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Abstract

Alzheimer’s disease (AD) is the most common form of dementia with hallmarks of β-amyloid 

(Aβ) plaques, tau tangles, and neurodegeneration. Studies have shown that neurodegeneration 

components, especially brain metabolic deficits, are more predictable for AD severity than Aβ 
and tau. However, detailed knowledge of the biochemical composition of AD brain tissue vs. 

normal brain tissue remains unclear. In this study, we performed a metabolomics analysis on the 

brain tissue of 158 community-based older adults in the University of Kentucky AD Research 

Center brain bank to characterize the biochemical profiles of brains with and without AD based 

on white/gray matter type, apolipoprotein E genotype (ε3 vs ε4 variants), and disease stage 

(early vs late) as all these factors influence metabolic processes. We also used machine learning 

to rank the top metabolites separating controls and AD in gray and white matter. Compared 

with control samples, we found that glutamate and creatine metabolism were more critical for 

predicting AD in the gray matter, while glycine, fatty acid, pyrimidine, tricarboxylic acid (TCA) 

cycle, and phosphatidylcholine metabolism were more critical in the white matter. In ε4 carriers, 

metabolites associated with the TCA cycle and oxidative phosphorylation were prominent in 

advanced stages compared to the early stages. In ε3 carriers, metabolites related to oxidative 
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DNA damage, changes in inhibitory neurotransmitters, and disruptions of neuronal membranes 

were prominent in advanced stages compared to the early stages. In early disease, ε4 carriers had 

metabolites related to poor kidney function and altered neuronal sterol metabolism compared to ε3 

carriers, but there were few differences between genotypes in late disease. Our results indicate that 

metabolism plays a pivotal role in differentiating APOE- and stage-dependent changes in AD and 

may facilitate precision lifestyle and dietary interventions to mitigate AD risk in the early stages, 

especially for ε4 carriers.

Introduction

Alzheimer’s disease (AD) is a leading cause of death and morbidity in the United States 

[1]. The hallmarks of AD are β-amyloid (Aβ) and tau. However, studies have indicated 

that metabolic dysfunction may play a more pivotal role in the progression of AD [2]. 

Glucose hypometabolism and mitochondrial dysfunction are well-known features of AD [2]. 

These irregularities are likely influenced by Apolipoprotein E (APOE) genotype, the most 

common genetic risk factor for AD. APOE is a lipid transport carrier with a direct impact on 

metabolism whose function is dependent on the structure of the protein variant (whether it is 

ε2, ε3, or ε4). Those carriers of the APOE ε4 allele have a two- to four-fold increased risk 

for developing AD [3,4].

AD progresses differently in the white matter than the gray matter. While most research 

has been focused on reporting changes in the gray matter of the cortex, many studies are 

now reporting changes in white matter tracts [5]. Metabolism is different in gray versus 

white matter due to the unique composition of each type (more lipid metabolism in the 

white matter [6] and more glucose metabolism in the gray matter [7]). There is also 

evidence to suggest that there is more glycolytic metabolism in the white matter and more 

oxidative metabolism in the gray matter [8]. Understanding the metabolic demands of the 

two different brain environments could give important clues about the progression of AD.

Detailed knowledge of the biochemical composition of AD brain tissue vs normal brain 

tissue will be vital in understanding the metabolic processes underlying AD. To our 

knowledge, only three reports have been published describing a brain metabolomics 

signature of AD. These reports demonstrated that the principal metabolites that classify 

AD in brain tissue include glycerophospholipids, spermidine, sphingolipids, and changes in 

bile acids [9–11]. These reports analyzed between 15 and 111 samples per group to develop 

a brain metabolomics signature based on targeted lipids or bile acids assays. The analyses 

were based on the gray-enriched matter only. While these reports provide an introductory 

study of brain metabolomics, a complete understanding is needed that factors a larger patient 

population, an untargeted assay, and samples enriched for both gray and white matter. 

Furthermore, a better understanding of how AD progresses based on APOE genotype is 

needed to develop therapeutics for AD based on precision medicine eventually.

Here we performed a metabolomics analysis on the brain tissue of a large cohort of 

community-based participants in the University of Kentucky Alzheimer’s Disease Research 

Center (UK-ADRC) brain bank. We used machine learning to identify the differences 

between the biochemical profiles of white-enriched matter and gray-enriched matter and 
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identified the metabolites which were the top predictors in differentiating AD from normal 

brain tissue. We proceeded to characterize the biochemical profiles of brains with and 

without AD based on APOE genotype and disease stage.

Methods

Participant characteristics

Details of UK-ADRC research volunteers’ recruitment, inclusion/exclusion criteria, and 

clinical and pathological assessments have been described previously [12]. Briefly, 

community-based older adult volunteers agreed to be followed annually for cognitive, 

physical, and neurological examination and to donate their brains at the time of death. 

The UK Institutional Review Board approved protocols, and all participants provided 

written informed consent. Included subjects were ≥ 70 years of age at death. Research 

subjects with relatively rare dementia syndromes, e.g., prions, trinucleotide repeat diseases, 

or Frontotemporal lobar degeneration (FTLD), or any brain tumor were excluded.

Additionally, since our research questions focused on the association between APOE and 

tau pathology, cases also had to have APOE genotyping available and were dichotomized 

into APOE ε4 carriers and APOE ε3 homozygotes. Demographic information included our 

participants’ age at death (years), sex, race (nonwhite or white), and years of education. 

We describe diagnosed cognitive status (normal cognition, impaired not mild cognitive 

impairment [MCI], MCI, dementia), and primary clinical diagnosis (normal cognition, AD, 

LBD/Parkinson disease; vascular disease, other) at the participant’s last visit before death. 

Using Braak NFT staging [13], we defined those as the early stage with a Braak NFT score 

0-III and those as the late stage with a Braak score IV-VI. Participant characteristics are 

listed in Table 1.

Figure 1 shows the schematic representation of the study design. Human brain tissue 

samples were collected and snap-frozen in liquid nitrogen at brain autopsy. For the present 

study, samples were obtained from Brodmann’s area 9 (the dorsolateral prefrontal cortex) 

of the left hemisphere of 158 community-based older adult volunteers. Brain tissue samples 

were further dissected into the gray-enriched matter and white-enriched matter samples, 

yielding 316 brain samples. The education level was the same across stage and genotype. 

Age differed between only late ε3 and late ε4 groups (87.97 ± 6.96 vs. 82.76 ± 8.45). We 

profiled the brain tissue metabolomics using Metabolon’s (Durham, NC) global screening 

platform. We separated our analyses by Braak NFT stages (early 0-III vs. late IV-VI) and 

APOE genotype (ε3 and ε4) (Table 2).

Metabolon platform

We sent samples to Metabolon (Durham, NC) for a global metabolic profile for each 

sample. All samples were maintained at −80°C until processed. Samples were prepared 

using the automated MicroLab STAR® system from Hamilton Company. Proteins were 

precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 

2000) followed by centrifugation. The resulting extract was divided into five fractions: two 

for analysis by two separate reverse phases (RP)/UPLC-MS/MS methods with positive ion 
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mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion 

mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one 

sample was reserved for backup. Samples were placed briefly on a TurboVap® (Zymark) to 

remove the organic solvent.

Ultrahigh performance liquid chromatography-tandem mass spectroscopy 
(UPLC-MS/MS): All methods utilized a Waters ACQUITY ultra-performance liquid 

chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 

mass analyzer operated at 35,000 mass resolution. The sample extract was dried then 

reconstituted in solvents compatible with each of the four methods. Each reconstitution 

solvent contained a series of standards at fixed concentrations to ensure injection and 

chromatographic consistency. One aliquot was analyzed using acidic positive ion conditions, 

chromatographically optimized for more hydrophilic compounds. In this method, the extract 

was gradient eluted from a C18 column (Waters UPLC BEH C18–2.1×100 mm, 1.7 μm) 

using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% 

formic acid (FA). Another aliquot was also analyzed using acidic positive ion conditions; 

however, it was chromatographically optimized for more hydrophobic compounds. In 

this method, the extract was gradient eluted from the aforementioned C18 column using 

methanol, acetonitrile, water, 0.05% PFPA, and 0.01% FA and was operated at an overall 

higher organic content. Another aliquot was analyzed using basic negative ion optimized 

conditions using a separate dedicated C18 column. However, the essential extracts were 

gradient eluted from the column using methanol and water with 6.5mM Ammonium 

Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization following 

elution from a HILIC column (Waters UPLC BEH Amide 2.1×150 mm, 1.7 μm) using a 

gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. 

The MS analysis alternated between MS and data-dependent MSn scans using dynamic 

exclusion. The scan range varied slightly between methods but covered 70–1000 m/z.

Bioinformatics: The informatics system consisted of four major components, the 

Laboratory Information Management System (LIMS), the data extraction and peak-

identification software, data processing tools for QC and compound identification, and a 

collection of information interpretation and visualization tools for use by data analysts. 

The hardware and software foundations for these informatics components were the LAN 

backbone, and a database server running Oracle 10.2.0.1 Enterprise Edition.

LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory 

automation through a secure, easy-to-use, and highly specialized system. The scope of 

the Metabolon LIMS system encompasses sample accessioning, sample preparation and 

instrumental analysis, and reporting an advanced data analysis. All the subsequent software 

systems are grounded in the LIMS data structures. It has been modified to leverage and 

interface with the in-house information extraction and data visualization systems, as well as 

third-party instrumentation and data analysis software.
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Data extraction and compound identification: Raw data was extracted, peak-

identified, and QC processed using Metabolon’s hardware and software. These systems are 

built on a web-service platform utilizing Microsoft’s .NET technologies, which run on high-

performance application servers and fiber-channel storage arrays in clusters to provide active 

failover and load-balancing. Compounds were identified by comparison to library entries 

of purified standards or recurrent unknown entities. Metabolon maintains a library based 

on authenticated standards that contain the retention time/index (RI), mass to charge ratio 

(m/z), and chromatographic data (including MS/MS spectral data) on all molecules present 

in the library. Furthermore, biochemical identifications are based on three criteria: retention 

index within a narrow RI window of the proposed identification, accurate mass match to 

the library ± 10 ppm, and the MS/MS forward and reverse scores between the experimental 

data and authentic standards. The MS/MS scores are based on a comparison of the ions 

present in the experimental spectrum to the ions present in the library spectrum. While 

there may be similarities between these molecules based on one of these factors, all three 

data points can be utilized to distinguish and differentiate biochemicals. More than 3300 

commercially available purified standard compounds have been acquired and registered into 

LIMS for analysis on all platforms to determine their analytical characteristics. Additional 

mass spectral entries have been created for structurally unnamed biochemicals, identified by 

virtue of their recurrent nature (both chromatographic and mass spectral). These compounds 

can be identified by the future acquisition of a matching purified standard or by classical 

structural analysis.

Metabolite quantification and data normalization: Peaks were quantified using 

area-under-the-curve. For studies spanning multiple days, a data normalization step was 

performed to correct variation resulting from instrument inter-day tuning differences. 

Essentially, each compound was corrected in run-day blocks by registering the medians 

to equal one (1.00) and normalizing each data point proportionately (termed the “block 

correction”; Figure 2). For studies that did not require more than one day of analysis, no 

normalization is necessary, other than for data visualization purposes. In certain instances, 

biochemical data may have been normalized to an additional factor (e.g., cell counts, total 

protein as determined by Bradford assay, osmolality, etc.) to account for differences in 

metabolite levels due to differences in the amount of material present in each sample.

Statistical and analytical methods

Statistical calculations: For many studies, two types of statistical analysis are usually 

performed: (1) significance tests and (2) classification analysis. Standard statistical analyses 

are performed in ArrayStudio on log transformed data. For those analyses not standard 

in ArrayStudio, the programs R (http://cran.r-project.org/) or JMP are used. Below are 

examples of frequently employed significance tests and classification methods followed by a 

discussion of p- and q-value significance thresholds.

Machine learning classification: Random Forest was used as a supervised classification 

technique to identify the relative importance of the different biochemicals in predicting 

gray-enriched matter vs. white-enriched matter, Alzheimer’s disease vs. control, APOE ε4 

vs. APOE ε3 genotypes in early stage and late stage, early stage vs. late stage in APOE 
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ε4 and APOE ε3 genotypes, and Vascular dementia vs. control based on an ensemble of 

decision trees. For a given decision tree, a random subset of the data with identifying true 

class information was selected to build the tree, and the remaining data, the “out-of-bag” 

(OOB) variables, were passed down the tree to obtain a class prediction for each sample. 

This process was repeated thousands of times to produce the forest. The final classification 

of each sample was determined by computing the class prediction frequency (“votes”) for 

the OOB variables over the whole forest. This method is unbiased since the prediction 

for each sample is based on trees built from a subset of samples that do not include that 

sample. When the full forest is grown, the class predictions are compared to the true classes, 

generating the “OOB error rate” to measure prediction accuracy. Thus, the prediction 

accuracy is an unbiased estimate of how well one can predict sample class in a new data set. 

The random forest has several advantages – it makes no parametric assumptions, variable 

selection is not needed, does not overfit, is invariant to transformation, and is relatively easy 

to implement with R.

To determine which variables (biochemicals) make the largest contribution to the 

classification, a “variable importance” measure is computed. We use the “Mean Decrease 

Accuracy” (MDA) as this metric. The MDA is determined by randomly permuting a 

variable, running the observed values through the trees, and then reassessing the prediction 

accuracy. If a variable is not important, then this procedure will have little change in the 

class prediction accuracy (permuting random noise will give random noise). By contrast, if 

a variable is important to the classification, the prediction accuracy will drop after such a 

permutation, which we record as the MDA. Thus, the random forest analysis provides an 

“importance” rank ordering of biochemicals; we typically output the top 30 biochemicals in 

the list as potentially worthy of further investigation.

Results

Metabolomics differences in gray and white-enriched matters

In total, 540 of the 776 detected metabolites were either increased or decreased in the 

white-enriched matter vs gray-enriched matter. The white-enriched matter has more lipid 

metabolites associated with myelin than gray-enriched matter. A detailed list is found in 

Supplementary Table 1.

Using a random forest analysis, we found that the model could predict whether a sample 

was the gray-enriched matter or white-enriched matter based on the metabolomics profile 

with 91.77% accuracy (Table 3A). Heat map of statistically significant biochemicals profiled 

when comparing groups are labeled as follows: Red and green shaded cells indicate p ≤ 0.05 

(red specifies that the mean values are significantly higher for that comparison; green values 

significantly lower). The top 10 predictors were all lipids, which play a significant role in the 

brain as structural components of membranes and signaling molecules. Notably, there was 

an increase in prominent hexosylceramides, some phosphatidylcholines, lysoplasmalogen, 

some plasmalogens, and phosphatidylserine, whereas there was a decrease in other 

phosphatidylcholines, phosphatidylethanolamine, and some plasmalogen metabolites. Most 

of the observed changes were correlated with the known differences in white- and gray-

enriched matter lipid populations due to the diverse functions of neuron cell biology. All 
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analyses were performed in both gray-enriched matter and white-enriched matter to account 

for these differences.

Machine learning to classify AD from normal with Gray and white-enriched matter 
metabolomics

Using random forest analysis, we found that the model predicted whether a sample came 

from AD brain tissue or normal brain tissue based on the metabolomics profile with 

80.0% accuracy in the gray-enriched matter (Table 3B) and an 81.54% accuracy in the 

white-enriched matter (Table 3C). The top 9 predictors in gray-enriched matter mainly 

consisted of increases in phospholipid and creatine metabolism, decreases in amino acid 

metabolism, and the monohydroxy fatty acid 13-HODE + 9-HODE. The top 12 predictors 

in white-enriched matter mainly consisted of increases in phospholipid metabolism and 

decreases in amino acid metabolism, phosphatidylcholine, and some monohydroxy fatty 

acids. Glycerophosphocholine is formed in the breakdown of phosphatidylcholine and is 

increased in both the gray-enriched matter and white-enriched matter. N-acetylasparagine 

is a breakdown product of asparagine and is decreased in both the gray-enriched matter 

and white-enriched matter. The human body produces dimethylglycine when metabolizing 

choline into glycine, and it is decreased in the gray-enriched matter. N-acetyl-aspartyl-

glutamate (NAAG) is a neuropeptide that is an agonist at mGluR3 receptors and an 

antagonist at NMDA receptors and is decreased in the gray-enriched matter. Pipecolic 

acid originates mainly from the catabolism of dietary lysine by intestinal bacteria rather 

than direct food intake, and it is decreased in both the gray-enriched matter and the white-

enriched matter. Ureidopropionic acid is a urea compound and is an intermediate in the 

metabolism of uracil; it is decreased in the white-enriched matter.

Taken together, our findings indicate that glutamate and creatine metabolism is more 

important for predicting disease in the gray matter, while glycine, fatty acid, pyrimidine, 

tricarboxylic acid (TCA) cycle, and phosphatidylcholine metabolism are more important for 

predicting disease in the white matter.

Gray and white-enriched matter metabolomics between early- and late-stage in APOE ε4

We next investigated the differences between late-stage and early-stage disease in the ε4 

genotype (Table 4). We found that, compared with the early stage, late-stage APOE ε4 

carriers had significantly reduced metabolite levels in the gray matter. Notable changes 

were found in pathways associated with mitochondrial function, glucose metabolism, and 

neurotransmitters, including the TCA cycle, oxidative phosphorylation, pentose metabolism, 

and acetyl-CoA and glutamate metabolism. We observed lower levels of serine and 

aspartate, whose declines correlate with the amount of Aβ plaques and neuronal pathology 

[14], as well as tyrosine and leucine, which are known to reduce atherosclerosis by 

improving the lipid profile and reducing systemic inflammation [15]. Further, metabolites 

related to mitigating oxidative stress, such as cysteine, arginine, gamma-glutamyl amino 

acid, pentose, were also lower in gray matter in the late stage. We also saw lipid decreases 

in seven lysophospholipid (LPL) species. LPL receptor ligands are known to bind to and 

activate their cognate receptors located in the cell membrane with a wide range of effects on 

the cell; these include the primary effects of inhibition of adenylyl cyclase and the release 

Hammond et al. Page 7

J Cell Immunol. Author manuscript; available in PMC 2022 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of calcium from the endoplasmic reticulum, as well as the secondary effects of preventing 

apoptosis and increasing cell proliferation [16].

In white matter, reductions were found in biochemicals related to glutamate, tyrosine, 

leucine, and methionine/cysteine metabolism. Interestingly, diacylglycerol was increased 

in the white matter in later disease similar to levels found in the ε3 genotype. Since 

diacylglycerol has been shown to reduce atherosclerosis in an APOE-deficient mouse model 

[17], the increase in diacylglycerol in the ε4 genotype could be a compensatory mechanism 

to combat rising levels of atherosclerosis.

The results show that with the disease progression, APOE ε4 carriers had alterations 

in metabolites associated with increased Aβ retention, reducing atherosclerosis, and the 

impaired TCA cycle and oxidative phosphorylation.

Gray and white-enriched matter metabolomics between early- and late-stage in APOE ε3

We further investigated the differences between late-stage and early-stage in APOE ε3 

genotype (Table 5). Individuals with ε3 variants had similar changes in the gray and white 

matters.

However, unlike ε4, which involves mitochondrial and glucose metabolism, notable 

key reductions in ε3 carriers were found in glycolysis, glutamate, tryptophan, and 

tyrosine metabolism. Glutamate is an excitatory neurotransmitter, which plays a critical 

role in learning and memory [18] and N-acetyl-aspartyl-glutamate (NAAG) has been 

shown to have precognitive effects by binding to metabotropic glutamate receptors [19]. 

Tryptophan metabolism is known to be altered in patients with AD [20], and tryptophan-

derived metabolites can inhibit Aβ fibril formation in neurons and neuroblastoma cells 

[21]. Tryptophan is an essential amino acid and is the precursor of serotonin. Indole-3-

propionic acid, a tryptophan-derived metabolite, can inhibit Aβ fibril formation in neurons 

and neuroblastoma cells [21]. Metabolites that play a role in tyrosine metabolism, 

including phenol sulfate, phenol glucuronide, and p-cresol glucuronide, are associated with 

inflammation [22].

We observed lower levels of dimethylglycine, which is linked to increased oxidative DNA 

damage associated with Aβ deposition [23], and homocarnosine, which is part of the 

histidine pathway and generally declines with age [24]. Neuronal histamine, phenylalanine, 

and tryptophan have a role in memory, reinforcement, and emotions [25–27]. We also found 

lower levels of fatty acids, which are often found as oxidized linoleic acid metabolites 

(OXLAMs) in the serum of AD patients [28] and phosphatidylcholine, which provides a 

reservoir of choline that can be used for acetylcholine synthesis. Notable key increases 

were found in myo-inositol metabolism, urea cycle, lysine, nucleotide sugar, inositol, 

and phospholipid. Myo-inositol, a neuroinflammatory marker, is negatively correlated 

with visuospatial working memory [29]. Lysine can act as a neurotransmitter modulating 

GABAergic transmission. The phospholipid is known to be raised in AD by disrupting 

neural cell membranes and causing cell death [30].
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Taken together, our findings indicate that increases in metabolites linked to oxidative DNA 

damage, changes in inhibitory neurotransmitters, disruptions of neuronal membranes, and 

decreases in metabolites related to acetylcholine synthesis drive the differences between 

early- and late-stage of AD among APOE ε3 carriers.

Gray and white-enriched matter metabolomics between APOE ε3 and APOE ε4 at early- 
and late-stage

We next compared the differences between APOE ε4 and 3 carriers at early-stage disease 

(Table 6). Notable changes were found in pathways associated with leucine, glycine, 

arginine, gamma-glutamyl amino acid, pentose, and secondary bile acid metabolism 

in APOE ε4 carriers compared to non-carriers. N,N,N-trimethyl-alanylproline betaine 

(TMAP), part of arginine metabolism, was lower in ε4 and is associated with poor kidney 

function [31]. We also found decreases in glutathione, commonly decreased with age [32], 

eicosanoid, and sterol - carriers of the APOE ε3/ε4 allele are known to exhibit altered 

neuronal sterol metabolism.

Unique differences in gray-enriched matter include an amino acid increase of histamine 

and 1-carboxyethylisoleucine (part of isoleucine metabolism), a peptide increase of gamma-

glutamylisoleucine, a lipid increase of arachidonate (a long chain polyunsaturated fatty acid) 

and docosahexaenoyl ethanolamide (an endocannabinoid implicated in the pathology of 

neurodegenerative diseases).

Other differences were found only in the white-enriched matter. Unique differences include 

amino acid decreases in formiminoglutamate (part of histidine metabolism) and increases 

of 2-aminoadipate (part of lysine metabolism), lipid decreases in 1,2-dipalmitoyl-GPE (a 

phosphatidylethanolamine) and palmitoyl-docosahexaenoylglycerol (a diacylglycerol) and 

increases in 1,2-dioleoyl-GPG (a phosphatidylglycerol), 1-(1-enyl-oleoyl)-2-oleoyl-GPE (a 

lysoplasmalogen).

Taken together, our findings indicate that increased metabolites in APOE ε4 carriers related 

to poor kidney function and altered neuronal sterol metabolism drive the differences between 

the genotypes at an early stage.

Four detected metabolites increased between APOE ε4 and ε3 carriers at late stages of 

AD. At an alpha=0.01, a random chance would be expected to generate ~8 significant 

observations. Since our results do not surpass this threshold, our analyses did not identify 

metabolic differences between ε3 and ε4 carriers at late stages of AD.

Discussion

We analyzed frontal cortical tissue from subjects across a spectrum of AD severity, with 

different genotypes (APOE 3/3 or APOE ε3/4) (summary of results is in Figure 2). We 

found distinct changes in the white versus gray-enriched matter of subjects as demonstrated 

through peptide alterations and lipid changes that have been associated with brain matter. 

There were increases in phospholipid metabolism and decreases in amino acid metabolism 

in AD brains compared with normal brains. Taken together, our findings indicated that 
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glutamate and creatine metabolism were more important for predicting disease in the gray 

matter, and glycine, fatty acid, pyrimidine, TCA cycle, and phosphatidylcholine metabolism 

are more important for predicting disease in the white matter. As disease progressed in the 

APOE ε4 genotype, brains were characterized by decreases in metabolites responsible for 

reducing atherosclerosis and the TCA cycle and oxidative phosphorylation. With disease 

progression in the APOE ε3 genotype, brains were characterized by increases in metabolites 

related to oxidative DNA damage, changes in inhibitory neurotransmitters, disruptions of 

neuronal membranes, and decreases in metabolites related to acetylcholine synthesis. In 

early disease, the APOE 4 genotype was associated with increased metabolites related to 

poor kidney function and altered neuronal sterol metabolism, but there were few metabolic 

differences between APOE ε3 and ε4 genotypes in more severe AD.

The major differences between the metabolite composition of white-enriched matter and 

gray-enriched matter were characterized mainly by the metabolite components inherent to 

the myelin sheath present in the white-enriched matter. The myelin sheath is primarily 

comprised of lipids that insulate axons to speed action potentials, and it is not surprising that 

our data show that the top predictors for distinguishing gray-enriched matter from white-

enriched matter were all lipids. Alpha-hydroxylated cerebrosides are the most abundant 

lipids in the myelin sheath [33], and the myelin sheath has lower phosphatidylcholine to 

phosphatidylethanolamine ratio compared with grey matter due to its unique composition 

of myelin, which is consistent with our data. It is crucial to separate white-enriched matter 

from gray-enriched matter in brain metabolomics analyses so that differences found between 

samples are not confounded by the inherent differences between tissue types (and sample-to-

sample differences in ratios of white and gray matter).

Previous studies investigating metabolomics changes in AD reported changes in 

phosphatidylcholine and acylcarnitine metabolism [34], taurine transport, bile acid synthesis, 

and cholesterol metabolism [10,11,35], lipids, sphingolipids (notably GM3 gangliosides) and 

lipid classes previously associated with cardiometabolic disease (phosphatidylethanolamine 

and triglycerides) [36,37]. Results using Metabolon’s untargeted assay showed changes in 

not only phospholipid, phosphatidylcholine, and fatty acid metabolism, but also the TCA 

cycle, pyrimidine, and several amino acids including aspartate, lysine, glycine, glutamate, 

creatine, histidine. In addition to the lipid changes found by others, these critical changes in 

amino acid, energy, and nucleotide could give important clues about the underlying disease 

mechanism of AD.

Separating our analysis by Braak NFT stages and APOE genotype allowed us to better 

understand the nuances of metabolite changes unique to the disease stage and genotype. 

As the disease progresses in the APOE 4 carriers, metabolites associated with reducing 

atherosclerosis and the TCA cycle and oxidative phosphorylation appeared to correlate with 

(and perhaps to drive) the differences between early- and late-stage AD. Previous studies 

have reported that age-related vascular changes accompany or even precede the development 

of AD pathology [38], and a plant-based diet can reduce atherosclerosis [39]. Also, the 

impaired energy production is consistent with the findings from preclinical trials that APOE 
ε4 carriers experienced weakened glucose metabolism in the brain [40,41]. It suggests that 
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intervention targeting impaired glucose metabolism may be critical for AD treatment, and 

early mediation in APOE ε4 carriers can be an essential path to avert the risk of AD.

Further, it has been observed that the TCA cycle can regulate the pathogenesis of 

neuroinflammation and neurodegeneration [42]. Interestingly, TCA cycle metabolite 

decreases are statistically more significant in the gray matter than the white matter in 

the ε4 genotype, but the machine learning analysis revealed TCA cycle metabolites to be 

more critical in predicting AD in the white matter. While TCA cycle decreases are more 

commonly seen in late-stage gray matter E4 in general, when TCA cycle decreases are seen 

in white matter, they are more likely to be predictive of AD, whereas other metabolites in the 

gray matter are more predictive of AD.

As AD progresses in the APOE ε3 genotype, metabolites linked to oxidative DNA 

damage, changes in inhibitory neurotransmitters, disruptions of neuronal membranes, and 

decreases in metabolites related to acetylcholine synthesis were correlated best with the 

differences between early- and late-stage AD. Oxidative stress may participate in AD 

development by promoting Aβ deposition, tau hyperphosphorylation, and the subsequent 

loss of synapses and neurons [43]. There is evidence that the Mediterranean diet is protective 

against oxidative DNA damage [44]. There is growing evidence supporting GABAergic 

remodeling in the AD brain, potentially beginning in early stages of disease pathogenesis 

[45]. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were 

found in the early stage of AD [46]. Cholinergic neurons located in the basal forebrain, 

including the neurons comprising the nucleus basalis of Meynert, are severely lost in AD 

[47].

Separating by APOE genotype was an essential part of our analysis as the APOE ε4 

genotype is the most common genetic risk factor for developing AD. At the early stage 

of disease, APOE ε4 carriers differed from APOE ε3/3 in metabolites related to poor 

kidney function and altered neuronal sterol metabolism. Older patients on hemodialysis 

are at substantial risk of diagnosis with dementia and Alzheimer’s disease [48]. APOE 
ε4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid 

secretion, decreased lipid-binding capacity, and increased intracellular degradation [49]. 

This is likely due to the changed domain interaction with cholesterol receptors and 

less stable conformation of the APOE ε4 genotype that changes its involvement in 

lipid metabolism and neurobiology, thereby impacting neuronal repair, remodeling, and 

degeneration [50]. There were far fewer metabolic differences between APOE ε3 and ε4 

genotypes in later disease stages. Genotype differences may be pronounced during early 

disease, but the disease course causes both genotypes to exhibit a similar biochemical profile 

as the disease progresses and neurons are lost. These genotype differences should be further 

explored to determine whether precision interventions, like the consumption of inulin or the 

administration of rapamycin, could be implemented for ε4 carriers [51,52].

Taken together, our current findings and those of previous reports suggest that maintaining 

normal brain glucose metabolism is critical for cognitive resilience; therefore, therapeutic 

strategies for preventing or treating AD may need to shift focus from Aβ toward the 

preservation and restoration of normal brain metabolism. Recently, aducanumab, an Aβ 
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directed antibody, was granted accelerated approval to verify its clinical benefit for use 

in early AD after decades of failed drugs targeted at Aβ; it is possible that metabolic 

interventions could be used across the disease course to provide clinical benefit to patients. 

Interventions with a metabolic therapeutic strategy have been reported that use intranasal 

insulin administration and a ketogenic diet. Regarding the potential benefits of a ketogenic 

diet, ketone bodies can function as an alternative fuel substrate in the brain when glucose 

is unavailable or when glucose metabolism is impaired due to insulin resistance [53–56]. 

One study showed that a ketogenic diet could modulate the deposition of Aβ and Tau in 

the CSF of MCI patients in conjunction with its modulation of the gut microbiome and the 

production of short-chain fatty acids [57]. This finding is consistent with an animal study 

showing that a ketogenic diet enhanced Aβ clearance across the blood-brain barrier and 

improved the composition of the gut microbiome [58].

The gut microbiome produces secondary bile acids. As mentioned above, alterations 

of bile acid production have been observed in AD patients due to gut microbiome 

imbalances, suggesting another mechanism by which AD patients may benefit from 

therapeutic strategies aiming to restore normal brain metabolism like the ketogenic diet 

[59,60]. Another animal study showed that by modulating the gut microbiome with a 

prebiotic diet, mice with the human APOE ε4 gene had enhanced systemic metabolism and 

reduced neuroinflammatory gene expression, another hallmark of AD pathology [51,61]. 

Collectively, modulating metabolic function and the gut microbiome may profoundly impact 

reducing the risk of AD.

This study is limited by the characterization of samples from only one area of the 

brain. Furthermore, our population consisted of participants with dementias from mixed 

pathologies. Future studies that evaluate the serum of subjects may be helpful to assess 

potential systemic metabolomic changes in subjects and if the differences observed here 

are limited to brain tissue. Similarly, analyses of cell-sorted tissue could give additional 

resolution to the results. Furthermore, minimizing drug usage in subjects (about 9% of 

biochemicals in the named dataset were pharmaceuticals that included AD therapies such 

as donepezil and memantine and the anti-diabetic medication metformin) may provide 

additional clarity to the above observations.

In conclusion, our study shows that metabolite differences are associated with disease stage, 

genotype, and cognitive decline in AD. Further investigation in AD metabolomics may 

elucidate new insights into disease mechanisms and therapeutics with precision medicine 

approaches.
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Figure 1: Schematic representation of study design.
We took brain tissue from Brodmann Area 9 of 158 participants in the University of 

Kentucky Alzheimer’s Disease Center brain bank. We divided the samples into gray matter 

and white matter and performed untargeted metabolomics. We compared 1) Gray matter vs 

White matter, 2) AD vs control, 3) APOE 4 Early vs Late, 4) APOE 3 Early vs Late, and 5) 

Early and Late APOE 3 vs 4.
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Figure 2: Schematic representation of overall results.
Overall results from analysis of matter type, disease diagnosis, Braak stage, and APOE 

genotype.
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Table 1:

Participant Characteristics.

Number of Participants 158

Age 85.6 (84.4, 86.9)

APOE (% 4 carriers) 36.7%

Braak Stage 0–3 51.3%

Braak Stage 4–6 48.7%

Gender (% Female) 58.9%

Race (% White) 94.9%

Race (% Black) 5.1%

MMSE 22.2 (20.8, 23.6)

Postmortem Interval 3.7 (3.36, 4.02)

Consensus Diagnosis (% AD) 10.8%

Consensus Diagnosis (% Mixed AD) 42.7%

Consensus Diagnosis (% Other Dementia) 17.2%

Consensus Diagnosis (% Normal) 29.3%

TDP-43 (% Positive) 27.9%
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