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Abstract

Background The past few years have seen a rapid emergence of artificial intelligence (Al)-enabled technology in the field
of sleep medicine. Al refers to the capability of computer systems to perform tasks conventionally considered to require
human intelligence, such as speech recognition, decision-making, and visual recognition of patterns and objects. The practice
of sleep tracking and measuring physiological signals in sleep is widely practiced. Therefore, sleep monitoring in both the
laboratory and ambulatory environments results in the accrual of massive amounts of data that uniquely positions the field
of sleep medicine to gain from Al

Method The purpose of this article is to provide a concise overview of relevant terminology, definitions, and use cases of
Al in sleep medicine. This was supplemented by a thorough review of relevant published literature.

Results Artificial intelligence has several applications in sleep medicine including sleep and respiratory event scoring in the
sleep laboratory, diagnosing and managing sleep disorders, and population health. While still in its nascent stage, there are
several challenges which preclude AI’s generalizability and wide-reaching clinical applications. Overcoming these challenges
will help integrate Al seamlessly within sleep medicine and augment clinical practice.

Conclusion Artificial intelligence is a powerful tool in healthcare that may improve patient care, enhance diagnostic abili-
ties, and augment the management of sleep disorders. However, there is a need to regulate and standardize existing machine
learning algorithms prior to its inclusion in the sleep clinic.

Keywords Polysomnogram - Artificial intelligence - Machine learning - Disorders of excessive somnolence - Sleep apnea

Introduction

In recent times, artificial intelligence (AI) has entered our
everyday lives, for example through hyper-personalized
product suggestions based on our data and virtual assis-
tants (i.e., “Alexa” and “Siri”’) in our households. Tracing
the history of Al in medicine (Fig. 1) demonstrates the
rapid advancements over the past decade, due to a number
of changes, which include the accrual of massive amounts
of health data, greater computing power and storage
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capacity, and highly sophisticated algorithms powering Al
applications.

Al refers to the capability of computer systems to per-
form tasks conventionally considered to require human
intelligence, such as speech recognition, decision-making,
and visual recognition of patterns and objects. While Al
has gained popularity in several fields of medicine including
radiology and oncology, the field of sleep medicine stands
to greatly benefit from Al [1, 2]. Sleep is a physiological
state marked by dynamic changes in a variety of organ sys-
tems, which is reflected by our use of the polysomnogram,
which records various physiological signals across the night.
Additionally, sleep tracking over long durations is ubiquitous
given the availability and popularity of fitness trackers and
smart watches. Therefore, sleep monitoring in both the labo-
ratory and ambulatory environments results in the accrual
of massive amounts of data. Large and complex datasets are
amenable to analysis with Al algorithms, which uniquely
positions the field of sleep medicine to gain from Al. Sleep
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Fig. 1 Artificial Intelligence timeline

medicine is expected to benefit from artificially intelligent
computer programs to effectively score polysomnograms.
However, use cases transcend automation and include
improved diagnosis of sleep disorders, identification of the
mechanisms underlying sleep disorders, treatment selection,
and prediction of sleep disorder sequela. The greater insight
provided by AI will have applications at both the level of
individual patients and in population health.

The emergence of Al is well timed, as we start to realize
the constraints of traditional medicine in bridging some of
the knowledge gaps which challenge our ability to provide
optimal patient care. The heterogeneity of endotypes, inter-
individual variability in treatment response, and the over-
reliance on the identification and quantification of specific
“events” occurring during sleep studies have been widely
discussed [3]. Researchers have successfully leveraged “big
data” to offer new insights into sleep physiology, improve
accuracy of diagnosis of sleep disorders, predict response
and adherence to treatment, define endotypes, and use sleep
parameters as predictors of future physical and mental health
[4—13]. This holds promise for the future of sleep medicine,
where Al will usher in an era of precision medicine with the
advent of “Sleep-Omics” [14]. Integrating sleep physiologi-
cal data with genetic/imaging markers will provide insight
far beyond our clinic walls.

As Al rapidly evolves, it is important to demystify Al for
the sleep clinician. This article reviews the basic principles
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that underlie machine learning algorithms and how to assess
the performance of such algorithms in sleep study scoring.
Additionally, we will review other applications of Al in
sleep medicine and research and identify the challenges of
implementing Al tools in clinical practice.

What is machine learning?

Broadly speaking, machine learning (ML) uses computer
algorithms that improve with experience and prior data,
without intervention from direct programming commands.
Most ML tasks can be divided into supervised learning
(learning to map an input x to an output y, based on a set
of input—output examples [e.g., predicting human scored
sleep stages from polysomnogram signals]), unsupervised
learning (finding patterns or clusters in a set of inputs,
without labeled output variables provided), or reinforce-
ment learning (algorithms learn based on interacting with
the environment and receiving penalties and rewards)
(Fig. 2). Recent advances utilize combinations of these
strategies to develop new algorithms that may not clearly
fit in one of these categories. Additionally, due to the intri-
cacies of the mathematical or statistical model used, vari-
ous control systems have been designed. Control systems
regulate the behavior of other systems using control loops.
The efficiency and precision of control systems can be
improved with the help of machine learning algorithms
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Fig.2 Types of machine learn-
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utilizing innovative statistical and mathematical mod-
els [15]. For instance, the random forest techniques uti-
lizes the principle of simple regression [16]. The details
of control systems are beyond the scope of this review,
but awareness of this technique is beneficial as the reader
appraises the available literature regarding machine learn-
ing and sleep.

Multiple learning models are utilized for training the
machine [17]. They are categorized in the following four

types:

e Supervised learning is used when there is a training
dataset that has a well-defined relationship between each
input and expected output. Weights are adjusted in this
training process to reduce the error of the predicted out-
put from the expected output.

e Unsupervised training involves the use of unlabeled
inputs, given to the machine for training without known
outputs. During training process, the machine is expected
to identify patterns or grouping of the data.

e Semi-supervised learning is a combination of the super-
vised learning and the unsupervised learning.

e Reinforcement learning, like supervised learning,
involves the use of a measurable outcome to guide train-
ing process rather than a predefined expected outcome
for each input. This model is typically used when the
input is stimuli from the environment rather than a com-
piled dataset.

complications

These processes are analogous to the biological process of
learning, where we would repeatedly study and memorize facts
(most like supervised learning model), learn from observation
(unsupervised learning model), or learn from trial and error
(reinforcement learning model). Conventional machine learn-
ing algorithms involve feature extraction and classification.
Feature extraction is a process by which an initial set of data
is reduced by identifying key features of the data for machine
learning. The inputs obtained through feature extraction would
then be classified based on predetermined criteria.

In recent times, deep learning has emerged as one of the
popular modalities of machine learning. Deep learning is
inspired by the way a human brain works. Such biologi-
cally inspired computational networks which facilitate deep
learning are known as neural networks. Unlike conventional
machine learning, neural networks do not have to rely on
feature extraction and can sometimes utilize raw signals
as input. Thus, neural network is a step towards computers
being able to perform tasks without explicit programming.

How are machine learning algorithms developed?

The development and optimization of ML algorithms is an itera-
tive process involving a training dataset and previously unseen
or “held-out” test data. Because ML algorithms learn from the
provided data, models may overfit the training dataset. Therefore,
use of a held-out test dataset is required to avoid biased (usually
inflated) estimates of how well a model performs. Next, to ensure
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generalizability of the model, it is deployed on a completely inde-
pendent test dataset (i.e., data obtained from a different study
cohort or clinical population that uses different data acquisition
methods). A simplified depiction of the process of ML algorithm
development and testing is depicted in Fig. 3.

Al sleep staging algorithms have utilized training datasets
comprised of both healthy and unhealthy subjects. Notably,
an algorithm trained on healthy subjects may demonstrate
reduced performance when validated in an unhealthy popu-
lation, for example, patients with neurodegenerative disease
who may display electroencephalogram and electromyogram
findings uncharacteristic for a given sleep stage [18]. Most
studies utilize existing datasets for training and testing includ-
ing sleep-EDF, sleep-EDF (expanded), Montreal Archive of
Sleep Studies, Sleep Heart Health Study (SHHS), Massachu-
setts General Hospital Sleep Laboratory, Apnea-ECG data-
base, Multi-Ethnic Study of Atherosclerosis (MESA), Uni-
versity College Dublin Sleep Apnea Database, Seoul National
University Bundang Hospital (SNUBH), Sleep Center of
Samsung Medical Center in Seoul, Korea, and Osteoporotic
Fractures in Men Study (MrOS) [19-21]. These datasets are
easy to access (some are publicly available) and provide ade-
quate data (even smaller cohorts may provide sufficient data
as 800 30-s epochs are available per night of PSG recording).
Disadvantages include variability in signal preprocessing and
sampling rate and study subject characteristics that may not
translate to the heterogeneity of patients and disease presenta-
tions seen in real-world clinical populations.

Artificial intelligence in polysomnogram
sleep staging and respiratory event scoring

The rapid expansion of Al in sleep is evident from a Pubmed
search on “Artificial Intelligence” and “polysomnogram”
that shows more than 360 articles, with 204 articles (57%)
published in the past 5 years.

Fig.3 Development of machine

Evolution of artificial intelligence-based sleep
staging

One of the first evaluations of Al sleep scoring was the use
of a learning vector quantizer and the induction of deci-
sion trees to stage polygraphic data in eight infants and
demonstrated overall recognition accuracy of 75% [22]. An
early use of neural networks specifically was presented by
Schaltenbrand and colleagues in 1996 [23]. The automatic
scoring of 61,949 epochs from 60 subjects with a neural
network model achieved comparable agreement to human
experts, with expert-model agreement and inter-expert
agreement of 82.3% and 87.5%, respectively. This agree-
ment improved to 90% with expert supervision for unknown
or ambiguous epochs.

Over the next few years, several studies used neural net-
work models to score sleep studies in patients with obstruc-
tive sleep apnea (OSA), epilepsy, Cheyne Stokes respira-
tions, and Parkinson’s disease [24-28]. While some of the
studies focused on analyzing sleep spindles and power
spectra of sleep for staging, others focused on integrating
cardiorespiratory events to diagnose sleep-related breath-
ing disorders while a few focused on snore signal [29-34].
Interestingly, some of the earlier studies concentrated on
use of Al to score sleep studies in infants, particularly those
at risk for sudden infant death syndrome (SIDS) [35, 36].

Additionally, during this time period, different methods
to improve Al sleep scoring were explored; for example, a
neural network model to identify sleep-disordered breath-
ing events was iteratively refined with use of a supervised
approach [37]. This entailed input from clinicians each time
a new pattern was found. Whenever a clinician demon-
strated good self-agreement, the neural network model was
retrained. Over the next few years, there was a progression
towards development of models which relied less on expert
supervision. This led to newer approaches such as the fuzzy
set theory which allowed modification of the morphological
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detection criteria and performed a detailed characterization
of the identified events to approximate human intuition [38].

More recently, different techniques were explored to
develop ML polysomnogram scoring models (Table 1).
Conventional ML for sleep staging utilizes two main com-
ponents: feature extraction and classification. The traditional
styles of feature extraction relied on raw signal input through
a variety of methods, including Fourier transforms, wavelet
analysis, and Hilbert transform [39-41]. Feature extraction
can also utilize time—frequency images, generated by short-
time Fourier transform or wavelet transform instead of raw
signal inputs [18, 42]. Use of spectrograms has also been
reported as a processing method prior to input of polysom-
nogram data [43]. With advances in ML, feature extraction
techniques have evolved to reduce the number of features
in a dataset by creating new features from existing ones. A
thorough review can be found here [44].

In addition to improvements in feature extraction,
advances were also made in the realm of classification. Most
of the published Al sleep staging to date has utilized con-
volutional or recurrent neural networks or a combination of
both [45]. In general, neural networks utilize a network of
filters and subsampling layers. While convolutional neural
networks consider only the current input, recurrent neural
networks consider the current input together with the pre-
viously received inputs and, therefore, are well-suited for
sequential data.

Information sources for Al-based sleep staging
and respiratory event scoring

Multiple considerations are needed regarding the data sub-
strates for Al scoring of sleep and respiratory events. The
type and number of channels used, the input of raw or pro-
cessed signal, and artifact are factors in the development of
ML algorithms deployed on polysomnogram data.

Sleep staging channels

While most studies utilize electroencephalogram (EEG) sig-
nal for sleep staging, several studies have combined EEG
channels with electromyogram (EMG) and electro-oculo-
gram (EOG channels) [32]. General consensus is that use
of multi-channel EEG improves performance.

Given the utility of home monitoring, there is growing
interest in Al sleep staging from one or a few easily recorded
physiological signals [46]. Electrocardiogram (ECG), res-
piratory effort, and photoplethysmography (PPG) have all
demonstrated promise as alternative signals that can be lev-
eraged for sleep staging [6, 8]. For example, a deep neu-
ral network that utilized both ECG and respiratory signals
performed well in the classification of sleep stages and was
not impacted by patient age or comorbid sleep disordered

breathing. However, accuracy was lower compared to net-
works trained on EEG models [6]. Another group demon-
strated accurate estimation of sleep time and differentiation
between sleep stages with use of PPG signal, obtained from
pulse oximetry [8].

The ability of ML algorithms to estimate sleep stages
from limited channels facilitates data acquisition in the
ambulatory environment, particularly given the ubiquity of
PPG in consumer facing technologies.

Respiratory event channels

Similarly, for ML scoring of respiratory events, analysis
often uses signal from traditional sensors (nasal oral ther-
mistor, nasal pressure transducer, abdominal and thoracic
respiratory inductance plethysmography, and oximetry).
However, to automate scoring of data collected in the home,
investigators have used ECG or PPG signal in isolation, or
combined with a limited complement of traditional respira-
tory parameters [47-50]. For example, studies have utilized
ECG inter-beat intervals or heart rate variability (HRV) to
detect respiratory events [6, 31]. Because PPG can estimate
HRYV and is widely available, ML algorithms may allow
obstructive sleep apnea detection from consumer facing
technologies.

Signal type

ML algorithms can process raw or pre-processed signal.
One of the popular options is to extract features from raw
EEG signals for sleep stage classification [51]. However,
an EEG spectogram can also act as input by first calculat-
ing the power spectral density. Power spectral density is the
measure of the signal’s power content versus frequency. The
importance of power spectral density has been highlighted
in studies which have shown an increase in delta and beta
EEG activity in certain sleep disorders [30].

For respiratory event scoring, several studies use raw air-
flow, respiratory effort, and oximetry signals as inputs [50].
However, another approach utilizes raw signals normalized
based on the mean and standard deviation of the normal sam-
ples for each subject or employs a combination of raw input
signals to reshape it into a matrix for classifier use [52].

Filtering

Raw signals can be contaminated with noise that can affect
the classifier’s performance. Basic band pass filters, as rec-
ommended by the technical specifications in the American
Academy of Sleep Medicine (AASM) Manual for the Scor-
ing of Sleep and Associated Events, can diminish this noise
[53]. Several approaches have been utilized when using fil-
tered signal as information source. For example, one group of
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researchers employed artifact reduction approaches by using
several different options including Butterworth filters, weight
decay, or adaptive normalization [46, 54, 55]. In another
example, a group demonstrated that deep learning algorithms
can learn key information from epochs with artifact [56].

Performance of artificial Intelligence sleep staging
algorithms

Al algorithms require testing on unseen data to evaluate their
performance, which is often achieved by a cross-fold valida-
tion process where the dataset is partitioned into several equal
groups. A single group is retained to test model performance
while the other groups are utilized for algorithm training.

Several performance metrics are available to describe
performance of Al algorithms. Sleep stages and obstructive
sleep apnea severity classes (no, mild, moderate, or severe
disease) are categorical constructs, and therefore, results
can be represented as percent agreement with gold standard
(visual scoring by a human expert). Use of Cohen’s kappa
instead of percent agreement is more stringent as it mitigates
the effect of agreement occurring by chance.

Accuracy values should be approached with caution if
used in isolation to describe algorithm performance. Specifi-
cally, accuracy can be misleading if there is an unequal num-
ber of observations in each class or more than two classes in
the dataset. Use of the accuracy metric can lead to a situation
where the model is completely and consistently misidentify-
ing one class, but this misidentification is missed because
on average, performance is good. A confusion matrix can
overcome these issues. The confusion matrix identifies when
the algorithm confuses two classes by counting the number
of instances data is misclassified. Each row in a confusion
matrix represents a predicted class, while each column rep-
resents an actual class. The number of correct and incorrect
predictions for each class is calculated and represented in
the confusion matrix. Therefore, the confusion matrix may
provide a better gauge of performance than accuracy alone
(Table 2).

Traditional two by two tables can also provide descriptive
statistics when comparing a binary outcome (i.e., obstructive
sleep apnea versus no obstructive sleep apnea) between algo-
rithm and human. In this case, algorithm-identified cases are
compared to cases based on visual scoring of respiratory
events and described by true positive (TP, obstructive sleep
apnea cases correctly identified by the algorithm), false posi-
tive (FP, healthy subjects incorrectly identified as obstruc-
tive sleep apnea cases by the algorithm), true negative (TN,
healthy subjects correctly identified as normal by the algo-
rithm), and false negative (FN, obstructive sleep apnea cases
incorrectly identified as normal by the algorithm) values.
Table 3 lists commonly used performance metrics.

One of the commonly encountered problems in classification
predictive modeling is imbalanced classification. Most machine
learning algorithms used for classification are designed around
the assumption of an equal number of examples for each class.
When classes are imbalanced, this results in models that have
poor predictive performance, specifically for the minority class.
This holds true in the realm of sleep studies, given that most of
the nighttime period is sleep when healthy participants are used.
Additionally, imbalance is present among sleep stages and N1
sleep can be misclassified since the percentage of N1 sleep is
less compared to other stages of sleep. This can be overcome by
balancing classes in the training dataset or by improving clas-
sification algorithms. For imbalance classification, how well
the positive class was predicted or sensitivity (TP/(TP +FN))
may be of more interest than how well the negative class was
predicted or specificity (TN/(FP+TN)).

Other challenges in appraising the performance of Al sleep
staging and respiratory event scoring stem from characteristics of
training and testing datasets. Training datasets are often derived
from healthy populations or convenience samples. To diagnose
sleep disorders, training datasets should consist of patients with
heterogeneous sleep problems to facilitate deep learning.

Highlighting the need for diverse data sets, researchers
found that having more data sources significantly improved
classification performance and generalizability. Specifically,
the group noted that using 75% of the PSGs available yielded

Table 2 Confusion matrix:
confusion matrix for predicted
sleep stage displays agreement
between human experts and

Dataset scored wake (pre-
dicted class positive)

Dataset scored sleep
(predicted class nega-
tive)

the prediction by the dataset

¢ : Human expert
(example-2 stage classification

scored wake

True positive (TP)

False negative (FN) Sensitivity TP/(TP +FN)

of sleep and wake) (actual class posi-
tive)
Human expert False positive (FP) True negative (TN) Specificity TN/(TN +FP)
scored sleep
(actual class nega-
tive)
Precision Negative predictive Accuracy
TP/(TP+FP) value TN/(TN+FN) (TP+TN)/(TP+TN+FP+FN)
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Table 3 Performance metrics

Performance metric

Formula

Accuracy (TP +TN)/(total population)

Specificity TN/(TN +FP)

Sensitivity TP/(TP+FN)

PPV TP/(TP +FP)

F1 2 * [(PPV*sensitivity)/
(PPV + sensitivity)]

AUC Area under ROC curve

Commonly used metrics to quantify algorithm performance against
gold standard

PPV, positive predictive value; AUC, area under the curve; TP, true
positive; TN, true negative; FP, false positive; FN, false negative;
ROC, receiver operating characteristic curve (y axis=sensitivity, x
axis = l-specificity)

just as high performance compared to using 100% once they
included PSGs from five different sources [7]. This under-
scores the importance of availability of public datasets from
multiple heterogenous populations.

If a test dataset comes from the same sleep center, acquired
with the same equipment and scored by the same human scorers,
performance metrics may be falsely elevated, even with use of
held-out, unseen data. Therefore, testing with use of an external,
independent database is typically considered more reliable [18,
57]. There is considerable value in standardizing testing data from
various sleep laboratories as well as standardizing performance
metrics, which can help users compare different algorithms.

Notably, pediatric populations have been underrepresented
and expansion of pediatric sleep datasets for algorithm devel-
opment and testing is required.

Other use cases for artificial intelligence
and sleep medicine

Although the first obvious use for Al in sleep medicine is
to automate the staging of sleep and scoring of respiratory
events to reduce technician burden and decrease time from
PSG recording to interpretation, other use cases will deepen
our understanding of sleep disorders and the role of sleep in
health and disease.

Improved phenotyping, endotyping, and treatment
response prediction in sleep disordered breathing

There is growing evidence that the underlying etiology (i.e.,
endotype) and clinical manifestation (i.e., phenotype) of
OSA in an individual are not well described by the tradi-
tionally used AHI [58]. Artificial intelligence has paved the
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way for a better understanding of the various endotypes and
phenotypes of OSA to form the foundation of personalized
treatment for OSA. Al-assisted graphical models of chem-
oreflex feedback loop have been used to identify ventila-
tory instability in OSA patients which can guide treatment
selection [59]. Routine polysomnographic characteristics
and clinical data have been utilized to estimate upper air-
way collapsibility and arousal threshold using Al-assisted
data-driven models [60]. Endotyping OSA through PSG is
increasingly recognized as vastly important to our field and
there is an increasing interest in making OSA endotyping
algorithms accessible, inexpensive, and, ultimately, scalable
[12]. Even adherence to treatment may be better predicted
with use of ML. Compliance classifiers with CPAP therapy
have enabled early prediction of compliant patients.

In addition to ramifications for personalized treatment,
the use of Al in sleep disordered breathing is relevant for
outcomes. Unsupervised and supervised clustering models
were used to cluster 2277 OSA patients into sic phenotypes
based on their polysomnogram data. The phenotypes show
different risk for the development of cardio-neuro-meta-
bolic comorbidity, unlike the conventional single-metric
apnea—-hypopnea index-based phenotype [61].

Tools to improve risk stratification will also benefit from
Al Support vector machine-based models have been created
utilizing clinical data for early identification of patients at
risk for OSA presenting to a primary care clinic which may
potentially prioritize them for sleep studies [9].

Hypersomnia

While AI has made significant strides in the realm of sleep-
disordered breathing, this innovative technology has been
investigated for the evaluation and management of other
sleep disorders including suspected central disorders of
hypersomnolence. The objective confirmation of a central
disorder of hypersomnolence requires a PSG followed by a
multiple sleep latency test (MSLT). An MSLT entails 4-5
nap opportunities with recording of EEG, EOG, EMG, and
EKG leads. Sleep onset latency for each nap (averaged as
the mean sleep latency) and the presence of sleep onset stage
REM (R) sleep are recorded. Completion of the overnight
PSG and daytime series of nap opportunities is burdensome
for the patient, and manual review of PSG and MSLT data
is time-consuming, expensive, and subjective.

The central disorder of hypersomnolence, narcolepsy,
type I (narcolepsy with cataplexy), is confirmed by reduced
mean sleep latency on MSLT and at least 2 sleep onset
stage R periods across overnight PSG and daytime MSLT.
However, poor nocturnal sleep consolidation is also a char-
acteristic feature of narcolepsy, type I. After development
of an automatic classifier capable of separating sleep and
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wakefulness epochs with single channel EEG, individuals
with narcolepsy with cataplexy were observed to have sig-
nificantly more sleep—wake transitions during night than
patients with narcolepsy without cataplexy and normal
controls [62]. In subsequent work, Olsen et al. used a linear
discriminant analysis (LDA) model which utilized 38 fea-
tures from EOG, EMG, and EEG to identify features that
differentiated wake, stage N1, N2, N3, and REM sleep in
control subjects [63]. Next, the derived 2-dimensional sleep
state space projection was used to distinguish patients with
narcolepsy, type I from controls by leveraging the known
sleep state dissociation in narcolepsy patients.

More recently, Stephansen and colleagues utilized deep
learning to diagnose narcolepsy, type 1 from overnight PSG
alone [57]. First, a hypnodensity graph was generated from
PSG signal, which does not enforce a single sleep stage
label, but instead assigns a membership function to each of
the sleep stages. Therefore, use of neural networks not only
automated sleep staging but allowed for more detailed rep-
resentation of sleep trends over the course of the night. Next,
deep learning was used to identify features of sleep state
dissociation predictive of narcolepsy, type 1. Analysis of a
single night of PSG was able to identify narcolepsy, type 1
with high sensitivity (91%) and specificity (96%) compared
to the more laborious PSG-MSLT.

Narcolepsy, type 2 presents a different diagnostic chal-
lenge given the lack of cataplexy and poor test-retest reli-
ability of the MSLT for this condition [64]. A stochastic
gradient boosting (SGB) model was used to explore the fea-
tures characteristic of type 1 and type 2 narcolepsy based on
a dataset of individuals in the European Narcolepsy Network
(EU-NN) [65]. The SGB model allowed for selection of fea-
tures independent from existing diagnostic criteria and dem-
onstrated the capacity to classify narcolepsy subtypes with
high accuracy. Furthermore, the model can use a mixture of
clinical features and identifies the most important features.
Therefore, machine learning may identify novel potential
candidates for future diagnostic criteria for narcolepsy, type
1 and 2.

To employ data sources beyond polysomnogram in the
evaluation of excessive daytime sleepiness (EDS), Liu and
colleagues utilized an artificial neural network of modified
adaptive resonance theory to differentiate subjects with and
without sleep disorders that cause EDS from normal control
subjects based on EEG and pupil size [66].

Insomnia

Insomnia can also benefit from Al analytic techniques, and
one of the initial investigations in this area assessed singu-
lar spectrum analysis (SSA) of sleep EEG to differentiate
paradoxical insomnia, psychophysiological insomnia, and

control groups [67]. In 2016, Chaparro-Vargas et al. used
3 tandem models to distinguish insomnia patients from
controls [68]. First, a preprocessing module was used that
utilized state-space time-varying autoregressive moving
average (TVARMA) processes to identify the features that
characterize sleep onset. Next, a hypnogram generation mod-
ule used a fuzzy inference system to infer sleep stages and
the macrostructure of sleep architecture. Lastly, the char-
acterization module compared hypnograms with similarity
distances and used logistic regression to distinguish controls
from insomnia patients. Another group trained deep neural
network classifiers with features extracted from a maximum
of two EEG channels and accurately differentiated patients
with insomnia from controls [69]. When compared with
manual scoring, the classifier had excellent discrimination
accuracy between patients and controls using both (92%) or
only one EEG channel (86%).

While most of these studies use PSG signal as a substrate
for machine learning algorithms, other sleep data sources
outside of the laboratory have been explored. For example,
natural language processing techniques were used to extract
causality from twitter messages that included stress, head-
ache, and insomnia content [70]. Additionally, unsupervised
learning has been applied to wearable data and identified 5
different clusters of insomnia activity [71].

The use of Al in insomnia has expanded to include
intervention. During the COVID-19 pandemic, a group of
researchers devised a smartphone app called KANOPEE that
allowed users to interact with a virtual agent that screened
for sleep disturbances and delivered digital behavioral
interventions. The program used decision tree architecture
and interacted with users through natural body motion and
voice [72]. Al digital screening and intervention tools, eas-
ily deployed through smart phone applications, confer the
ability to provide behavioral interventions remotely, at scale.

Circadian rhythm sleep-wake disorders

The circadian timing system regulates a variety of biological
processes in addition to the sleep—wake cycle. Therefore, mis-
alignment of behavioral, light—dark, sleep—wake, and periph-
eral rhythms can produce detrimental impacts on human health.
Data that demonstrate circadian oscillation can be derived from
numerous sources and the level, degree, and impact of circadian
disruption may vary; therefore, Al provides a unique opportunity
to improve our understanding of circadian rhythms.

For example, researchers built an expert system that iden-
tifies the characteristics that contribute to negative effects of
shift work and then selects mitigation efforts according to
their importance in preventing these negative effects. With
a fuzzy analytic hierarchy process model, the shift “expert”
prioritizes prevention advice to shift workers at the indi-
vidual and organization level [73].
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Additionally, given the difficulties in measuring circadian
rhythms, AI has also been used to understand and predict
circadian states. The cyclic ordering by periodic structure
(CYCLOPS) algorithm uses machine learning to identify
circadian rhythms at a molecular level including rhythmic
transcripts in human liver and lung [74]. Another group
of researchers utilized machine learning to predict circa-
dian phase within 2 h from gene expression in peripheral
blood samples [75]. A particular strength of this study was
excellent predictive performance with use of an independ-
ent test set, suggesting generalizability of this circadian
measurement.

Utilization of machine learning to predict circadian tim-
ing from gene expression has ramifications beyond sleep dis-
orders. An application that has drawn considerable attention
is precision timing of cancer treatment based on Al estimates
of circadian timing. Chemotherapy timed in accordance with
the patient’s internal time may reduce toxicity and improve
outcomes [76].

Machine learning has not only allowed circadian tim-
ing predictions from peripheral blood samples, but also
from data collected by ubiquitous wearable devices [77].
Real-time circadian tracking in the ambulatory environ-
ment from wearable devices may hold promise as an easy
to use, inexpensive adjunct to expert clinical evaluation and
management.

REM sleep behavior disorder

Appropriate diagnosis of REM sleep behavior disorder
(RBD), which includes dream enactment behavior and loss
of normal atonia of stage REM sleep during PSG, is cru-
cial given its association with both co-morbid and incident
alpha-synucleinopathy neurodegenerative disease. Further-
more, identifiable characteristics that separate individuals
with idiopathic RBD (RBD in the absence of a neurodegen-
erative disorder) from patients with RBD in the setting of
alpha-synucleinopathy (e.g., Parkinson’s disease, dementia
with Lewybodies, and multiple systems atrophy) could assist
with the development of prediction tools. Christensen et al.
utilized data driven topic modeling and unsupervised learn-
ing to characterize sleep EEG and EOG among controls,
patients with periodic limb movements of sleep (PLMS),
idiopathic RBD, and Parkinson’s disease [28]. A Lasso
regularized regression model was then used to differentiate
patient groups. The most salient features were the number
and stability of EEG topics linked to REM and N3, respec-
tively, and the model was able to distinguish patients with
idiopathic RBD from individuals with Parkinson’s disease
with a sensitivity of 91.4% and a specificity of 68.8%.
Another dilemma in RBD is the determination of REM
sleep without atonia (RSWA). Scoring criteria and quantifi-
cation metrics have been delineated, but the implementation
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of these rules in the context of manual, visual scoring is
laborious [53]. Oftentimes, qualitative assessment of EMG
tone in REM sleep is made, which results in a lack of stand-
ardization across sleep laboratories. Therefore, automation
of the process is an area of active research which may benefit
from Al [78]. For example, a random forest classifier was
developed that used established RSWA metrics along with
an EMG fractal exponent ratio between sleep stages and
sleep architecture measures [79]. The random forest clas-
sifier that supplemented traditional computerized metrics
with novel features related to sleep architecture was able to
automate RSWA scoring and identify RBD with accuracy,
sensitivity, and specificity of 0.96, 0.98, and 0.94, respec-
tively, and outperformed automated scoring that uses tradi-
tional measures in isolation (atonia index, motor activity,
and STREAM).

Apart from PSG data, machine learning that incorporates
other clinical features, such as olfactory loss, cerebrospinal
fluid measurements, and the results of functional imaging,
with a diagnosis of RBD may allow model prediction of
early, or even preclinical Parkinson’s disease [80]. The abil-
ity to use clinical or PSG characteristics related to RBD
combined with other features to identify individuals at risk
for neurodegenerative disease is essential to the development
of primary prevention therapeutics.

Sleep-related movement disorders

Movements during sleep may be incidental findings during
PSG or may present clinically if troublesome to patients or
their bedpartners. Periodic limb movements of sleep (PLMS)
are highly prevalent among patients with restless legs syn-
drome but rarely seen as an isolated finding causing daytime
symptoms (periodic limb movement disorder). PLMS are
typically scored with use of the anterior tibialis EMG lead
and deep learning has been used to automate this process
with 85% accuracy; however, with use of a K-nearest neigh-
bors algorithm, investigators could identify PLMS without
use of EMG [50, 81]. Additionally, with use of machine
learning analysis, novel data sources that do not contact the
patient such as 3D cameras and infrared sensors were able
to detect 75% of PSG confirmed PLMS [82].

Al has been used outside the sleep laboratory in sleep-
related movement disorders in the diagnosis of restless legs
syndrome by analyzing bed acceleration sensors with deep
learning [83].

Population health-predicting morbidity
and mortality

An important use of Al beyond the diagnosis and treatment
of defined sleep disorders is its application in population
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health, with emphasis on the relationship between disturbed
sleep and morbidity and mortality. Sleep health is a multi-
dimensional construct influenced by inherent, person-spe-
cific characteristics and external social and environmental
demands. Optimal sleep health has been characterized by
satisfactory subjective quality, alertness during desired
wakefulness, appropriate timing, adequate duration, suf-
ficient continuity, robust rhythmicity, and high regularity
[84]. This comprehensive definition of sleep health provides
a more inclusive description than isolated aspects of sleep
such as duration and has relevance for individuals without
diagnosable sleep disorders.

A multidimensional definition of sleep health has the
potential to influence large-scale public health initia-
tives by informing screening programs and interventions
that are more precise and comprehensive with the ulti-
mate aim of improving not only sleep but other aspects
of health and wellness. Wallace and colleagues applied
three multivariable approaches to determine which sleep
characteristics increased mortality risk in the osteoporo-
tic fractures in men cohort [85]. Across multivariable
approaches, lower sleep—wake rhythmicity, and continuity
(assessed by actigraphy) increased the risk for all-cause
mortality even after considering other important sleep,
demographic, health, and behavioral risk factors. Notably,
use of a random forest model, which is more flexible than
traditional statistical models, allowed for the simultane-
ous consideration of potentially correlated variables and
identified which facets of sleep health were the greatest
driver of outcomes [85].

Al also confers the ability to conduct scalable research,
as evident by the over 11 million nights of wearable activity
characterizing sleep duration and timing data by age and
gender [5]. With a focus on younger populations, the appli-
cation of structural equation modeling to almost 5000 chil-
dren allowed researchers to assess repeated data and showed
a bidirectional association between behavioral sleep prob-
lems and health related quality of life [13].

In addition to ambulatory sleep information, PSG find-
ings that may not be traditionally considered in the quan-
tification of OSA severity, such as sleep fragmentation,
oxygen desaturation magnitude, and the percentage of stage
REM sleep, are independently related to mortality risk [67].
Therefore, PSG datasets can also inform population health
with use of novel measures beyond the AHI. New insights
on sleep microarchitecture were already obtained through
automated detection of cyclic alternating pattern in older
men and women from two community cohorts [4].

Al algorithms alone will not fully delineate the role of
sleep in health and disease, and a combined approach of
advanced analytics, novel sensors, and measurement of
sleep both in and outside of the laboratory is likely required.
The Sleep and Obstructive Sleep Apnoea Monitoring with

Non-Invasive Applications (SOMNIA) project helps support
this goal as in addition to recording the usual signals, sen-
sors not typically monitored as part of PSG are simultane-
ously recorded including suprasternal pressure monitoring,
multielectrode electromyography of the diaphragm, wrist
worn accelerometry and optical photoplethysmography, and
mattress embedded sensors. Therefore, in addition to provid-
ing a data source that can be analyzed with machine learn-
ing algorithms to provide novel insight from data typically
recorded in PSG, new sensors may demonstrate utility, and
some are even adaptable for ambulatory use [86].

Challenges of artificial intelligence in sleep
medicine

Despite the huge advances made, there are some critical chal-
lenges to consider in the implementation of Al in clinical
sleep medicine and sleep research. These include (1) logistics
of creating datasets, (2) standardization of commercial algo-
rithms, (3) limited data available for research, (4) regulation,
and (5) integration of “omics” data.

1) One of the biggest challenges is creating training data-
sets. Most of the existing datasets using polysomnogram
data are research datasets collected from a subgroup
meeting certain inclusion criteria. Hence, they are not
generalizable and not representative of what the clini-
cian encounters in real practice. Another challenge is
ensuring optimal data quality by reducing external noise
and artifact. Finally, algorithm validation requires inde-
pendent data sets that are sequestered and not available
for training purposes.

2) With multiple commercial companies developing FDA
cleared algorithms, there is a need to standardize com-
mercial algorithms through certification by an accredited
regulatory body. While FDA approval ensures that the
algorithms are safe to use, the approval does not ensure
clinical validity. This can be overcome by creating
standardized certification programs, which will test the
algorithms and disclose performance metrics on inde-
pendent test sets. For appropriate use and generalization,
the circumstances in which the data was collected and
characteristics of the population the data were derived
from should be well described.

3) There is an acute need for larger-scale research tri-
als which can corroborate machine algorithm gener-
ated measures to clinically significant outcomes. This
prompts the need for research datasets with heteroge-
neity in signals, patient demographics, sleep disorders,
and clinical outcomes. Projects like SOMNIA are strides
towards that direction.

4) There is a strong need for policies and best clinical prac-
tices regarding use of Al in sleep medicine.
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5) There is a need to integrate data obtained through “omics”
technology (transcriptomics, proteomics, metabolomics)
with traditional health and demographic data with poly-
somnographically derived data [14]. This further empha-
sizes the need for a universal database formed by col-
laborative efforts across the sleep community.

In addition to concerns development, testing, and certifi-
cation, clinical implementation of Al tools for sleep staging
and respiratory event scoring will also require user interface
improvements to streamline use [57]. Additionally, as many
programs require upload of sleep data to external servers,
security of protected health information is required. Issues
regarding bias and health disparities require continued eval-
uation and mitigation to avoid scaling inequities.

Future possibilities for artificial intelligence in sleep
medicine

Artificial intelligence in sleep medicine undoubtedly holds
promise. There are currently FDA-cleared Al Scoring soft-
ware available in the market. With regulation and care-
ful standardization, these softwares can facilitate scoring.
However, in its present form, it will still require health care
provider oversight and clinical correlation will be strongly
recommended. As the machines continue to learn, it will be
imperative to continuously regulate these scoring systems.

With continued advancement in technology, Al scoring
can be further utilized to identify polysomnogram features
which are not easily identified by humans or are time/labor-
intensive. Examples include microspindles, sleep—wake tran-
sitions, and thoracoabdominal asynchrony. These features
may assist in diagnosis as well as monitoring progression
of several sleep disorders. Big data analysis of wearable/
nearable devices can be a very useful tool in the hands of the
sleep clinician in determining an individual’s sleep health.
This can be utilized at the population health level to generate
ideas on how to improve health issues including sleep dep-
rivation. Al can improve clinic flow by voice-assisted docu-
mentation and automated organization of available clinical
information from multiple sources, thereby allowing more
time for physician—patient interaction. This is turn will aug-
ment physician—patient relationship.

Conclusion

In summary, Al has made considerable advancements in
sleep medicine. Polysomnograms result in the acquisition
of robust data, and Al applications will allow for improved
understanding, screening, diagnosis, and management of
sleep disorders. Al augmentation of the polysomnogram
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scoring process will allow for diversion of human effort and
time from repetitive, laborious tasks to face-to-face patient
care. Wearable technology and large-scale clinical databases
can supplement the novel information extracted from poly-
somnograms with Al to improve our understanding of the
role of sleep in human health and disease. However, there
are certain challenges which preclude AI’s generalizability
and wide-reaching clinical application.
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