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Summary

Unobserved confounding presents a major threat to causal inference in observational studies. 

Recently, several authors have suggested that this problem could be overcome in a shared 

confounding setting where multiple treatments are independent given a common latent 

confounder. It has been shown that under a linear Gaussian model for the treatments,the causal 

effect is not identifiable without parametric assumptions on the outcome model. In this note, we 

show that the causal effect is indeed identifiable if we assume a general binary choice model 

for the outcome with a non-probit link. Our identification approach is based on the incongruence 

between Gaussianity of the treatments and latent confounder and non-Gaussianity of a latent 

outcome variable. We further develop a two-step likelihood-based estimation procedure.
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1. INTRODUCTION

Unmeasured confounding poses a major challenge to causal inference in observational 

studies. Without further assumptions, it is often impossible to identify the causal effects 

of interest. Classical approaches to mitigating bias due to unmeasured confounding include 

instrumental variable methods (Angrist et al., 1996; Hernán & Robins, 2006; Wang & 

Tchetgen Tchetgen, 2018), causal structure learning (Drton & Maathuis, 2017), invariance 

prediction (Peters et al., 2016), negative controls (Kuroki & Pearl, 2014; Miao et al., 2018), 

and sensitivity analysis (Cornfield et al., 1959).
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Several recent publications have suggested an alternative approaches to this problem that 

assume shared confounding between multiple treatments and independence of treatments 

given the confounder (Tran & Blei, 2017; Ranganath & Perotte, 2019; Wang & 

Blei, 2019a,b). These approaches leverage information in a potentially high-dimensional 

treatment to aid causal identification. Such settings are prevalent in many contemporary 

areas, such as genetics, recommendation systems and neuroimaging studies. Unfortunately, 

in general the shared confounding structure is not sufficient for causal identification. 

D’Amour (2019, Theorem 1) showed that under a linear Gaussian treatment model, except 

in trivial cases, the causal effects are not identifiable without parametric assumptions 

on the outcome model.To address this nonidentifiability problem,D’Amour (2019) and 

Imai & Jiang (2019) suggested collecting auxiliary variables such as negative controls 

or instrumental variables. Along these lines, Wang & Blei (2019b) showed that the 

deconfounder algorithm of Wang & Blei (2019a) is valid given a set of negative controls, 

and Veitch et al. (2019) further found a negative control in network settings.

The present work contributes to this discussion by establishing a new identifiability result 

for causal effects, assuming a general binary choice outcome model with a non-probit link 

in addition to a linear Gaussian treatment model. Our result provides a counterpart to the 

nonidentifiability result of D’Amour (2019, Theorem 1).We use parametric assumptions 

in place of auxiliary data for causal identification. This is similar in spirit to Heckman’s 

selection model (Heckman, 1979) for correcting bias from nonignorable missing data. 

In contrast to the case with normally distributed treatments and outcome, in general the 

observed data distribution may contain information beyond the first two moments, thereby 

providing many more nontrivial constraints for causal identification (Bentler, 1983; Bollen, 

2014). In particular, our approach leverages the incongruence between Gaussianity of the 

treatments and latent confounder and non-Gaussianity of a latent outcome variable to 

achieve causal identification. A referee pointed out that this is related to previous results of 

Peters et al. (2009) and Imai & Jiang (2019, §2.1) in other contexts of causal inference. Our 

identification approach is accompanied by a simple likelihood-based estimation procedure, 

and we illustrate the method through synthetic and real data analyses in the Supplementary 

Material.

2. FRAMEWORK

Let A = A(1), A(2), …, A(p) T
 be a p-vector of continuous treatments, Y an outcome, and X a 

q-vector of observed pre-treatment variables. The observed data Xi, Ai, Y i : i = 1, …, n  are 

independent samples from a superpopulation. Under the potential outcomes framework, Y is 

the potential outcome had the patient received treatment a = a(1), …, a(p) T. We are interested 

in identifying and estimating the mean potential outcome E Y (a) . We make the stable unit 

treatment value assumption, under which Y(a) is well-defined and Y = Y (a) if A = a.

We assume the shared confounding structure under which the treatments are conditionally 

independent given the baseline covariates X and a scalar latent confounder U. Figure 1 

provides a graphical illustration of the setting.
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Assumption 1 (Latent ignorablity).

For all a, A ⫫ Y (a) ∣ (X, U).

Under Assumption 1, we have

E Y (a) = EX, U E(Y ∣ A = a, X, U) . (1)

We consider a latent factor model for the treatments:

U ∼ N(0, 1), A = θU + ϵA, (2)

where ϵA ∼ N 0, diag σA, 1
2 , …, σA, p

2  and ϵA ⫫ U Wang & Blei (2019a) suggested first 

constructing an estimate of U, the so-called deconfounder, and then using (1) to identify 

the mean potential outcomes and causalcontrasts.However,aspointedoutbyD’Amour(2019), 

Assumption 1 and model (2) are not sufficient for identification of E Y (a) . See also 

Example S1 in the Supplementary Material for a counterexample where Y follows a 

Gaussian structural equation model.

3. IDENTIFICATION WITH A BINARY OUTCOME

We now study the identification problem with a binary Y, thereby operating under a different 

set of assumptions from those in Example S1. To fix ideas, we first consider the case without 

measured covariates X and later extend the results to the case with X. We assume that 

treatments A follow the latent factor model (2). We also assume the following binary choice 

model:

Y = 1 T ⩽ α + βTA + γU , (3)

where an auxiliary latent variable T, independent of (A, U), has a known 

cumulative distribution function G. Equivalently, model (3) can be written as 

pr(Y = 1 ∣ A, U) = G α + βTA + γU . This class of models is general and includes common 

models for the binary outcome. For example, when T follows a logistic distribution with 

mean 0 and scale 1, model (3) becomes a logistic model; when T follows a standard normal 

distribution, model (3) is a probit model; when T follows a central t distribution, model (3) is 

a robit model (Liu, 2004; Ding, 2014).

Our main identification result is summarized in Theorem 1.

THEOREM 1.

Suppose that Assumption 1, models (2) and (3) and the following conditions hold:

i. there exist at least three elements of θ = θ1, …, θp
T that are nonzero, and there 

exists at least one j ∈ 1, …, p  such that γθj ⧧ 0 and its sign is known a priori;

ii. pr(Y = 1 ∣ A = a) is not a constant function of a.
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Then the parameters θ, ΣAA, α, β, γ and hence E Y (a)  are identifiable if and only if T is not 

deterministic or normally distributed.

Theorem 1 entails that identifiability of causal effects is guaranteed as long as the outcome 

follows a nontrivial binary choice model with any link function other than the probit. 

Condition (i) of the theorem is plausible when the latent confounder U affects at least three 

treatments, for at least one of which subjectspecific knowledge allows the signs of θj and 

γ to be determined. Condition (ii) requires that the observed outcome means differ across 

treatment levels, and can be checked from the observed data.

We now present an outline of our identification strategy leading to Theorem 1. Under model 

(2), U, AT T
 follows a joint multivariate normal distribution

U
A ∼ Np + 1 0, ΣJ , ΣJ = 1 θT

θ ΣAA
,

where ΣAA = θθT + diag σA, 1
2 , …, σA, p

2 . Therefore U ∣ A follows a univariate normal 

distribution with mean μU ∣ A = θTΣAA
−1 A and variance σU ∣ A

2 = 1 − θTΣAA
−1 θ.

The starting point of our identification approach is the following orthogonalization of 

U, AT T
. Let Z = U − μU ∣ A /σU ∣ A be the standardized latent confounder conditional on 

A. Then Z ⫫ A and Z follows a standard normal distribution. Model (3) then implies that

Y = 1 T ⩽ c1 + c2
TA + c3Z , (4)

where c1 = α, c2 = c2
(1), …, c2

(p) T = β + γθTΣAA
−1 , c3 = γσU ∣ A and (A,T,Z) are jointly 

independent.

The unknown parameters can then be identified in three steps.In the first step,we prove the 

identifiability of θ and ΣAA using standard results from factor analysis (Anderson & Rubin, 

1956). In the second step, we study the binary choice model (4), and show that both c2 

and the distribution of T − c1 − c3Z are identifiable up to a positive scale parameter. In the 

third step, we show that when the distribution of T is nondeterministic and non-Gaussian, 

one can leverage the incongruence between the Gaussianity of Z and the non-Gaussianity of 

T to identify c1, c3 and the scale parameter in the second step. The key to this step is the 

following lemma. Finally, we identify α,β,γ and hence E Y (a)  from c1, c2, c3, θ and ΣAA.

LEMMA 1.

Suppose T1 = T − c1 − c3Z and that T is independent of Z, where Z follows a standard 

normal distribution and c1 and c3 are constants. The following statements are equivalent.
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I. There exist C, c1, c3 ⧧ C, c1, c3 , T =D T  and Z =D Z such that CC > 0, T ⫫ Z and 

CT1 =D C T − c1 − c3Z , where E =D F  means that the random variables E and F 

have the same distribution.

II. The random variable T is either deterministic or normally distributed.

Remark 1.

In this paper we only allow U to be a scalar. In this case, θ is identified up to its sign 

from the factor model, and it may be possible to identify the sign of θ from subject-matter 

knowledge. However, if U is a multi-dimensional vector, then the factor model (2) becomes 

A = ΘU + ϵA, where Θ is the loading matrix. In this case, Θ is only identifiable up to 

a rotation. Consequently, in general, there are infinitely many causal effect parameters 

that are compatible with the observed data distribution; see Miao et al. (2020) for related 

discussions.

Remark 2.

Example S1 in the Supplementary Material shows that when the continuous outcome Y 
follows a Gaussian structural model, E Y (a)  is not identifiable. Intuitively, the binary 

outcome in a probit regression can be obtained by dichotomizing a continuous outcome 

following a Gaussian distribution, and there is no reason to believe that dichotomization 

improves identifiability. So it should not be surprising that E Y (a)  is not identifiable in the 

probit case.

In the presence of baseline covariates X, we assume that

A = θU + BX + ϵA, (5)

pr Y (a) = 1 ∣ U, X = G α + βTa + γU + ηTX , (6)

where X ⫫ U, ϵA . We also assume that

U
A ∣ X ∼ Np + 1

0
BX , ΣJ

∗ , ΣJ
∗ = 1 θT

θ ΣA ∣ X
, (7)

where ΣA ∣ X = ΣAA − BΣXXBT with ΣAA and ΣXX being the covariances of A and X, 

respectively. Then U ∣ X = x, A = a follows a univariate normal distribution with mean 

μU ∣ x, a = θTΣA ∣ X
−1 (a − Bx) and variance σU ∣ x, a

2 = 1 − θTΣA ∣ X
−1 θ. Identifiability of E Y (a)

can then be obtained as in Theorem 1, except that now we replace (ii) of Theorem 1 with the 

following weaker condition:

(ii*) pr(Y = 1 ∣ A = a, X = x) depends on a or x or both. Furthermore, 

if pr(Y = 1 ∣ A = a, X = x) depends only on a subset of x, say 
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xj1, xj2, …, xjk, 1 ⩽ j1 < ⋯ < jk ⩽ q , then at least one of Xj1, Xj2, …, Xjk  has full support 

in ℝ.

THEOREM 2.

Suppose that Assumption 1, (5)–(7), and conditions (i) and (ii) of Theorem 1 hold. Then 
the parameters θ, ΣAA, α, β, γ, η and hence E{Y(a)} are identifiable if and only if T is not 

deterministic or normally distributed.

The proof of Theorem 2 is similar to that of Theorem 1 and hence omitted.

4. DISCUSSION

When the causal effects are identifiable,one canuse the following likelihood-based procedure 

to estimate the model parameters. Asymptotic normality and the resulting inference 

procedures follow directly from standard M-estimation theory.

Step 1. LetA* be the residual of a linear regression of A on X. Obtain the maximum 

likelihood estimators θ  and ΣA ∣ X based on a factor analysis on A*, using an off-the-shelf 

package such as the factanal function in R (R Development Core Team, 2022).When there 

are no observed confounders X, one can use A instead of A* and perform factor analysis.

Step 2. Estimate α, βT, γ, η  by maximizing the 

conditional likelihood ∏i = 1
n ri(α, β, γ, η)Yi 1 − ri(α, β, γ, η) 1 − Yi , where 

ri(α, β, γ, η) = pr Y = 1 ∣ A = Ai, X = Xi; α, β, γ, η, θ , ΣA ∣ X ..

In the Supplementary Material, we report numerical results from analyses of synthetic data 

and real datasets. In a recent note, Grimmer et al. (2020) showed that the deconfounder 

algorithm of Wang & Blei (2019a) may not consistently outperform naive regression, 

ignoring the unmeasured confounder when the outcome and treatments follow Gaussian 

models. In constrast, our numerical results suggest that under our identification conditions, 

the likelihood-based estimates outperform naive regression estimates. Furthermore, 

these estimates exhibit some robustness against violations of the binary choice model 

specification. Nevertheless, we end with a cautionary remark that our results show that 

identification of causal effects in the multi-cause setting requires additional parametric 

structural assumptions, including the linear Gaussian treatment model, the binary choice 

outcome model, and a scalar confounder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1

We use the following notation. Let A( − 1) = A(k):k ≠ 1 ∈ ℝp − 1 and define a( − 1) ∈ ℝp − 1

and c2
( − 1) ∈ ℝp − 1 analogously. Also write A( − 1, − j) = A(k):k ∉ 1, j ∈ ℝp − 2.

We first establish the identifiability results for θ and ΣAA. When p ⩾ 3, by condition (i) of 

Theorem 1 there exist at least three nonzero elements of θ = θ1, …, θp
T. By Anderson & 

Rubin (1956, Theorem 5.5) one can identify θ up to sign and uniquely identify σA
2 . As U is 

latent with a symmetric distribution around zero, without loss of generality we may assume 

we know γ > 0 so that the sign of θj in condition (i) is determined accordingly; otherwise, 

we may redefine U to be its negative, and all the assumptions in Theorem 1 then hold if we 

also redefine θj and γ to be their respective negatives. It follows that both θ and ΣAA are 

identifiable.

We now study the binary choice model (4). This is a nontraditional binary choice model 

as the right-hand side of the inequality involves a latent variable Z. We therefore let 

T1 = T − c1 − c3Z so that A ⫫ T1, and model (4) becomes

Y = 1 T1 ⩽ c2
TA . (A1)

This is a binary choice model that was first introduced in economics (e.g., Cosslett, 1983; 

Gu & Koenker, 2020) and recently studied in statistics (e.g., Tchetgen Tchetgen et al., 

2018). Condition (ii) of Theorem 1 implies that there exists j such that c2
(j) ⧧ 0. Without loss 

of generality we assume c2
(1) ⧧ 0.

To identify the sign of c2
(1) and the distribution of T1/c2

(1) observe that (A1) implies

pr(Y = 1 ∣ A = a) = pr T1 ⩽ c2
TA ∣ A = a = pr T1 ⩽ c2

Ta , (A2)

where the second equality holds because A ⫫ T1. Since A follows a multivariate Gaussian 

distribution, (1) (A2) holds for any a ∈ ℝp. Setting a( − 1) = 0 in (A2), we can identify 

pr T1 ⩽ c2
(1)a(1)  for any a(1) ∈ ℝ. Condition (ii) and (A2) guarantee that this is a monotone 

nonconstant function of a. It is easy to see that c2
(1) > 0 if and only if pr T1 ⩽ c2

(1)a(1)  is an 

increasing function of a(1) so that the sign of c2
(1) is identifiable. Thus the distribution of 

T1/c2
(1) is identifiable.

We now show that c2/c2
(1) is identifiable. Without loss of generality we assume c2

(1) > 0. If we 

let T2 = T1 − c2
( − 1) TA( − 1) /c2

(1), then (A2) implies that for any a( − 1) ∈ ℝp − 1,
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pr(Y = 1 ∣ A = a) = pr T2 ⩽ A(1) ∣ A = a = pr T2 ⩽ a(1) ∣ A( − 1) = a( − 1) ∀a(1) ∈ ℝ .

Consequently, the distribution, and hence the expectation, of T2 ∣ A( − 1) = a( − 1) is 

identifiable. It follows that for j = 2, …, p we can also identify

c2
(j)/c2

(1) = E T2 ∣ A( − 1) = 0 − E T2 ∣ A( − 1, − j) = 0, A(j) = 1 ,

where the equality holds because A ⫫ T1.

We now turn to the third step of the proof. Lemma 1 implies that c2
(1), c1 and c3

2 are 

all identifiable if and only if T is not deterministic or normally distributed. The sign of 

c3 = γσU ∣ A can then be determined from the sign of γ, as σU ∣ A ⩾ 0. Thus, the parameters 

θ, ΣAA, α, β, γ and hence E Y (a)  are identifiable if and only if T is not deterministic or 

normally distributed, which finishes the proof.

Proof of Lemma 1

Without loss of generality we assume C = 1. Let T 1 = T − c1 − c3Z.

We first show that (II) implies (I). Suppose T ∼ N μT , σT
2 , where σT

2 > 0 if T is 

normally distributed and 0 if T is deterministic. Then T1 ∼ N μT − c1, σT
2 + c3

2  and 

CT 1 ∼ N C μT − c1 , C2 σT
2 + c3

2 . It is easy to verify that if C = 2, C1 = μT + c1 /2 and 

c3
2 = c3

2/4 − 3σT
2 /4, then CT1 =D CT 1.

We next show that (I) implies (II). We start by showing that C ⧧ 1. 

Suppose otherwise; then T − c1 − c3Z =D T − c1 − c3Z. We then have that for all 

t ∈ ℝ, ϕT (t)ϕc1 + c3Z(t) = ϕT (t)ϕc1 + c3Z(t) and hence ϕc1 + c3Z(t) = ϕc1 + c3Z(t), where ϕT (t)

is the characteristic function of T. As a result, c1 + c3Z =D c1 + c3Z, which implies 

c1, c3 = c1, c3  This is a contradiction.

We now let c1
∗ = Cc1 and c3

∗ = Cc3 so that CT − c1
∗ − c3

∗Z =D T − c1 − c3Z. We first consider 

the case where c3
∗ = c3 . By a similar characteristic function argument to that above, 

CT − c1
∗ =D T − c1, so T is a constant almost surely. We next consider the case where c3

∗ ⧧ c3 . 

Without loss of generality we assume c3
∗ > c3 . By a similar characteristic function argument 

to that above, we have

T =D CT + V , (A3)
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where V ⫫ T  and V ∼ N μV , σV
2  with μV = c1 − c1

∗ and σV
2 = c3

∗ 2 − c3
2. Equation (A3) implies 

that

ϕT(t) = ϕT(Ct)ϕV (t) = ϕT C2t ϕV (Ct)ϕV (t) = ⋯ = ϕT CKt ∏
k = 1

K
ϕV Ck − 1t

= ⋯ .
(A4)

Consequently,

T =D CT + V 1 =D C CT + V 2 + V 1 =D ⋯ =D CKT + ∑
k = 1

K
Ck − 1V k =D ⋯, (A5)

where V k(k = 1, …, K, …) are independent and identically distributed and are independent 

of T. We will now show that C < 1. Suppose otherwise; then C > 1. Let ∥ ⋅ ∥ denote the 

modulus of a complex number. For any t > 0, by (A4) and the property of a normal 

distribution we have that ϕT (t) ⩽ ϕV CK − 1t 0 as K ∞. This is a contradiction, as 

by the continuity of the characteristic function we have limt 0ϕT (t) = 1.

We can now see that in (A5), as K ∞, CKT 0 in probability 

and ∑k = 1
K Ck − 1V k N (1 − C)−1μV , 1 − C2 −1

σV
2  in distribution. Therefore, 

T ∼ N (1 − C)−1μV , 1 − C2 −1
σV

2 . Thus the proof is complete.
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Fig.1. 
A graphical illustration of the shared confounding setting. The latent ignorability assumption 

is encoded by the absence of arrows between A(j) and Y(a) for j = 1, …, p. The grey node 

indicates that U is unobserved.
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