, note the lack of sampling toward the upper 

right areas of the plots compared with those in Figure 2). In this case several of the basins 

are missing, and the RMSD over all bins is > 1.3 kBT. Therefore, we selected 64 more 

points from a grid with RMSDhx > 1.5 Å and a range of end-to-end distances from our short 

trajectory data set. From each of these points, we released two new free molecular dynamics 

simulations of length 30 ns (Figure 1B). With these additional trajectories, we obtained good 

agreement between DGA and REUS PMFs. Adding the extra sampling improved the PMFs 

involving RMSDhx the most, but other PMFs were also noticeably improved. The data set 

used for all further DGA calculations thus contains a total of 1024 trajectories, each of 

length 30 ns, with structures saved every 5 ps.
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3.4 State definitions

We found that PMFs projected onto only global measures of unfolding (RMSDfull, Rg, and 

d) did not have clearly identifiable unfolded basins (Figures 1 and 2). By contrast, the PMF 

on the CVs tracking secondary structure (RMSDhx and RMSD3–10) had clearly identifiable 

unfolded and folded basins, as well as several intermediates. Based on this analysis, we took 

the unfolded state to be

RMSDhx − 2.15 Å 3

0.008 Å3 +
RMSD310 − 2.8 Å 3

0.125 Å3 < 1. (38)

The folded state is

RMSDhx − 0.3 Å 2

0.0289 Å2 +
RMSD310 − 0.3 Å 2

0.04 Å2 < 1 and d < 17 Å . (39)

We included the end-to-end distance constraint on the folded state to exclude structures 

which are extended but have the secondary structure intact.

Heterogeneous structures contribute to the unfolded state, making it challenging to define, 

and there is no guarantee that the choices above are optimal in any sense. Because we 

expect unfolding and folding to be among the slowest motions of the system, an alternative 

would be to define the states in terms of the slowest mode of the system identified by a 

dimensionality-reduction algorithm. However, data-driven state definitions are often difficult 

to interpret physically, despite their theoretical justifications. Furthermore, data-driven 

state definitions can be difficult to incorporate into sampling algorithms. We thus use 

physical CVs for path sampling, stratification, and state definitions, and we then check for 

consistency with a data-driven state choice.

Figure 3 shows that the slowest mode of the system identified by TICA applied to the 

DGA data set correlates with the PMF and switches between low and high values in going 

between the unfolded and folded states. Here and going forward, all functions we project 

onto CVs are conditional averages of the form ∫ f(x)δ(θ(x) − s)π(dx)/∫ δ(θ(x) − s)π(dx). We 

estimate these by binning our CV space into bins, and for each bin ds, plotting:

∫ f(x)δ(θ(x) − s)π(dx)
∫ δ(θ(x) − s)π(dx) ≈

∑if X(i)(0)w(X(i)(0))1θ ∈ ds X(i)(0)
∑iw X(i)(0) 1θ ∈ ds X(i)(0)

. (40)

We furthermore show in Section 4.2 that this mode correlates with the committor. We thus 

feel that RMSDhx and RMSD3–10 enable the clearest two-dimensional projection of the 

reaction and present most of our results in terms of these CVs. In addition to the unfolded 

and folded states, we define four intermediate states U1, U2, L1, and L2 shown on Figure 

3. In the next section, we apply our DGA and TPT formalism to show that trp-cage can fold 

along an upper path through intermediates U1 and U2, or a lower path through L1 and L2.
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4 Trp-cage analysis

In this section, we evaluate how the three basis sets described in Section 2.2.3 (indicator 

functions of pairwise distances, indicator functions of TICA coordinates, and pairwise 

distances modified to satisfy the boundary conditions) impact the performance of DGA for 

estimating PMFs, rates, committors, and reactive currents for the unfolding and folding of 

the trp-cage miniprotein. Where possible, we compare our results with references obtained 

by independent means.

4.1 Comparison of PMFs

Figure 2 shows PMFs computed on each pair of the physically motivated CVs with DGA 

with the modified distance basis set. The corresponding PMFs from REUS are shown in 

Figure S2; difference maps comparing the results obtained with the two methods and three 

basis sets are shown in Figures S4, S5, and S6. All of the main basins identified by REUS 

are present in the DGA PMFs, and there is good quantitative agreement between REUS 

and DGA, with RMSDs of < 1 kBT for all three basis sets (that said, of these, the distance 

indicator basis set results in the largest deviations). Consistent with their agreement with the 

REUS PMF, the three DGA PMFs are in agreement with each other. We did observe that 

REUS tends to give slightly flatter PMFs than DGA with all three basis sets. In principle, 

there are two sources of error in the DGA PMFs: (i) approximation error from representing 

the true change of measure with a basis expansion and (ii) estimation (sampling) error. 

Analysis of error in DGA will be the subject of future work. Error in US is discussed in refs. 

66, 67, and 68.

We found that the projection onto the RMSDhx and RMSD3–10 coordinates was best 

able to separate the pathways and states of interest, so we now focus on this projection. 

Figure 3 indicates the folded (lower left) and unfolded (upper right) basins, as well 

four intermediates. The intermediates define two pathways, which we label upper (with 

intermediates U1 and U2) and lower (with intermediates L1 and L2). Table 1 gives the five 

CV values for each of the six states.

To understand the characteristics of the intermediate states, we turn to Figure 4, which 

shows the solvent-accessible surface area (SASA) of trp-6 on the left, and pro-12 on 

the right. We find that the U2 intermediate state is characterized by partial solvation of 

the hydrophobic core, measured by the SASA of trp-6, and nearly full detachment of 

pro-12. Furthermore, the U2 state is significantly more extended than the lower pathway 

intermediates as measured both by Rg and end-to-end distance. In addition to being more 

compact, with near-native Rg values, L1 and L2 have near-native trp-6 and pro-12 SASA 

values, suggesting the hydrophobic core is fully formed. These intermediate states can 

be mapped to those previously reported in the literature. Bolhuis and Jurazek33 identified 

three folding intermediates. Our U1 and U2 intermediates roughly map onto their Pd and I 

intermediates, and our L1 and L2 intermediates roughly map onto their L intermediate. U1 

and U2 also correspond to states S7 and S0 identified by Sidky et al.38
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4.2 Comparison of committors

We next calculated both forward and backward committors using DGA with the three basis 

sets and lag times ranging from 0.5 ns to 12 ns (Figure 5 and Figure S7). As they should, 

the backward committors mirror the forward committors, so we focus our discussion on the 

latter. The timescale of trp-cage folding is on the order of 5 μs from both experiment32 and 

simulation,34 thus both our trajectory lengths (30 ns) and lag times are several orders of 

magnitude shorter than the motions of interest, providing an appropriate setting in which we 

expect DGA to show benefits.

In contrast to the PMFs, we found the committors to be sensitive to the choice of basis 

set (and associated guess function). The modified distance basis set, in addition to being 

substantially faster to construct as it avoids slow and unstable high-dimensional clustering, 

is less prone to discontinuities at the boundary than the distance indicator function basis 

set. The TICA indicator function basis set performs similarly to the modified distance 

basis set and has the advantage over the distance indicator basis set that clustering on the 

lower-dimensional subspace is significantly faster and more stable.

For a given basis set, we found relatively little variation in the committors across lag times. 

This is in contrast to variational approach for conformational dynamics (VAC) algorithm, 

where the results can strongly depend on the lag time42 (although this can be mitigated by 

using multiple lag times69). We postpone a full investigation of DGA’s error properties, and 

in particular its dependence on the choice of lag time, to future work.

Because we expect unfolding and folding to be among the slowest motions of the system, we 

can validate the DGA committors by comparing them with the slowest mode of the system 

identified by TICA. Comparing Figures 3 and 5 shows that the largest TICA eigenvector 

(estimated with a lag time of 0.5 ns) correlates almost perfectly with the estimated 

committors obtained with the modified distance basis set, when projected onto RMSDhx 

and RMSD3–10. The agreement between these two independent calculations furthermore 

suggests that the physically motivated CVs capture the behavior detected by the data-driven 

method. In this projection, we see that the transition states fall where the SASA of trp-6 

(Figure 4) changes rapidly.

As an additional validation, we used DGA with the modified distance basis set and a 

lag time of 0.5 ns (Figure 6) to compute committors on the CVs used by Juraszek and 

Bolhuis.33 When projected onto RMSD and RMSDhx, the positions of the transition states 

in Figure 4 of ref. 33 fall in areas estimated to have q+ = 0.5 (white in Figure 6). The 

traditional shooting approach employed in ref. 33 is quite computationally costly and 

provides information about only a limited number of structures. Our ability to capture the 

transition states thus makes clear the benefit of DGA. We discuss DGA’s ability to provide 

mechanistic information further in the next section.

4.3 Reactive currents

We computed reactive currents for the three basis sets using the estimator in (37) and the 

committors from the the previous section (Figure 7). For this calculation, we use the shortest 

lag time of 0.5 ns for both the committor and reactive current, though in principle they 
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could be chosen separately. As previously, we primarily present our results projected onto 

RMSDhx and RMSD3–10. Overall the results for the three basis sets are similar, though the 

distance indicator basis set exhibits greater noise around (RMSDhx, RMSD3–10) = (1.3 Å, 

1.3 Å), consistent with the plateau in the committor in this region.

The currents, which provide information directly about dynamics, confirm the presence of 

two paths for the folding process: an upper path with formation of the α helix prior to 

formation of the 3–10 helix, and a lower path with the order of these events transposed. 

The upper path proceeds through intermediates U1 and U2, with folding beginning with 

formation of the α helix and partial desolvation of trp-6, followed by full formation of 

the 3–10 helix. The lower path proceeds through L1 and L2, with folding beginning with 

collapse into the L2 intermediate with no α helix, but the hydrophobic core fully formed, 

followed by formation of the α helix. Both of these paths correspond to troughs in the PMFs 

on these CVs.

Previous studies have found multiple pathways resembling the ones we find here. Kim et 

al.70 used diffusion maps to identify two pathways: one with tertiary contacts forming first, 

followed by α helix formation, and another with the order transposed. Jurazek and Bolhius 

came to similar conclusions using transition path sampling.33

An advantage of the reactive current is that we can use it to assign weights to the two 

paths. By computing the relative flux crossing RMSD3–10 = 1.8 Å with either RMSDhx < 

1.4 Å (upper pathway) or RMSDhx > 1.4 Å (lower pathway), we conclude that 88% of the 

reactive paths proceed by first forming the α helix, and then the 3–10 helix and hydrophobic 

core (i.e., the upper pathway). Although we are not aware of a previous estimate of the 

reactive current for this system, we can compare these numbers to the frequencies with 

which transition path sampling sampled the pathways in ref. 33. There, Juraszek and Bolhuis 

observed the pathway in which tertiary contacts form first (i.e., the lower pathway) 80% 

of the time. The difference may be due to different CV and state definitions (Jurazek and 

Bolhuis33 used 5 CVs in their state definitions, whereas we consider only RMSD3–10 and 

RMSDhx) or force field and setup differences.

4.4 Rates

Finally, we computed rates using the estimator in (31). We present our results as inverse 

rates (unfolding and folding times) to make comparisons to lag times and trajectory lengths 

clear. As mentioned previously, these times are expected to be on the order of microseconds. 

In particular, Juraszek and Bolhuis used transition interface sampling to estimate inverse 

unfolding and folding rates of 1.2 μs and 0.4 μs,34 though as noted previously those results 

are for a different model.

All three basis sets gave rate estimates that were within an order of magnitude of those 

numbers (Figure 8). However, the results for the distance indicator basis were markedly 

faster. Furthermore, in all three cases, the inverse rate exhibited significant dependence on 

lag time. We do not show lag times >12 ns since they suffer from pronounced statistical 

error due to the limitations of our short-trajectory data set. Our analysis of the trajectory 

of the K8A mutant suggests the need for a lag time of at least 100 ns (consistent with ref. 
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38), though as discussed in the Introduction, those data do not contain a sufficient number 

of unfolding and folding events to obtain accurate rate estimates. Juxtaposed with the lack 

of sensitivity to lag time for the committor and reactive current, these observations suggest 

that DGA’s strength is in its ability to give statistical insight into mechanisms with relatively 

little data, but that rates may be more efficiently computed by methods that directly sample 

relevant statistics such as stratification schemes.5

4.5 Demonstration of delay embedding

As described in Section 2.2.4, delay embedding can be used to construct an approximately 

Markovian process when the feature space does not fully capture the dynamics. To illustrate 

this idea using our trp-cage data set, we restrict the feature space to the five physical CVs 

and apply DGA with the modified distance basis set on either the feature space itself or 

the delay-embedded feature space. Figure 9 shows the reactive currents and committors 

resulting from DGA on these two spaces. We find that the committor and current constructed 

from the delay embedded representation largely agree with the DGA result constructed 

on the 153 pairwise distances. Without delay embedding, we find several qualitative 

disagreements, in particular the U2 state has a committor value close to zero, and the 

reactive current does not resolve the two pathways since many of the arrows point directly 

towards the folded state.

5 Conclusions

In this paper, we have cast the dynamical Galerkin approximation (DGA)7 for computing 

chemical kinetic statistics from short trajectories in terms of the stopped transition operator. 

This formulation can be immediately translated into expressions that can be applied to 

simulation data. It also clarifies the role of the lag time, showing that estimates of 

conditional expectations computed by DGA are exact in the infinite basis and data limit, 

independent of the choice of lag time.

To evaluate DGA’s performance, we generated and carefully validated a data set of short 

trajectories for the unfolding and folding of the trp-cage miniprotein, a well-characterized 

system. We used umbrella sampling to validate our short trajectory data set by comparing 

the resulting PMFs. Quantitative agreement between the PMFs was observed, suggesting 

that our short trajectory data set had sufficient sampling to compute dynamical statistics. The 

PMF calculations furthermore enabled us to rapidly assess different combinations of CVs 

for their abilities to separate metastable states. The α helix RMSD and 3–10 helix RMSD 

in particular allowed us to resolve intermediates to a greater degree than found in previous 

studies.

We next applied DGA to compute forward and backward committors between the unfolded 

and folded states. We evaluated a number of competing estimators for the backward 

committor and found that one based on forward trajectories weighted by the stationary 

distribution gave the best results. The committors by themselves are not able to identify 

reaction pathways or transition states, but they can be combined according to transition path 

theory to extract this information. Specifically, we introduce a new estimator for the TPT 

rate, and a projection formula and corresponding estimator for the reactive current in a CV 
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space. Our projected reactive current allows us to easily resolve and visualize the pathways 

that the system takes in arbitrary CV spaces, and even lets us assign relative weights to these 

pathways. Acquiring this kind of mechanistic information has previously been possible only 

through transition path sampling and related methods; such methods do not as readily allow 

exploration of CVs and state definitions because the sampling is linked directly to them.

We introduced a simple procedure that takes an arbitrary set of molecular features and 

adapts them to produce a basis set that satisfies the homogeneous boundary conditions. 

Using pairwise distances as the molecular features, we compared the performance of such a 

basis set with indicator functions on the molecular features and indicator functions on TICA 

coordinates. Other basis constructions such as diffusion maps and radial basis functions 

are possible, and we expect that the best choice will be system dependent. We applied our 

DGA and TPT formalism to our data set, and identified intermediate states and pathways 

which have been previously reported in the literature, providing further validation of our 

methods. We found that the estimates of the TPT rate, while on the same order of magnitude 

as previous estimates, nevertheless show significant dependence on lag time. Finally, we 

showed that delay embedding can be an effective strategy for constructing a molecular 

representation with approximately Markovian dynamics from a low-dimensional feature 

space.

Our results suggest several interesting directions for future investigation. We have seen that 

in our trp-cage application the choice of lag time has only a modest effect on DGA estimates 

of conditional expectations, while TPT quantities, in particular the rate, depend sensitively 

on lag time. Recently, we showed that integrating over lag times for VAC improves the 

robustness of that method.69 It will be interesting to see if an analogous strategy can 

improve rate estimates from DGA. An in depth mathematical study of DGA’s error and its 

dependence on lag time along the lines of our previous analysis of VAC42 is also in order. 

By showing how DGA’s results depend on the sampling measure, such an analysis could 

lead to a practical scheme for targeting sampling to selected regions, just as our analysis of 

US71,72 did.67 This will be particularly important for systems that are not amenable to the 

strategy that we took in the present study of using REUS for identifying regions of CV space 

that require more sampling.

Though DGA has performed well in our tests so far, looking ahead to larger and more 

complex systems, it may become necessary to move away from a Galerkin approach and 

toward more flexible representations of the kinetic functions we seek to approximate. This 

would be consistent with a trend toward using neural networks to represent eigenfunctions 

in spectral estimation.17,38,69 Indeed, some of the first estimates of committors from data 

used neural networks.73,74 Introducing this higher level of representational flexibility while 

maintaining the reliability we observe in our trp-cage application of DGA will be a 

challenge.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Initialization points for the data set of short trajectories. ABMD targets (symbols) are 

overlaid on DGA PMFs (color scale and contours, spaced every 1 kBT) for the CVs used 

for steering. (left) The initial 64 ABMD targets were based on RMSDfull and RMSD3–10; 14 

free simulations of length 30 ns were launched from each of the structures resulting from 

these ABMD simulations. (right) 64 ABMD targets in RMSDhx and end-to-end distance 

added to ensure adequate sampling of the unfolded state; 2 free simulations of length 30 ns 

were launched from each of the structures resulting from these ABMD simulations.
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Figure 2: 
PMFs for the indicated CVs. Results shown are computed by DGA with the modified 

distance basis set and a lag time of 0.5 ns. We use a 50 × 50 grid to compute each PMF. 

Similar results are obtained with other basis sets and REUS; see Figures S4, S5, and S6.
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Figure 3: 
Top nontrivial TICA eigenvector averaged on the RMSDhx and RMSD3–10 CVs with 

physical weighting. The unfolded and folded states are indicated in yellow with 

representative structures. Intermediate states in Table 1 are marked and labeled.
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Figure 4: 
Equilibrium average solvent accessible surface area (SASA) projected onto the RMSDhx and 

RMSD3–10 CVs for (left) trp-6 and (right) proline-12.
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Figure 5: 
DGA forward committors. Left, middle, and right columns are computed with the modified 

distance, distance indicator, and TICA indicator basis sets, respectively. Top, middle, and 

bottom rows are computed with lag times of 0.5, 2.5, and 7.5 ns, respectively.
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Figure 6: 
Forward committor (left) and reactive current (right) projected onto the RMSDhx and full 

RMSD CVs used in ref. 33. Results shown are computed with the modified distance basis 

set and a lag time of 0.5 ns.
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Figure 7: 
Folding (top) and unfolding (bottom) reactive current projected onto the RMSDhx and 

RMSD3–10 CVs using (37) with the three choices of basis set. Left, middle, and right 

columns are computed with the modified distance, distance indicator, and TICA indicator 

basis sets, respectively. All computations use a lag time of 0.5 ns.
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Figure 8: 
Inverse rates estimated for folding (left) and unfolding (right).
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Figure 9: 
Comparison of DGA estimates for the forward committor (top) and reactive current for 

folding (bottom) with the modified distance basis set on a feature space restricted to the five 

physical CVs (right) and a delay-embedded feature space (left). The delay-embedded results 

are obtained with a delay of δ = 0.125 ns, N = 40 images, and a DGA lag time of 0.5 ns.
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Table 1:

CV values for metastable states.

State RMSDfull/Å RMSDhx/Å d/Å RMSD3–10/Å Rg/Å

Folded 1.1 0.30 11.1 0.30 7.0

Unfolded 5.8 2.1 20.2 2.8 9.2

U1 2.4 0.34 13.1 1.2 7.3

U2 5.2 0.34 19.3 2.8 8.8

L1 2.2 1.2 9.5 0.30 7.2

L2 2.6 1.9 14.5 0.30 7.3
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