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Abstract

Recent neuroimaging studies have demonstrated that spontaneous brain activity exhibits rich 

spatiotemporal structure that can be characterized as the exploration of a repertoire of spatially 

distributed patterns that recur over time. The repertoire of brain states may reflect the capacity for 

consciousness, since general anesthetics suppress and psychedelic drugs enhance such dynamics. 

However, the modulation of brain activity repertoire across varying states of consciousness has 

not yet been studied in a systematic and unified framework. As a unique drug that has both 

psychedelic and anesthetic properties depending on the dose, ketamine offers an opportunity 

to examine brain reconfiguration dynamics along a continuum of consciousness. Here we 

investigated the dynamic organization of cortical activity during wakefulness and during altered 

states of consciousness induced by different doses of ketamine. Through k-means clustering 

analysis of the envelope data of source-localized electroencephalographic (EEG) signals, we 

identified a set of recurring states that represent frequency-specific spatial coactivation patterns. 

We quantified the effect of ketamine on individual brain states in terms of fractional occupancy 

and transition probabilities and found that ketamine anesthesia tends to shift the configuration 

toward brain states with low spatial variability. Furthermore, by assessing the temporal dynamics 

of the occurrence and transitions of brain states, we showed that subanesthetic ketamine is 
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associated with a richer repertoire, while anesthetic ketamine induces dynamic changes in brain 

state organization, with the repertoire richness evolving from a reduced level to one comparable 

to that of normal wakefulness before recovery of consciousness. These results provide a novel 

description of ketamine’s modulation of the dynamic configuration of cortical activity and advance 

understanding of the neurophysiological mechanism of ketamine in terms of the spatial, temporal, 

and spectral structures of underlying whole-brain dynamics.
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1. Introduction

Unlike canonical anesthetics and psychedelics, ketamine is thought to work primarily by 

antagonizing N-methyl-D-aspartate receptors and HCN1 channels (Zhou et al., 2013), with 

psychedelic and anesthetic properties in a dose-dependent manner (Corssen and Domino, 

1966; Domino et al., 1965). A large body of work has investigated the neurophysiologic 

effects of ketamine at anesthetic (Akeju et al., 2016; Blain-Moraes et al., 2014; Bonhomme 

et al., 2016; Colombo et al., 2019; Lee et al., 2013; Purdon et al., 2015; Vlisides et 

al., 2017) and subanesthetic (de la Salle et al., 2016; Driesen et al., 2013; Höflich et 

al., 2015; Liao et al., 2012; Muthukumaraswamy et al., 2015; Niesters et al., 2012; 

Pallavicini et al., 2019; Rivolta et al., 2015; Scheidegger et al., 2012; Vlisides et al., 2018) 

doses. Specifically, ketamine has been demonstrated to induce frequency-specific changes 

in electrophysiological oscillatory activity and network-specific changes in hemodynamic 

responses. However, these findings are largely derived from the analysis of time-averaged 

electrophysiological or functional magnetic resonance imaging (fMRI) data that span at 

least a few minutes, thus the resultant measure disregards the vast amount of time-varying 

information that is present in the data. Several studies have incorporated the temporal 

dynamics. Using Lempel-Ziv complexity (LZC) (Lempel and Ziv, 1976; Welch, 1984; Ziv 

and Lempel, 1978) as a measure of neural signal diversity, ketamine anesthesia appears 

to maintain the spatiotemporal LZC of cortical activation evoked by transcranial magnetic 

stimulation as observed during normal wakefulness, while a psychedelic dose of ketamine is 

associated with increased single-channel temporal and spatiotemporal LZC in spontaneous 

magnetoencephalographic (MEG) signals (Schartner et al., 2017). We recently demonstrated 

the dose-dependent effect of ketamine on spatiotemporal complexity in spontaneous 

electroencephalographic (EEG) signals (Li and Mashour, 2019) in a single cohort of healthy 

volunteers. LZC assesses the spatial diversity in a short time period of a few seconds and 

reduces the spatiotemporal pattern to a unidimensional measure, thus providing a simple 

and powerful way of indexing ketamine-induced altered states of consciousness. However, 

how the different dosing of ketamine modulates the complex spatiotemporal dynamics over 

a longer time scale has not yet been explored.

The resting brain is an inherently dynamic system. Recent neuroimaging studies have 

demonstrated that spontaneous brain activity exhibits rich spatiotemporal structure that can 

be characterized as the exploration of a repertoire of spatially distributed patterns, known 
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as dynamic brain states, that recur over time (Baker et al., 2014; Gutierrez-Barragan et al., 

2019; Vidaurre et al., 2018). These dynamics may be a manifestation of covert cognitive 

information processing (Cabral et al., 2017; Gonzalez-Castillo et al., 2019), and reflect the 

information capacity of the brain that is thought to be central to consciousness (Cavanna 

et al., 2017; Tononi et al., 2016). Such explorative dynamics have also been observed in 

both humans and animals during deep sleep (Brodbeck et al., 2012; Houldin et al., 2018; 

Stevner et al., 2019), anesthesia (Hudson et al., 2014; Li et al., 2019; Varley et al., 2021; 

Vlisides et al., 2019; Wenzel et al., 2019) or disorders of consciousness (Demertzi et al., 

2019; Khanmohammadi et al., 2018). Specifically, despite differing molecular mechanisms, 

general anesthetics such as propofol, ketamine, sevoflurane, and isoflurane have been 

reported to suppress the flexible brain configurations during wakefulness to a rigid brain 

configuration that is predominantly shaped by brain anatomy (Barttfeld et al., 2015; Ma et 

al., 2017; Uhrig et al., 2018; Zhang et al., 2019). Conversely, psychedelic drugs typically 

induce the sustained occurrence of rich phenomenology and have been associated with an 

expanded repertoire of brain states (Atasoy et al., 2018; Tagliazucchi et al., 2014). Despite 

these encouraging findings, the modulation of the dynamic repertoire across varying states 

of consciousness has not been systematically assessed in a unified manner. As a unique drug 

with both psychedelic and anesthetic properties depending on dose, ketamine provides a 

pharmacological tool to characterize brain dynamics from the restricted brain configurations 

associated with general anesthesia to the expanded repertoire of the psychedelic state.

Ketamine is a fast acting anesthetic, with a distribution half-life of only 10–15 min (Li 

and Vlisides, 2016). We and others have shown that an anesthetic dose of ketamine 

induces fast transient changes in EEG signals that is characterized by alternating slow 

delta oscillations and gamma oscillations (Akeju et al., 2016; Garwood et al., 2021; Li 

and Mashour, 2019; Schwartz et al., 1974). The objective of the current study was to use 

high-density EEG signals that directly measure neural activity at high temporal resolution 

to investigate the dynamic brain states and their reconfigurations during altered states of 

consciousness induced by ketamine. Given the frequency-dependent effect of ketamine on 

cortical activity (Brito et al., 2020; Li and Mashour, 2019), we began by extracting the 

band-limited envelope of source-localized signals within the canonically defined frequency 

bands (delta, theta, alpha, beta, and gamma bands). With the envelope data aggregated over 

subjects, we employed an unsupervised clustering technique to identify recurrent brain states 

of frequency-specific spatial coactivation patterns and analyze the temporal dynamics of 

the occupancy and transitions of these brain states during wakefulness as well as during 

different doses of ketamine. We hypothesized that the repertoire, or diversity, of the brain 

states would increase with a subanesthetic dose of ketamine (associated with psychedelic 

experiences) and decrease with an anesthetic dose of ketamine. Furthermore, based on 

the pharmacokinetics and phenomenology of ketamine, as well as our previous study (Li 

and Mashour, 2019), we hypothesized that the repertoire of brain states would not be 

consistently depressed but rather fluctuate during ketamine anesthesia, with the possibility of 

returning to baseline level before recovery of responsiveness.
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2. Materials and methods

In this study, we re-analyzed EEG data in 15 healthy volunteers who received subanesthetic 

and anesthetic dosing of ketamine administration in prior studies, in which we examined 

the dose-dependent effect of ketamine on sensor-level EEG oscillatory/connectivity patterns 

(Vlisides et al., 2017) and spatiotemporal complexity (Li and Mashour, 2019), as well as 

the time-averaged changes of source-level spectral power during subanesthetic ketamine, at 

a dose that induces psychedelic experiences (Vlisides et al., 2018). Unlike previous studies, 

the current study investigated the dynamic repertoire of cortical coactivation patterns at the 

source level and its modulation by different dosing of ketamine.

2.1. Experimental protocol

Details of the study population and experimental protocol can be found in prior publication 

(Vlisides et al., 2017, 2018). In this study, we analyzed the source-localized EEG during the 

following four periods. The first period (baseline wakefulness) was 5 min of rest with eyes 

closed. The second period was the last 5 min eyes-closed epoch of a continuous infusion of 

subanesthetic (0.5 mg·kg−1 total) ketamine over 40 min. Only the last 5 min were analyzed 

because, based on a pilot study with the same subanesthetic dosing regimen, we assume the 

ketamine infusion reached pharmacological steady-state conditions by that epoch. The third 

period was the anesthetic period from loss of consciousness to the recovery of consciousness 

(defined by loss or recovery of responsiveness, with acknowledgment that disconnected 

subjective experience could occur during ketamine anesthesia), with the duration of 10.1 ± 

3.4 [mean ± standard deviation (SD)] min across subjects. General anesthesia was initiated 

with a 1.5 mg·kg−1 bolus dose of ketamine. The fourth period was 5 min of eyes-closed rest 

after return of consciousness. We assume the baseline, subanesthesia, and recovery periods 

to be steady state, except for the anesthetic period because the bolus injection may produce 

non-stationary effect-site drug concentrations.

2.2. EEG acquisition and preprocessing

The EEG data were acquired with 128-channel EGI Hydrocel Nets (Eugene, OR, USA) 

digitized continuously at 500 Hz with a vertex reference; channel impedances were kept 

below 50 kΩ as recommended by the manufacturer. The raw EEG signals were exported 

into MAT-LAB (version 2017a; MathWorks, Inc., Natick, MA), and downsampled to 250 

Hz. Electrodes on the lowest parts of the face and head were removed, and the remaining 

109-channel recordings on the scalp were preprocessed as follows. First, the signals were 

detrended using a local linear regression method with a 10-s window at a step size of 5-s 

in Chronux analysis toolbox (Mitra and Bokil, 2007), which were then low-pass filtered at 

50 Hz via a 5-order Butterworth filter using a zero-phase forward and reverse algorithm. 

Second, bad channels were detected by visual inspection and interpolated by using the 

spherical spline interpolation method in EEGLAB toolbox (Delorme and Makeig, 2004), 

and then the EEG signals were re-referenced to the average reference. Third, noisy data 

segments were automatically detected and rejected in a step-wise manner (Li et al., 2019). 

The signals were bandpass filtered at 0.5–45 Hz via a 4-order Butterworth filter (only for 

noisy segment detection) and then segmented into 1-s epochs. The 1-s data were rejected if 

(1) the average amplitude was > 3 ·average amplitude (or its SD > 2 ·SD value) of the whole 
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recording, and (2) this was present in at least 4 channels. This step was performed for the 

baseline, subanesthesia, anesthesia, and recovery periods separately, and 14.1 ± 12.0%, 20.9 

± 12.3%, 3.4 ± 4.1% and 14.4 ± 9.4% (mean ± SD) of the data were rejected, respectively. 

The remaining non-bandpassed data were used for further analysis, with the data length of 

4.5 ± 0.6, 4.0 ± 0.6, 9.7 ± 3.4 and 4.5 ± 0.5 min for the four studied periods.

For the preprocessed EEG signals, the analysis pipeline is illustrated in Fig.1, with each 

processing step described as follows.

2.3. Source reconstruction

The source reconstruction was performed with weighted minimum norm estimate method 

(wMNE) (Baillet et al., 2001) in Brainstorm (Tadel et al., 2011). This method imposes 

l2-norm constraints on the source distribution and solves the inverse problem by choosing 

the configuration with the minimum energy, with the incorporation of a depth-weighting 

factor compensating for the tendency of classical MNE to favor weak and surface sources. 

The wMNE method has established characteristics in statistics and mathematics, which is 

less sensitive to in-accuracy of the forward model and has been a widely used method for 

EEG source imaging, especially when no individual structural MRI anatomy and digitized 

electrode positions were available (Hassan and Wendling, 2018; He et al., 2018).

First, a realistic head model was derived from the FSaverage template, which is the average 

of 40 subjects (Fischl et al., 1999), by using a symmetric boundary element method in 

OpenEEG (Gramfort et al., 2010; Kybic et al., 2005). The head model includes three 

shells representing scalp, skull, and brain, by assuming the electrical conductivity within 

each layer being homogeneous, which is 0.33, 0.0042, 0.33 S/m, respectively. The noise 

covariance matrix was set as an identity matrix by assuming equal and unit variance of 

noise over all sensors. The source solution space was constrained to the cerebral cortex, 

with the orientations constrained to be perpendicular to the cortical surface. The current 

density distribution was estimated on a three-dimensional grid of 15,002 vertices, which 

was then segmented into 100 parcels or regions-of-interest based on the Yeo atlas (Schaefer 

et al., 2017; Thomas Yeo et al., 2011). Activity of each region was obtained by averaging 

the current source density of all voxels within that region. This parcellation resulted in 

regions with high homogeneity, where each region is matched to one of the seven resting-

state networks (RSNs): frontoparietal network (FPN), default mode network (DMN), dorsal 

attention network (DAT), ventral attention network (VAT), sensorimotor network (SOM), 

visual network (VIS), and limbic network (LIM).

Supplementary analyses were performed using alternative approaches in terms of 

template anatomy (ICBM152 head (Fonov et al., 2011)), inverse estimation (standardized 

low-resolution electromagnetic tomography [sLORETA] (Pascual-Marqui, 2002)), and 

parcellation method (Desikan-Killiany atlas (Desikan et al., 2006)).

2.4. Identification of brain states

To reveal the frequency-specific spatial coactivating patterns, the reconstructed source data 

were band-pass filtered into five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha 

(8–13 Hz), beta (13–25 Hz), and gamma (25–45 Hz). For each frequency band, the envelope 

Li et al. Page 5

Neuroimage. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time series was derived by computing the magnitude of the Hilbert transform of the band-

limited signal for each cortical region, which was then demeaned and down-sampled to 

40 Hz by temporally averaging within sliding windows of 100 ms and 75% overlapping 

(Baker et al., 2014), equivalent to low-pass filtering the envelope time series below 10 Hz. 

We corroborated the window selection strategy by performing supplementary analysis with 

window length ranged from 50 to 1000 ms (i.e., low pass filtering below 20 to 1 Hz).

To assess the temporal progression of spatial patterns of cortical activation and its correlates 

with ketamine, the envelope data were normalized by the standard deviation of each region 

(to ensure that the sought dynamical effects are not confounded with inter-state and inter-

individual variability, and that each state and individual is given a similar weight), and 

then concatenated temporally across all studied periods (baseline, subanesthesia, anesthesia, 

and recovery) and subjects, yielding a matrix X with m features and Nt observations. 

Here, m equals 500, which is the number of frequency bands by the number of spatial 

regions, and Nt is the number of time points of all 4 periods from 15 subjects (in this 

case, 838,084). The concatenated matrix was subject to k-means algorithm as implemented 

in Matlab, which partitioned the Nt observations into Nc clusters that have minimized 

within-cluster distance (as defined by one minus Pearson’s correlation coefficient between 

two observations). We used the correlation metric by following previous fMRI studies on 

coactivation patterns (Chen et al., 2015; Cornblath et al., 2020; Gutierrez-Barragan et al., 

2019; Huang et al., 2020; Liu et al., 2013; Liu and Duyn, 2013), and corroborated the 

selection by performing supplementary analysis with an alternative metric (one minus cosine 

similarity). The clustering procedure was repeated 100 times, each with a new set of initial 

centroids to avoid local minima problems. We varied the number of clusters Nc from 5 to 15 

and selected the solution with 10 clusters that demonstrated most consistency across subjects 

(see Supplementary materials, where we also performed a series of tests to evaluate the 

clustering solutions).

With clustering analysis, the envelope matrix X was transformed into (1) a time sequence 

of labels with each element indicating the brain state (cluster) corresponding to each time 

point of Nt observations across studied periods and subjects, (2) a discrete set of brain 

states with distinct spectral and spatial properties. Each brain state can be represented by a 

vector of m features, which was generated by normalizing the mean activation pattern by 

the standard deviation of the observations that were assigned to that cluster. The resultant 

activation patterns were then mapped to the cortical surface that allowed for the comparisons 

between brain states and between frequency bands (within brain state). For each state, we 

assumed the spatial activation pattern is spectrally heterogeneous and defined the dominant 

frequency band in which the highest activation (positive envelope values) or deactivation 

(negative envelope values) occurs. In the dominant frequency band, we assessed the spatial 

variability of the activation pattern by (1) computing the standard deviation of the activation 

values across regions, and (2) applying Shannon entropy to the distribution of the activation 

values (using a histogram), with a higher entropy value indicating a broader distribution and 

thus a greater level of spatial diversity. To further compare the spatial patterns with resting 

state networks, we first generated a binary vector for each of the 7 RSNs (as described in 

Source reconstruction) with each element corresponding to each of the 100 cortical regions, 

which was set to 1 if the region belonged to the RSN or 0 otherwise. We then computed the 
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cosine similarity (Cornblath et al., 2020) between the binary vectors and the spatial pattern 

in the dominant frequency band for each brain state.

2.5. Analysis of brain state dynamics

For each subject, the state time series represents the temporal progression of brain states 

during baseline, subanesthesia, anesthesia, and recovery. Across all studied periods, we 

first characterized the temporal properties relating to the occurrence of brain states, by 

quantifying the fractional occupancy, mean dwell time, and mean interval time for each 

brain state in each subject. The fractional occupancy is defined as the fraction of time spent 

in each brain state. The mean dwell time is defined as the average amount of time spent in 

each state before transitioning out of that state, while the mean interval time is the average 

amount of time spent between consecutive visits to a certain state (Baker et al., 2014). We 

then examined how the occupancy of brain states was modulated by ketamine and computed 

the fractional occupancy of the brain states in each of the studied periods, respectively. 

Furthermore, we applied Shannon entropy to the distribution of fractional occupancy across 

brain states (Demertzi et al., 2019), which ranged from 0 to 1, with the highest value 

indicating that it is equally probable to visit any of all possible states, while lower values 

indicating that it is more probable to visit some states than others.

We further investigated the effect of ketamine on state transitioning. We assumed the 

brain state time series to be a Markov chain (i.e., the state transition depends only on 

the current state; with the Markov property tested by following (von Wegner et al., 2017) 

in Supplementary materials) and computed the state transition probability matrix for each 

studied period in each subject. Transition probability measures the likelihood of the current 

state transiting to another state at a future time. Specifically, for the transition from state 

i to state j(i, j = 1, 2, …, Nc) the probability was estimated by counting the times of 

this transition divided by the total times of all possible state transitions (which is equal to 

the length of the state time series minus 1). In the resultant matrix, the elements on the 

diagonal line indicate the probability of staying in a certain state (referred to as persistence 

probabilities), while the off-diagonal elements indicate the probability of switching between 

two distinct states (referred to as transition probabilities), with all persistence and transition 

probabilities summing up to 1 (Li et al., 2019). Moreover, we focused on between-state 

transitions, and computed the state transition matrix from the retained state time series after 

removing state stays; the resultant matrix represents the transition probability for each pair 

of distinct states on off-diagonal elements only.

We used the following summary measures to quantify the state transition dynamics. First, 

the transition rate is defined as the number of state transitions between distinct states divided 

by the total time a subject spent in each of the studied periods (Li et al., 2019; Stevner et al., 

2019), with lower (higher) values suggesting that the cortical activity is less (more) likely to 

transition to a distinct state, or equivalently, more (less) likely to be persistent or “sticky ” in 

the same state. Second, the entropy rate (Markov entropy) that measures the unpredictability 

of state transitions (Demertzi et al., 2019) is defined as H =
∑ij pST i, j ⋅ log2pST i, j

log2NST
 where 

pST (i, j) corresponds to the transition probability from state i to state j, and NST is the 

number of all state transitions. We computed the entropy associated with the complete state 
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transition matrix (including both persistence and transition probabilities) and the reduced 

matrix with only state transition probabilities, respectively. A lower (higher) entropy value 

indicates a lesser (greater) amount of information encoded in the state transition dynamics, 

or equivalently, the brain state at time t + 1 is more (or less) predictable.

2.6. Statistical analysis

Linear mixed model (LMM) analysis was performed with IBM SPSS Statistics version 24.0 

for Windows (IBM Corp. Armonk, NY) for the following comparisons. (1) To compare 

the brain states in terms of temporal properties, a LMM was fitted with the brain state 

as the fixed effect for fractional occupancy, mean dwell time and mean interval time. (2) 

To compare the occupancy of brain states across baseline, subanesthesia, anesthesia, and 

recovery, a LMM was fitted with the studied period as the fixed effect for each brain state 

individually. (3) To compare the summary measures for brain state dynamics across the 

studied periods, a LMM was fitted with the studied period as the fixed effect for the entropy 

associated with state occupancy, transition rate, entropy associated with both persistence 

and transition probabilities, and the entropy associated with only transition probabilities. For 

all models, we used restricted maximum likelihood estimation. We did not model repeated 

effects but included a random intercept specific for each subject. Student’s two-tailed paired 

t tests were used for post-hoc pairwise tests, and Bonferroni method was used to correct for 

multiple comparisons.

To test whether the state transitions we observed could occur by chance, we performed 

the following surrogate data analysis (Li et al., 2019). First, we generated N = 1000 

surrogate time series by randomly shuffling the state time series for each subject, which 

permutated the temporal order of the state occurrence while keeping the occupancy of the 

states. With each surrogate time series, a state transition matrix was calculated, and the 

statistical significance for a state transition was obtained through the cumulative distribution 

function p = 1 − ∫
−∞

α
psurro ℎ dℎ where α denotes the original transition probability and psurro 

(ℎ) denotes the estimated normal distribution by assuming normality of surrogate data. 

To further test the randomness of between-state transitions, we removed the state stays 

and computed the state transition matrix from the retained state time series. We assumed 

that it is equally probable for the transitions to occur between any pair of distinct states, 

and used right-tailed, Wilcoxon signed rank test to obtain the statistical significance for a 

state transition with probability higher than the averaged transition probability (i.e., 1/90, 

where 90 is the number of all possible state transitions) across subjects. For the statistically 

significant state transitions as detected above, we used two-tailed, Wilcoxon signed rank 

test to compare the state persistence and transition probabilities in baseline and each of 

the studied periods (subanesthesia, anesthesia, and recovery). The false discovery rate 

(FDR) approach was applied to correct for multiple comparisons. The statistical analyses 

described above were performed using MATLAB. All data sets were tested for normality 

of distribution by Lilliefors corrected Kolmogorov-Smirnov tests. A p value of < 0.05 was 

considered statistically significant.
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3. Results

3.1. Frequency-specific cortical coactivation patterns identified by unsupervised 
clustering analysis

Spontaneous cortical activity exhibited temporally recurrent cofluctuations in the band-

limited envelope time courses across distinct brain regions (Fig. S1). To extract the inherent 

recurring patterns, we used a k-means algorithm to partition the envelope data into ten 

clusters based on their spectral and spatial similarity. Each cluster represents a brain state 

that is characterized by distinct spectral (delta, theta, alpha, beta, and gamma) and spatial 

(mapped to 100 cortical regions) properties. The brain states were derived from all studied 

periods (baseline, subanesthesia, anesthesia, and recovery) in all subjects. Each subject had 

their own state time course, representing the brain state being active at each instant in each 

studied period. For each brain state, we computed the specificity defined as the likelihood 

of the state occurring in each studied period (Stevner et al., 2019) (Fig. 2 A) and, based on 

the difference in specificity between baseline and anesthesia period, the ten brain states were 

ordered, with their characteristic spectral and spatial patterns as shown in Fig. 2 B.

For each brain state, the cortical coactivation pattern is heterogeneous, both spectrally and 

spatially. States 1 and 2 had high specificity for the baseline period, showed strong negative 

spatial similarity (Pearson’s correlation coefficient r = −0.880) (Fig. S2A), and were 

associated with activation and deactivation of alpha activity in posterior regions including 

visual cortex and posterior cingulate cortex (Fig. 2 C). States 3 and 4 were characterized 

by high-amplitude activity in beta and alpha band, respectively, with the activation mapped 

to sensorimotor cortex but also spreading across regions involving frontoparietal network, 

dorsal attention network, and ventral attention network. States 5 and 7 demonstrated similar 

spatial distribution, with the greatest activation mapped to visual cortex, but primarily in beta 

and gamma bands, respectively. State 6 was dominated by activation in delta band, which 

was spatially mapped to cortical regions including prefrontal cortex and temporal cortex in 

the DMN. The remaining states exhibited high specificity for ketamine anesthesia, which 

showed simultaneous activation and deactivation in distinct frequency bands but spread 

globally across the whole cortex. State 8 showed global activation (deactivation) in theta 

(delta) band (Fig. S2B). States 9 and 10 were anticorrelated with each other (r = −0.779), 

with State 9 exhibiting global activation in delta and deactivation in gamma band, and vice 

versa for State 10. As compared to other states, the anesthesia-related states demonstrated 

lower spatial variability, as quantified by the standard deviation and entropy of the activation 

values across cortical regions (Fig. S2C).

Each brain state was visited by each subject, with the temporal characteristics of the state 

time series assessed by the fractional occupancy, mean dwell time, and mean interval time 

for each brain state in each subject (Fig. 3 A–C, with the descriptive statistics summarized 

in Table S1). Across the subjects, all brain states occupied 5.6–14.1% of the time on 

average (Fig. 3 A). The states that exhibited higher specificity for baseline (States 1 and 

2) or anesthesia (States 8–10) occupied a larger proportion of time than other states (p < 

0.05). The mean dwell time was between 84.4 and 202.2 ms on average across states (Fig. 

3 B). The dwell times for the states with dominant frequency in beta and gamma bands 
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(State 3,5,7) were much shorter in duration than other states (p < 0.001), but there was no 

significant frequency-related difference for the other states (p > 0.05). The state that most 

resembled the anterior component of the DMN (State 6) had a relatively long dwell time 

of 196.8 ± 43.1 [mean ± SD] ms, but also the maximum interval time between state visits, 

which was 3.1 ± 0.6 s and significantly greater than all other states (p < 0.001) (Fig. 3 C).

It is worthwhile to note that the state characteristics (especially the numerical temporal 

features) must be interpreted in the context of the number of brain states partitioned and 

the window length for smoothing the envelope data prior to clustering analysis. We assessed 

the effect of varying the number of brain states (5 to 15 states) and the smoothing-window 

length (50 to 1000 ms). The increases in the number of brain states resulted in shorter 

between-state distance, smaller occupancy, and shorter dwell time, indicating that the 

addition of more states may split existing states and thus offer the characterization of brain 

dynamics at finer temporal scales (Fig. S3). As for the optimal number of brain states, 

different evaluation criteria yielded inconsistent recommendations (Fig. S4), in line with 

previous studies (Huang et al., 2020; Liu et al., 2013). The size of the smoothing window 

had little effect on the between-state distance and the fractional occupancy, while the mean 

dwell time became longer for the larger window size (Fig. S5). The employed solution with 

10 states and 100 ms smoothing window was selected because it provided a tradeoff between 

a detailed representation of brain dynamics and a high degree of inter-subject consistency 

with an acceptable computational complexity.

3.2. Effects of ketamine on state occurrence dynamics

To assess the effects of ketamine on brain state dynamics, we first compared the fractional 

occupancy of each brain state across the studied periods of baseline, subanesthesia, 

anesthesia, and recovery (Fig. 3 D, with the detailed statistical analysis results summarized 

in Table S2). We observed dose-dependent decreases in the occupancy of posterior patterns 

(State 1 and 2), which were reversed at recovery but did not fully return to baseline values 

(p < 0.05). Similar changes were seen in State 3, while a small decrease was only detected 

in anesthesia for State 4 (p = 0.006), even though both states were associated with similar 

spatial patterns of activation. The two states that correlated with beta (State 5) or gamma 

(State 7) activation in visual cortex also behaved differently. The occupancy of State 5 was 

increased in subanesthesia and recovery (p < 0.01) but not in anesthesia, while that of State 

7 was increased in a dose-dependent manner (p < 0.001). No statistically significant changes 

were detected in the occupancy of the anterior pattern (State 6). Consistent with high 

specificity for anesthesia, the global patterns (State 8–10) occupied the largest proportion of 

time during ketamine anesthesia (p < 0.001), which was followed by recovery (p < 0.05) and 

the subanesthesia period.

We further examined the entropy of the distribution of the occupancy across states. As 

demonstrated in Fig. S6, the temporal variability of the entropy values in anesthesia was 

more than fourfold higher than those in other periods, as might be expected due to the 

non-stationary effect-site drug concentrations associated with a bolus injection of ketamine. 

To reveal dynamic changes, we divided the state time series during anesthesia into four 

equal-length segments for each subject, and the entropy values of the state occupancy 
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distribution were calculated and shown in Fig. 3 E, with the detailed statistical analysis 

results summarized in Table S3. We found increased entropy at subanesthesia as compared 

to baseline (p = 0.019, 0.065(0.023 – 0.108) for mean and 95% CI). As expected, the 

entropy values were dynamic during anesthesia; the second segment demonstrated the 

lowest entropy value, which was significantly lower than those in baseline (p < 0.001, 

−0.096(−0.139– −0.053)), and which gradually increased, then returned to the baseline level 

in the last segment. Like subanesthesia, the entropy values at recovery were significantly 

higher than those in baseline (p = 0.006, 0.075(0.032–0.119)), which was not unexpected 

considering the shift from anesthetic to subanesthetic effect-site drug concentrations.

3.2. Effects of ketamine on state transition dynamics

We investigated how cortical activity transitions among brain states during baseline 

wakefulness and how the state transitions were modulated by different doses of ketamine. 

The Markovianity test results suggest the validity of the first-order Markov assumption in 

the state time series (Table S4). Fig. 4 (A) shows the mean state transition matrix across 

subjects; this matrix represents the probability of state transitions for each pair of brain 

states in each studied period. When compared to random transitions by permutating the 

temporal order while keeping the occupancy of the states, the persistent probabilities were 

significantly higher for all states (p < 0.05), suggesting that cortical activity is more likely 

to be sticky in the same state than expected by chance. Next, we aggregated over all states 

and found the persistence probability in the same state was significantly higher than that 

of transitioning to a different state (Wilcoxon signed rank test p < 0.001, baseline: 84.0 ± 

2.8% vs. 16.0 ± 2.8%, subanesthesia: 80.3 ± 3.1% vs. 19.7 ± 3.1%, anesthesia: 83.0 ± 3.4% 

vs. 17.0 ± 3.4%, recovery: 79.3 ± 3.0% vs. 20.7 ± 3.0% [mean ± SD]). Furthermore, we 

focused on between-state transitions from the state time series after removing state stays; 

the mean transition matrices are shown in Fig. 4 (B). The transitions between states were 

not evenly distributed and some state transitions occurred more frequently than others (p < 

0.05). Collectively, these results demonstrate that, irrespective of the presence of ketamine or 

not, it is more probable to stay in a certain state than switching to another state, but when a 

switch occurs, brain states transition in a structured (i.e., not random) way.

To assess the effect of ketamine on state transitions, Fig. 4 (C) shows statistically significant 

changes in state persistence and transition probabilities in subanesthesia, anesthesia, and 

recovery as compared to baseline period. In subanesthesia, we found reduced probabilities of 

staying in States 1 and 3 as well as transitioning between State 3 and State 1 or State 2, and 

increased probabilities of staying in States 5, 7 and 10 as well as transitioning between State 

5 and State 7 and from State 7 to State 10 (p < 0.05). In accordance with the state specificity, 

an anesthetic dose of ketamine resulted in an overall decrease in the likelihood of staying 

in States 1–4, as well as transitioning into/out of these states; conversely, it became more 

probable to stay in States 7–10, as well as transition into/out of these states (p < 0.05). At 

recovery, the state transitions did not return to baseline level, in that they remained low for 

the persistence and transition probabilities involving States 1–3, and high for the persistence 

and switch probabilities involving States 5, 7, 9 and 10 (p < 0.05).
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Apart from individual persistence and transition probabilities, we evaluated the effect of 

ketamine on state transition dynamics (Fig. 4 D–F, with the detailed statistical analysis 

results summarized in Table S3). The transition rate, which measures the percentage of time 

transitioning to a different state, increased at subanesthesia (p = 0.006, 3.7 (1.5– 5.9)% for 

mean and 95% CI) and recovery (p < 0.001, 4.6 (2.4–6.8)%) as compared to baseline (Fig. 

4 D). The transition rate was not static during anesthesia, which increased gradually from 

the first to the fourth segment, with the values in the fourth segment significantly higher 

relative to baseline (p = 0.04, 3.1 (0.9–5.2)%). Second, the Markov entropy, which measures 

the unpredictability of the entire state transition matrix (including both state persistence 

and transitions), exhibited similar changes as observed in the entropy associated with state 

occupancy (Fig. 4 E). Relative to baseline, the entropy values increased at subanesthesia 

(p = 0.005, 0.064 (0.027–0.100)) and recovery (p < 0.001, 0.076 (0.039–0.113)), but were 

dynamic during anesthesia, with the values in the second segment significantly lower (p 
= 0.01, −0.057(−0.093—0.021)) and those in the other segments comparable to baseline. 

Third, the entropy associated with only transition probabilities showed a small but not 

statistically significant increase at subanesthesia and recovery (Fig. 4 F). The intra-anesthetic 

changes were also dynamic, with the entropy values significantly lower than those in 

baseline for all four segments (p < 0.05). In addition, as compared to the entropy for the 

entire state transition matrix (Fig. 4 E), this measure exhibited an overall increase, with 

the median entropy value from 0.531 to 0.722 to 0.891–0.940, which is expected because 

the state transitioning is less predictable after excluding state stays. Taken together, these 

results demonstrated that an anesthetic dose of ketamine induced dynamic changes in state 

transitioning, while subanesthetic ketamine was associated with increases in the amount of 

state transitions and the degree of unpredictability.

Additionally, we obtained confirmatory evidence that demonstrated similar dose-dependent 

changes in state occurrence and transition dynamics despite different strategies in the 

selection of smoothing-window length for envelope data and the number of brain states 

in the clustering analysis (Fig. S7), as well as alternative approaches of template anatomy 

and parcellation method (Fig. S8), inverse estimation method (Fig. S9), distance metric (one 

minus cosine similarity) (Fig. S10), and clustering algorithm (k-medoids) (Fig. S11).

4. Discussion

In this study, we investigated the dynamic organization of spontaneous cortical activity 

during wakefulness, subanesthetic ketamine associated with psychedelic effects (Vlisides et 

al., 2018), and ketamine anesthesia. Based on source-localized EEG signals, we identified 

a set of recurring states that represent frequency-specific spatial coactivation patterns. We 

assessed the effect of ketamine on the fractional occupancy and transition probabilities 

of individual brain states and found ketamine anesthesia tends to shift the configuration 

toward states with low spatial variability. Importantly, by quantifying the temporal dynamics 

of the occurrence and transitions of brain states, we showed a dose-dependent effect of 

ketamine on the richness of the dynamic repertoire. Subanesthetic ketamine is associated 

with a richer repertoire, while ketamine anesthesia induces dynamic changes in brain state 

organization, with the repertoire richness evolving from a reduced level to one comparable 

to that during normal wakefulness before recovery of consciousness. Therefore, ketamine 
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induces brain activity configurations that range across the spectrum of conscious experience, 

making it a unique pharmacological tool to study consciousness. Furthermore, this study 

connects prior work on brain state repertoire using fMRI (slower dynamics) with studies of 

neurophysiologic complexity using EEG and MEG (faster dynamics).

The studies of whole-brain functional network organization have been primarily based 

on fMRI, which has provided consistent evidence for a set of resting state networks 

consisting of groups of brain regions that display statistically similar temporal fluctuations. 

An important limitation of fMRI is the slow temporal dynamics of the BOLD signals, with a 

time scale of seconds precluding a direct investigation of the rich temporal dynamics of the 

underlying neuronal activity. A recent whole-brain computational modeling analysis found 

that the most relevant time scale for brain processing is around 200 ms, suggesting that 

electrophysiological data may be more relevant for discovering spatiotemporal dynamics 

across the whole brain (Deco et al., 2019). Recent studies using complementary modalities 

have linked the hemodynamic measures of brain activity to resting-state electrophysiological 

recordings, and have shown spatial similarity in the covariation patterns between fMRI and 

envelopes of band-limited electrophysiological signals, in a frequency-dependent manner 

(Deco et al., 2017; Hipp et al., 2012; Kucyi et al., 2018; Siems et al., 2016; Wens et 

al., 2019). Motivated by this, as well as the frequency-dependent effect of ketamine on 

cortical activity (Li and Mashour, 2019), we extracted the band-limited envelope of source-

localized EEG signals within the canonically defined frequency bands, and characterized 

the dynamic organization of cortical activity during wakefulness and during altered states of 

consciousness induced by ketamine on a time scale of a few hundreds of milliseconds (Fig. 3 

B). Supplementary analysis demonstrated that the observed brain reconfiguration dynamics 

could not be fully revealed at a temporal resolution comparable to that provided by fMRI 

(Fig. S7A).

Through unsupervised clustering analysis of aggregated envelope data from wakefulness 

and different doses of ketamine, we derived a set of dynamic states that represent 

frequency-specific spatial coactivation patterns. During wakefulness, we identified a pair 

of anticorrelated states (States 1 and 2) characterized by activation and deactivation of 

alpha activity in posterior region including posterior cingulate cortex in the DMN, and 

another state (State 6) charactered by delta activation in anterior region including prefrontal 

cortex and temporal cortex in the DMN (Fig. 2 B). This subdivision of the DMN with 

characteristic spectral properties is consistent with the higher-order cognitive networks 

inferred from hidden Markov modeling analysis of spontaneous MEG signals at rest 

(Vidaurre et al., 2018). However, beside the posterior cingulate cortex, States 1 and 2 also 

exhibited activation and deactivation in visual cortex, which is not separable even when we 

increased the number of derived states (Fig. S3A). This may be attributed to differences in 

several methodological aspects including modality, source localization method, brain state 

segmentation technique, number of brain states, and the studied behavioral states. It is 

worth highlighting that Vidaurre et al. (2018) characterized the resting-state MEG (normal 

wakefulness with eyes open) with 12 brain states, while the current study used 10 states 

to investigate brain configurations during normal wakefulness (with eyes closed) as well as 

during subanesthetic and anesthetic doing of ketamine. In addition, the two states associated 

with sensorimotor cortex demonstrated activation in both alpha and beta frequency bands 
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(States 3 and 4), which is in alignment with the spectral properties of the sensorimotor 

network identified in Vidaurre et al. (2018).

Ketamine had different effects on individual brain states (Figs. 2 D, 3 A–C). The posterior 

patterns (States 1 and 2) demonstrated decreases in the occupancy and the probabilities 

of persistence in and transitioning in/out of these states in a dose-dependent manner, 

which is in line with the finding that posterior alpha power decreases sequentially during 

subanesthetic and anesthetic dosing of ketamine (Li and Mashour, 2019; Vlisides et 

al., 2017). The anterior division of DMN (State 6) did not show significant changes 

in the occupancy and persistence probability, while transitions involving State 1 were 

suppressed with ketamine. These results suggest that ketamine disconnects the prefrontal 

cortex and more posterior regions, which might be associated with the disruption 

of connected consciousness while preserving vivid disconnected consciousness during 

ketamine anesthesia. The reductions were also seen in the patterns associated with 

sensorimotor cortex. While the beta activation state (State 3) showed gradual decreases 

from wakefulness to subanesthesia and then to anesthesia, the alpha activation state (State 4) 

only showed decreases during ketamine anesthesia. Prior studies have reported reduced beta 

activity within sensorimotor cortex using measures based on EEG power envelope (Forsyth 

et al., 2020), and the discrepancy between the two states might indicate the highly correlated 

but distinct roles of alpha- and beta-band rhythms in the modulation of the excitability of the 

sensorimotor cortex (Stolk et al., 2019). In contrast, ketamine increased the occupancy of the 

states associated with beta and gamma activation in visual cortex (States 5 and 7), which is 

in line with prior task-related findings that ketamine amplified beta and gamma activity in 

human visual cortex and that has previously been linked to cortical pyramidal cell inhibition 

in animal studies (Shaw et al., 2015). The strongest elevation was seen in the global patterns 

with the prevalence of delta, theta, and gamma activity across the cortex (State 8–10). 

Overall, we found that ketamine anesthesia tends to shift the configuration toward brain 

states with low spatial variability (Fig. S2C). This is consistent with the findings in a recent 

fMRI study, where the dominance of global activation and deactivation states has been 

speculated to be associated with psychoactive effects of ketamine (Huang et al., 2020).

A key finding of the current study is the modulation of the dynamic configurations of brain 

states by subanesthetic and anesthetic doses of ketamine (Figs. 3 E and 4 D–F). During 

subanesthetic ketamine, we observed elevated entropy in terms of state occupancy and state 

transitions and increased transition rate, indicating that (1) the cortical activity is more likely 

to visit all possible brain states, (2) at a certain time, networks are more likely to transition to 

a distinct state than persist in the current state, and (3) the state that the network transitions 

into is more unpredictable. These observations suggest that subanesthetic ketamine is 

associated with a more diverse set of brain configurations or a richer repertoire as compared 

to normal wakefulness, which is consistent with the entropic brain hypothesis that relates 

the richness of conscious experience with the entropy or diversity of a repertoire of brain 

configurations (Carhart-Harris, 2018). We also demonstrated an anesthetic dose of ketamine 

induced dynamic changes as evidenced by entropy that was reduced or comparable to that 

during normal wakefulness, as well as the increased rate of state transitions comparable 

to that during subanesthesia. These results, corroborated by our previous findings on local 

signal diversity (Li and Mashour, 2019), supports the hypothesis that ketamine-induced 
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brain reconfiguration has features of general anesthesia (reduced entropy or diversity), 

normal consciousness (entropy or diversity comparable to normal wakefulness), and altered 

states of consciousness (elevated entropy or diversity), irrespective of the different temporal 

scales.

There were methodological limitations in this study that should be considered. First, 

the accuracy of EEG source localization is affected by using an anatomy template and 

default electrode positions in this study, which may be improved by integrating subject-

specific MRI anatomy, exact electrode positions, and a more precise forward model that 

distinguishes between gray and white matter, etc. Alternatively, despite the discrepancies 

in some brain states, ketamine-induced changes in brain state dynamics are largely 

reproducible in scalp EEG signals when the volume conduction effect is appropriately 

controlled (Figs. S12 and S13). Second, we investigated the brain reconfiguration dynamics 

in terms of both the spectral and spatial properties and derived the brain states that 

represent frequency-specific spatial coactivation patterns. The spatial resolution or the 

separability of cortical regions into different states may be constrained as compared to 

the clustering solutions without differentiation of spectral information. Third, the dynamic 

brain states were inferred from the envelope data of the source-localized EEG signals. 

As the fluctuations of envelope and phase have been demonstrated to provide different 

information about the states of consciousness (Duclos et al., 2021), the brain states 

inferred from phase information or original signal may reveal distinct reconfiguration 

dynamics during ketamine anesthesia (e.g., the brain state time series exhibit Markovianity 

(Table S4) and non-periodicity (Fig. S14), different from the EEG microstate sequences 

derived from original signal (von Wegner et al., 2017)). However, envelope-based measures 

have been demonstrated, compared to phase-based measures, to be more consistent and 

reproducible across source-reconstruction pipelines (see Figs. S8 and S9 that demonstrate 

the robustness of our results across alternative reconstruction pipelines), subjects, and 

experiments (Colclough et al., 2016; Mahjoory et al., 2017). Fourth, we characterized 

the spectral properties of the brain states within the canonically defined frequency bands 

because of the frequency-dependent effect of ketamine on cortical activity. The EEG power 

spectrum consists of oscillatory components and a broadband, aperiodic background, which 

have been shown to associate with distinct resting-state networks (Jacob et al., 2021). We 

cannot exclude the possibility that the aperiodic 1/f-like activity could be a confounding 

factor in this study. Lastly, we employed k-means clustering approach to segment brain 

states, which assumes that all samples can be categorized into a set of mutually exclusive 

clusters and that the transition from one state into another is discrete. The same assumptions 

have been adopted in several brain state segmentation methods including EEG microstate 

analysis that segments EEG scalp maps into a series of microstates (Michel and Koenig, 

2018). A recent study investigated these assumptions in the framework of microstate 

analysis and suggested that EEG microstates may be better conceptualized as spatially and 

temporally continuous, rather than discrete activations of neural populations (Mishra et al., 

2020). It is worth noting that this finding is not in conflict with the existence of inferred 

brain states but rather suggests that incorporating the insight of a continuous trajectory may 

improve the performance of brain state segmentation, which is an area for future studies.
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In summary, we characterized the dynamic organization of spontaneous electrophysiological 

activity with a set of frequency-specific spatial coactivation patterns and demonstrated 

that ketamine anesthesia tends to shift the configuration toward patterns with low spatial 

variability and that the effect of ketamine on the richness of the dynamical repertoire is 

dose-dependent. These results advance understanding of the neurophysiological mechanism 

of ketamine in terms of the spatial, temporal, and spectral structures of the underlying 

whole-brain dynamics.
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Fig. 1. 
Schematic overview of the analysis pipeline. The 128-channel EEG data of 15 subjects 

during baseline, subanesthetic and anesthetic ketamine, as well as recovery period, were 

preprocessed in sensor space and concatenated for the analysis. Cortical sources were 

estimated using the weighted minimum norm estimation (wMNE) method, followed by the 

extraction of regional time series by averaging the cortical activity across voxels within each 

of the 100 regions based on the Yeo atlas. Each region can be matched to one of the seven 

resting-state networks (RSNs): FPN, frontoparietal network, DMN, default mode network, 

DAT, dorsal attention network, LIM, limbic network, VAT, ventral attention network, SOM 

sensorimotor network, and VIS, visual network. Band-limited envelope data were derived 

from Hilbert transformation and aggregated across all studied periods and subjects. K-means 

clustering algorithm was applied to generate a discrete set of brain states and the state time 

series for each studied period and subject. The spectral and spatial properties of the brain 

states, the temporal dynamics of state time series and their alterations with different dosing 

of ketamine were subsequently characterized.
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Fig. 2. 
Brain states represent distinct spectral and spatial coactivation patterns in spontaneous 

cortical activity. (A) Ten brain states, identified by k-means clustering of the band-limited 

envelope data from 15 subjects during four periods (baseline, ketamine subanesthesia, 

ketamine anesthesia, and recovery), were sorted according to their specificity for baseline 

and anesthesia (i.e., the difference in probability of a brain state occurring within baseline 

and anesthesia periods). (B) Spectral and spatial distribution for each brain state, defined as 

the centroid of each cluster normalized by the standard deviation of all samples that were 

assigned to the same cluster. (C) Cosine similarity between each brain state in the dominant 

frequency band with seven canonical resting-state networks defined in the Yeo atlas, with 

positive (red) and negative (blue) values corresponding to high and low (above and below 

average) amplitude activity, respectively.
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Fig. 3. 
Temporal characteristics of the brain states and the effect of ketamine on state occurrence 

dynamics. (A) Fractional occupancy, defined as the fraction of time spent in each brain state. 

(B) The mean dwell time, defined as the average amount of time spent in each state before 

transitioning out of that state. (C) The mean interval time, defined as the average amount of 

time spent between consecutive visits to a certain state. (D) Fractional occupancy in each 

brain state across the studied period of baseline, subanesthesia, anesthesia, and recovery. 

The height of the colored bar and errorbar denote the mean and SD of the values across 

subjects. (E) Changes in the entropy that measures the distribution of fractional occupancy 

of brain states across the studied periods. For each subject, the anesthesia period was equally 

divided into four segments, and the state occupancy and entropy values were calculated for 

each segment individually. In A–C and E, the central line and edges on each box indicate 

the median and the interquartile range (IQR) of the values across the subjects, the whiskers 

extend to the most extreme values, and the outliers are marked as red crosses. In D,E, * 

indicates statistically significant difference relative to baseline (Bonferroni corrected p < 

0.05, linear mixed model analysis).
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Fig. 4. 
The effects of ketamine on state transition dynamics. (A) Group average state transition 

matrix for each of the studied periods, with each off-diagonal element indicating the 

probability of transitioning from any state in each row to another state in the given column, 

while the element on the diagonal line indicates the probability of staying in a certain 

state. The elements with + indicate the state transitions with the probability statistically 

higher than those of random transitioning by permutating the temporal order while keeping 

the occupancy of the states (FDR-adjusted p < 0.05). (B) Group average state transition 

matrix from the retained state time series after removing the state stays. The elements 

with + indicate the state transitions with the probability statistically higher than average 

transition rate (1/90 in this study) (FDR-adjusted p < 0.05, Wilcoxon signed rank test). (C) 
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Changes in state persistence and transition probabilities in subanesthesia, anesthesia, and 

recovery relative to baseline. Each node indicates a brain state, with different colors denoting 

statistically higher (red), lower (blue), or no changes (black) in the probability of staying in 

that state (FDR-adjusted p < 0.05, Wilcoxon signed rank test). The directed arrows in red 

(blue) denoted statistically higher (lower) probability for that transition (FDR-adjusted p < 

0.05, Wilcoxon signed rank test). (D) Changes of transition rate. (E,F) Changes in entropy 

values associated with state persistence and transition probabilities (E) or state transition 

probabilities only (F). In D–F, * indicates statistically significant difference relative to 

baseline (Bonferroni corrected p < 0.05, linear mixed model analysis).
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