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Abstract

Smoking remains the leading cause of preventable death in the United States. Although 

combustible cigarettes are largely being replaced by tobacco-free products, nicotine use continues 

to increase in vulnerable populations, including youth, adolescents, and pregnant women. Nicotine 

exerts unique effects on specific brain regions during distinct developmental periods due to 

the dynamic expression of nicotinic acetylcholine receptors (nAChRs) throughout the lifespan. 

Nicotine exposure is a health concern not only for adults but also has neurotoxic effects on 

the fetus, newborn, child, and adolescent. In this review, we aim to highlight the dynamic 

roles of nAChRs throughout gestation, adolescence, and adulthood. We also provide clinical 

and preclinical evidence of the neurodevelopmental, cognitive, and behavioral consequences 

of nicotine exposure at different developmental periods. This comprehensive review highlights 

unique effects of nicotine throughout the lifespan to help elucidate interventions and public health 

measures to protect sensitive populations from nicotine exposure.
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1. Introduction

Use of nicotine products is an unrelenting public health concern, as smoking is the leading 

cause of preventable death in the United States (U.S.) (Centers for Disease Control and 

Prevention, 2021). Although the rate of smoking combustible cigarettes has decreased in 

the last decade, nicotine exposure has risen substantially due to the increased popularity 

of tobacco-free, electronic nicotine delivery systems (e.g. electronic cigarettes, vaping), 

primarily among youth and teenagers (Miech et al., 2019). Additionally, pregnant and 

lactating women are increasingly replacing tobacco products with e-cigarettes even though 
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these may not be safer for the developing offspring (Kim and Oancea, 2020; Wagner et al., 

2017). Nicotine, the primary psychoactive component of tobacco, exerts unique effects on 

specific brain regions during distinct developmental periods (Dwyer et al., 2009). Nicotine 

exposure is thus not only a health concern for adults but also has neurotoxic effects on the 

fetus, newborn, child, and adolescent.

Nicotine binds to nicotinic acetylcholine receptors (nAChRs), which regulate various aspects 

of brain development. The effects of nicotine are highly dependent on timing of exposure, 

with detrimental effects of drug exposure more pronounced prior to adulthood due to the 

incomplete maturation of neural circuitry in the developing brain. Various animal studies 

(i.e. lambs, rats, and mice) reveal that gestational nicotine exposure contributes to reduced 

pulmonary function, auditory processing defects, and impaired cardiorespiratory function 

during infancy, as well as cognitive and behavioral deficits later in life (Bamford and 

Hawkins, 1990; Franke et al., 2007, 2008; Huang et al., 2007; Karlsson et al., 2004; Neff 

et al., 2003; Paz et al., 2007). Further, adolescent nicotine exposure may cause deficits 

in working memory and attention, and alterations in reward processing that increase the 

potential for subsequent drug abuse and addiction (Ren and Lotfipour, 2019; Leslie, 2020; 

Fleming et al., 1989; Lai et al., 2000; Nkansah-Amankra et al., 2016).

In this review, we aim to highlight the dynamic roles of nAChRs throughout the lifespan 

and provide clinical and preclinical evidence of the neurodevelopmental, cognitive, and 

behavioral consequences of nicotine exposure at different developmental periods. This 

comprehensive review highlights unique effects of nicotine throughout the lifespan to help 

elucidate interventions and public health measures to protect sensitive populations from 

nicotine exposure.

2. Materials and Methods

We conducted a systematic search of the literature related to developmental nicotine 

exposure published before July 2021. We used the electronic databases of PubMed and 

Google Scholar for research articles published in English between January 1971 and July 

2021. Articles or book chapters were included in the review if they discussed nicotine 

exposure during gestation, childhood, adolescence, or aging. We grouped studies together 

according to their methodological similarities, so findings without substantial support or 

reproducibility (i.e., fewer than 5 comparable studies) were excluded. Following exclusion 

and careful analysis of studies based on key results, limitations, suitability of the methods 

to test the initial hypothesis, and quality and interpretation of the results obtained, 156 

references were selected. The use of three reviewers and two extensive electronic databases 

allows for a widespread range of research articles, which maximizes scientific credibility 

and minimizes potential bias.

3. Results

3.1 Pharmacology

Nicotine is the primary psychoactive constituent in tobacco products and binds to nAChRs, 

which are pentameric ligand-gated ion channels composed of α and β subunits (α1–7, 9–10; 
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β1–4). nAChRs are widely distributed throughout the human and rodent brain and periphery 

and are critical in the processes of the neuromuscular junction, neurotransmitter release, 

brain maturation, reward processing, and cognition (Broide and Leslie, 1999; Campbell 

et al., 2010; Gotti et al., 2006; Gotti and Clementi, 2004; McGehee, 1999; Pentel et al., 

2006; Zoli et al., 1995). Nicotine can both activate and desensitize nAChRs that mediate the 

physiological effects of acetylcholine (Dani, 2001). A developmental regulation of nAChR 

function occurs in the brain, with differing modulation of neurotransmitter release from 

gestation through adulthood (O’Leary and Leslie, 2003). This shift in nAChR regulation 

is dependent on the properties of nAChRs across the lifespan. A comprehensive review of 

nAChR regulation of developing catecholamine systems and its implications for numerous 

disease states has been provided previously (Azam et al., 2006). Notably, age-dependent 

changes in nAChR pharmacology are important in the development of the cerebellum and 

sensory cortices, as well as dopamine release from the ventral midbrain and norepinephrine 

release from the hippocampus.

3.2 Prenatal and early postnatal development

Prenatal nicotine exposure continues to be a concern for pregnant women who have 

increasingly replaced smoking with electronic nicotine products or patches due to the 

misconception of a safer smoking alternative (Baeza-Loya et al., 2014). Nicotine readily 

crosses the placental barrier and can be found in the amniotic fluid and umbilical cord of 

neonates (Luck et al., 1985). Nicotine exposure during pregnancy results in increased high 

affinity nAChR binding in the fetal and neonatal brain, providing evidence that nicotine 

reaches the fetal brain and upregulates nAChRs as it does in adult rats (Navarro et al., 1989; 

Nguyen et al., 2003; Pentel et al., 2006; Slotkin et al., 1987). Numerous reports in humans 

have revealed the toxic properties of nicotine exposure during pregnancy on the offspring’s 

brain and behavior (Lotfipour et al., 2014; McGrath-Morrow et al., 2020).

nAChRs are involved in critical early developmental processes, including neurite outgrowth, 

cell survival, proliferation, differentiation, and neurogenesis (Dani, 2001). Activation and/or 

desensitization of nAChRs via nicotine exposure during gestation may disrupt brain 

programming and plasticity into postnatal life (Slotkin et al., 1987). Furthermore, use of 

e-cigarettes (Regan et al., 2021) or combustible cigarettes (Kyrklund-Blomberg et al., 2005; 

Mitchell and Milerad, 2006; Ozturk et al., 2016; Perry et al., 2019; US Department of Health 

and Human Services, 2014) during pregnancy is associated with pregnancy complications, 

risks of preterm delivery, lower birth weight, cleft palate, and sudden infant death syndrome.

In utero nicotine exposure in both humans (Ernst et al., 2001; Eskenazi et al., 1995; Regan 

and Pereira, 2021) and rodents (Paulson et al., 1993; Roy and Sabherwal, 1994; Slotkin 

et al., 1987) adversely affects prenatal and postnatal growth and increases the risk of fetal 

mortality and morbidity. Prenatal nicotine exposure affects cardiovascular and lung function 

and growth of the developing mouse fetus, as nicotine adversely affects fetal hemodynamics 

acutely and chronically in early pregnancy, potentially leading to fetal tissue hypoxia and 

intrauterine growth restriction (Aoyagi et al., 2020). Prenatal nicotine also interferes with 

male testosterone production during the perinatal surge in humans (Fried et al., 2001) and 
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rodents (Sarasin et al., 2003), and these acute endocrine effects of nicotine during gestation 

may be long-lasting (Lichtensteiger and Schlumpf, 1985).

Gestational nicotine exposure also impacts the developing brain at doses that do not delay 

general growth (Slotkin, 1998), which can be observed through motor, sensory, cognitive, 

and behavioral deficits in infants and toddlers (Ernst et al., 2001; Fergusson et al., 1998; 

Fuentes-Cano et al., 2020; Gusella and Fried, 1984; Lichtensteiger et al., 1988; Weissman et 

al., 1999; Zeid et al., 2018). Smoking during pregnancy is now considered to be the primary 

cause of sudden infant death syndrome, resulting from compromised development of cardiac 

and respiratory brainstem centers (Slotkin and Seidler, 2011; Vivekanandarajah et al., 2019; 

Zhang and Wang, 2013). Additionally, in utero exposure to nicotine produces decreased 

synaptic plasticity and developmental effects on the medial prefrontal cortex and nucleus 

accumbens in rodents, which is observed through attention-deficit/hyperactivity disorder, 

conduct problems, depression, anxiety, externalizing behavior, and substance use in the 

offspring (Table 1; Franke et al., 2008; Dwyer et al., 2019).

The prenatal period in humans refers to the entire duration of human gestation (3 trimesters 

or 9 months). However, because rodents are born at an earlier stage of brain maturation 

than humans, prenatal nicotine exposure in rats or mice only translates to exposure during 

the first two trimesters of human gestation (Bayer et al., 1993; Quinn, 2005). The first 

twelve days of rodent development are comparable to the third trimester of human gestation 

(Quinn, 2005), so nicotine exposure during the early postnatal period in rodents is also 

studied for a comprehensive understanding of human prenatal nicotine exposure. During 

this time, the brain is rapidly growing, and development of the cortex, hippocampus, and 

cerebellum are just beginning (Bayer et al., 1993; Dobbing, 1971). There is a transient 

appearance of cholinergic markers, including nAChRs, during the postnatal development of 

these regions (Broide and Leslie, 1999; Clos et al., 1989; Winzer‐Serhan and Leslie, 2005). 

Disruption of the cholinergic system during this period via early postnatal nicotine exposure 

impairs development of the cortex and hippocampus, and produces permanent changes 

in cortical circuitry that result in deficiencies in somatosensory, auditory and cognitive 

processing (Aramakis et al., 2000; Heath et al., 2010; Hsieh et al., 2002; Huang et al., 2007; 

Liang et al., 2006). Human studies have also shown similar deficiencies in central auditory 

processing in school age children prenatally exposed to cigarette smoke (McCartney et al., 

1994).

3.3 Adolescence

Adolescence is characterized by significant hormonal, psychosocial, and neural changes 

in rodents (postnatal day (PND) 28–42) and humans (12–18 years of age) (Spear, 2000). 

During this sensitive maturational period, the brain is remarkably vulnerable to the harmful 

effects of nicotine, which is especially critical given that adolescence is also the age of peak 

onset of nicotine use (Miech et al., 2019).

Animal studies consistently demonstrate the unique effects of nicotine exposure on the 

adolescent brain, including increased number and activity of nAChRs in reward-related 

brain regions (Doura et al., 2008; Kota et al., 2007), as well as increased nicotine-induced 

dopamine release in limbic regions (Azam et al., 2007; Corongiu et al., 2020). Behaviorally, 
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adolescents exposed to nicotine display increased rewarding effects of drugs of abuse 

(Leslie, 2020; Ren and Lotfipour, 2019; Yuan et al., 2015), decreased attention and other 

learning/memory deficits (Counotte et al., 2009, 2011; Holliday and Gould, 2016; Kutlu et 

al., 2018; Portugal et al., 2012), and emotional dysregulation (Adriani et al., 2004; Holliday 

and Gould, 2016; Iniguez et al., 2009; Jobson et al., 2019; Slawecki et al., 2003; Smith 

et al., 2006). This is due largely in part by increased activity in reward-related centers in 

the brain via dopaminergic, serotonergic, cholinergic, and inflammatory mechanisms (Table 

1). The increased reward induced by nicotine may lead to subsequent abuse of other drugs, 

including nicotine itself, alcohol, cocaine, methamphetamine, and fentanyl (Alajaji et al., 

2016; Cardenas et al., 2021; Cole et al., 2019; Collins and Izenwasser, 2004; Collins et al., 

2004; Dao et al., 2011; Linker et al., 2020; McQuown et al., 2009, 2007; Pipkin et al., 2014; 

Reed and Izenwasser, 2017; Thomas et al., 2018). These nicotine-induced changes in the 

brain and behavior are long-lasting into adulthood.

Adolescent nicotine exposure is predictive of nicotine dependence in adulthood, as 

adolescent rodents show increased nicotine reward (Adriani et al., 2003; Torres et al., 2008), 

reduced aversion (O’Dell et al., 2006; Shram et al., 2006; Torres et al., 2008), and enhanced 

sensitivity to withdrawal effects (Dierker and Mermelstein, 2010; DiFranza and Lew, 1995; 

Zhan et al., 2012) as compared to adults. There is significant clinical evidence supporting 

that individuals who begin smoking during adolescence are more likely to have trouble 

quitting than those who start as adults (Breslau and Peterson, 1996; Cengelli et al., 2012; 

Chen and Millar, 1998; DiFranza and Lew, 1995; Kandel and Chen, 2000; Khuder et al., 

1999). This is further reinforced by the report that 90 percent of adult smokers started before 

age 18 (Substance Abuse and Mental Health Services Administration, 2014; US Department 

of Health and Human Services, 2014). Teen e-cigarette users are more likely to report 

dependence signs and be daily users if they use high nicotine content pods, such as Juul 

(Boykan et al., 2019).

Further, nicotine exposure differentially impacts males and females during adolescence. 

Females are more vulnerable to tobacco use than males, as female versus male adolescent 

rodents self-administer greater amounts of oral or intravenous nicotine (Chen et al., 2007; 

Klein et al., 2004; Lynch, 2009; Sanchez et al., 2014), show impaired rearing and locomotor 

activity following adolescent nicotine exposure (Trauth et al., 2000), and are more sensitive 

to behavioral deficits and hippocampal cell damage from nicotine withdrawal (Xu et al., 

2003). Sex differences in nicotine responses may be due to gonadal steroid-mediated sexual 

differentiation of the brain, as nAChRs and major neurotransmitter systems are modulated 

by different sex hormones throughout development (Azam et al., 2007; Cross et al., 2016; 

Pogun and Yararbas, 2009; Slotkin et al., 2007).

3.4 Aging

The adult brain is no longer considered to be developing; rather, the aging brain experiences 

a gradual loss of neural circuits and synaptic plasticity that is associated with an age-

dependent decline in cognitive function (Yankner et al., 2008). Clinical and preclinical data 

support a neuroprotective effect of nicotine during adulthood and senescence, preventing the 

onset of degenerative neurological disorders, such as Alzheimer’s dementia and Parkinson’s 
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Disease (Ferrea and Winterer, 2009). Nicotine use in humans also positively influences 

learning, memory, and attention, and improves mood, stress regulation, and anxiety (Feldner 

et al., 2007; Foulds et al., 1996; Gehricke et al., 2007; Grobe et al., 1998; Marshall et al., 

2008; Metcalfe et al., 2003; Xu et al., 2005). However, the potential benefits of nicotine 

use in either cigarettes or e-cigarettes are greatly outweighed by its negative consequences, 

including risk of addiction, cancer, heart disease, high blood pressure, respiratory infections, 

and gastrointestinal distress (Mishra et al., 2015; US Department of Health and Human 

Services, 2014). The debate against nicotine’s neuroprotective versus neurotoxic effects is 

complex and appears to involve regulation mechanisms of nAChRs and interactions between 

nicotine and other central nervous system neurotransmitters.

The observation of lower rates of dementia in smokers has prompted further investigation 

into the role of nicotinic effects in neurodegenerative diseases (Table 1). Alzheimer’s disease 

is characterized by an aggregation and precipitation of amyloid precursor proteins (APP) 

in the form of plaques, which are a result of overproduction and/or altered metabolism 

of APP- β. α7-containing nAChRs are present in the plaques, and nicotine prevents the 

conversion of APP-α to APP-β and lowers the secretion of APP-β (Gutala et al., 2006; 

Utsuki et al., 2002). The proposed mechanism is a central role of α4β2 and α7 nAChRs in 

enhancing the release of neuroprotective APP-α and lowering APP-β production (Mousavi 

and Hellström-Lindahl, 2009).

A U.S. government-funded veteran’s study found that smoking reduced Parkinson’s deaths 

by 64 percent (Dorn, 1959). Nicotine promotes neuron survival and partially protects from 

Parkinson’s by suppressing SIRT6 in mice (Nicholatos et al., 2018). The neuroprotective 

effects of nicotine have been observed particularly in the hippocampus, entorhinal cortex, 

and neocortex (Perry et al., 2000; Zeid et al., 2018). In contrast, nicotine has been shown to 

have neuroinflammatory effects in adolescence that switch to neuroprotection in adulthood 

(Linker et al., 2020). These findings may suggest interventions using neuronal nAChRs as 

novel targets for inflammation and neuroprotection in adults (Bencherif, 2009), with a strong 

contraindication at younger ages.

3.5 Vaping Versus Smoking

Replacing traditional combustible cigarettes with e-cigarettes (vaping) reduces the exposure 

to tobacco’s carcinogens and is substantially less harmful than smoking (George et al., 2019; 

McNeill et al., 2018, 2020; National Academies of Sciences, Engineering, and Medicine 

2018). However, vaping also carries significant health risks, including addiction, metal 

exposure, inhalation of toxic solvents, and vaping-associated lung injury (Perrine et al., 

2019; Schmidt, 2020). Furthermore, its effectiveness in reducing or eliminating smoking 

is controversial (Dai and Leventhal, 2019; El Dib et al., 2017). Clinical data suggest that 

smokers vape to maintain their habit instead of quitting entirely and have increased total 

daily nicotine use despite a reduction in cigarette smoking (Hajek et al., 2019; Martinez et 

al., 2020; Rehan et al., 2018). Although vaping may promote harm reduction for smoking, 

nicotine exposure is a concern in the youth, and adolescents have demonstrated an increased 

attraction to electronic cigarettes due to vape flavors, belief that vaping is harm-free, 

self-help, and societal pressure (Leventhal et al., 2019; Newcombe et al., 2021). There is 

Ren et al. Page 6

Pharmacol Biochem Behav. Author manuscript; available in PMC 2022 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increasing evidence in humans and animals that e-cigarette use is harmful to youth and the 

unborn child (Pierce et al., 2021; Regan et al., 2021).

4. Conclusion

Due to the dynamic expression of the cholinergic system throughout the lifespan, chronic 

and acute nicotine exposure differentially affect brain structure, function, and behavior 

in the perinatal period, adolescence, and adulthood. The patterns of expression and 

pharmacological and physiological properties of nAChRs are unique to the developmental 

period. Nicotine exposure during the perinatal period disrupts general growth, cardiovascular 

and lung function, the endocrine system, motor function, reward, and attention. Adolescent 

nicotine exposure enhances susceptibility to addiction, impulsivity, and mood disorders. 

While nicotine exposure during adulthood may not have the apparent adverse consequences 

on the brain seen in earlier critical developmental windows, the health risks associated with 

tobacco and nicotine use are equally destructive. The potential neuroprotective effects of 

nicotine in senescence comprise an interesting field of research to explore further.
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Highlights

• Nicotine’s impacts on the brain and behavior are dependent on timing of 

exposure

• Nicotinic acetylcholine receptors have dynamic expression throughout the 

lifespan

• Gestational nicotine impairs offspring somatosensory, auditory, and cognitive 

processing

• Adolescent nicotine disrupts working memory, attention, and reward 

processing

• Nicotine may provide a neuroprotective effect during adulthood and 

senescence

Ren et al. Page 16

Pharmacol Biochem Behav. Author manuscript; available in PMC 2022 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ren et al. Page 17

Table 1:

Summary of behavioral findings and molecular mechanisms of prenatal, adolescent, or adult nicotine exposure 

in rodents, and relevant human studies.

Nicotine Exposure 
(dose, route 
of administration, 
duration)

Rat/Mouse, 
Strain, and Age 
of Exposure

Behavioral Findings and 
Age of Evaluation

Molecular Mechanisms Reference(s) Relevant 
Human 
Studies

Prenatal exposure

3 mg/kg/day, s.c., 2 
weeks

Sprague-Dawley 
rats, prenatal (G4–
18)

Increased cocaine self-
administration in nicotine-
exposed vs. saline-exposed 
offspring (P32–37)

Increased cocaine-
induced c-fos mRNA 
expression in the nucleus 
accumbens

Franke et al., 
2008

Lotfipour et al., 
2014

Increased cocaine-induced 
locomotor activity in 
nicotine-exposed vs. 
saline-exposed offspring 
(P32)

Altered corticolimbic 
dopamine system 
development (increased 
dopamine in prefrontal 
cortex)

Dwyer et al., 
2019

Adolescence: drug-related behavior

60μg/kg, i.v., 4 days Sprague-Dawley 
rats, adolescence 
(P28–31)

Increased self-
administration of cocaine 
in adolescent rats 
pretreated with nicotine vs. 
saline-treated adolescents 
and both saline- and 
nicotine-treated adults 
(P32)

5HT1A receptor 
activation

Dao et al., 2011 Fleming et al., 
1989; Lai et 
al., 2000; 
Nkansah-
Amankra et al., 
2016

Increased self-
administration of 
nicotine, cocaine, 
methamphetamine, 
ethanol, and fentanyl in 
adolescent rats pretreated 
with nicotine vs. saline-
treated adolescents and 
both saline- and nicotine-
treated adults (P32)

D2 receptors, microglia 
(CX3CL1 receptor) 
activation

McQuown et 
al., 2007, 2009; 
Linker et al., 
2020; Cardenas 
et al., 2021

0.4 mg/kg/day, i.p., 
10 days

Sprague-Dawley 
rats, adolescence 
(P34–43)

Exposure to nicotine 
during periadolescence, but 
not a similar exposure in 
the postadolescent period, 
increased intravenous self-
administration of nicotine 
(P75+)

Increase in gene 
expression of the DA 
neuron-specific subunits 
(α5 and α6) and 
of the β2 subunit 
from adolescent nicotine 
exposure

Adriani et al., 
2003

0.16 or 0.64 mg/kg, 
s.c., 2 weeks

Sprague-Dawley 
rats, adolescence 
(P35–50)

Increased 
methamphetamine intake 
in adulthood

None evaluated Pipkin et al., 
2014

0.4 mg/kg nicotine/
day, i.p., 7 days

Sprague-Dawley 
rats, adolescence 
(P30–36)

Long-term increase in 
cocaine reinforcement, 
lack of sensitization 
to nicotine’s locomotor-
activating effects (P37); 
opposite findings in adults

Adolescent nicotine 
treatment increased 
dopamine transporter 
densities and decreased 
serotonin transporter 
densities; in adults, no 
change in dopamine 
transporter, dopamine 
D1 or D2 receptor, 
or serotonin transporter 
densities

Collins and 
Izenwasser 
2004; Collins et 
al., 2004; Reed 
and Izenwasser, 
2017

0.1, 0.5, or 1 mg/kg, 
s.c., 2/daily for either 
1 (acute) or 7 
(repeated) days

CD-1 mice, 
adolescence (P28–
34 or P50–56)

Adults exposed to 
nicotine during early 
but not late adolescence 
had increased preference 
for cocaine, morphine, 

Accumulation of 
deltafosB in the nucleus 
accumbens

Alajaji et al., 
2016
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Nicotine Exposure 
(dose, route 
of administration, 
duration)

Rat/Mouse, 
Strain, and Age 
of Exposure

Behavioral Findings and 
Age of Evaluation

Molecular Mechanisms Reference(s) Relevant 
Human 
Studies

and amphetamine during 
adulthood (P70+)

0.4 mg/kg, i.p., 14 
days

Long-Evans rats, 
adolescence (P28–
42)

Adults exposed to nicotine 
during adolescence had 
increased ethanol self-
administration compared to 
adolescent and adult saline 
exposure and adult nicotine 
exposure

Altered GABA 
transmission and 
chloride homeostasis in 
the ventral tegmental 
area

Thomas et al., 
2018

Adolescence: attention

0.4 mg/kg, s.c., 3/
daily for 10 days

Wistar rats, 
adolescence (P34–
43)

Impaired measures of 
attention in adulthood 
(P70+)

Reduced mGluR2 
protein and function 
on presynaptic terminals 
of PFC glutamatergic 
synapses, enhanced 
releasability of dopamine 
in the mPFC

Counotte et al., 
2009; Counotte 
et al., 2011

Foulds et al., 
1996; Grobe et 
al., 1998’ Xu et 
al., 2005

Adolescence: mood and anxiety

0.03, 0.1, or 0.3 
mg/kg/day, i.p., 10 
days

CD-1 mice, 
adolescence (P36–
48 or P49–61)

Acute nicotine 
administration had 
opposite effects on anxiety 
in adolescents (P48) and 
adults (P61)

A dose-dependent 
reduction of GluR2/3 
immunoreactivity in 
the striatum and 
hippocampus 2 months 
after a pretreatment 
with nicotine during mid-
adolescence

Adriani et al., 
2004

Newcombe et 
al., 2021

0, 0.16, 0.32, or 0.64 
mg/kg, s.c., 2x/day 
for 15 consecutive 
days
0.4 mg/kg, s.c., 
3x/day for 10 
consecutive days

Sprague-Dawley 
rats, adolescence 
(P30–44, P34–44)

Increased depression-like 
and anxiety-like behaviors 
in adulthood (P70+)

Prefrontal cortical 
neuronal hyperactivity, 
selective PFC 
downregulation of 
D1R expression 
levels, increased 
phosphorylation of ERK 
1–2

Iniguez et al., 
2009; Jobson et 
al., 2019

Aging

100 μg/ml in 2% 
saccharin, oral, 14 
days
1 or 8 mg/kg/day, 14 
days

C57BL/6J mice, 
adulthood (P60+)

Nicotine prevents the 
conversion of APP-α to 
APP-β and lowers the 
secretion of APP-β

Nicotine treatment 
enhances expression of 
APP and APLP2 proteins 
in SH-SY5Y cells
The proposed 
mechanism is a 
central role of α4β2 
and α7 nAChRs in 
enhancing the release 
of neuroprotective APP-
α and lowering APP-β 
production

Gutala et al., 
2006; Utsuki et 
al., 2002

Dorn, 1959

Mouse fibroblasts 
stably transfected 
with chick cDNA 
coding the α4 and β2 
nAChR subunit

Human 
neuroblastoma 
SH-SY5Y cells 
and M10 cells

Treatment with nicotine 
increased release of sAPPα 
and at the same time 
lowered Aβ levels in both 
SH-SY5Y and SH-SY5Y/
APPsw cells expressing α3 
and α7 nAChR subtypes

Nicotine-induced 
attenuation of β-
amyloidosis is mediated 
by nAChRs and not by a 
direct effect of nicotine

Mousavi and 
Hellström-
Lindahl, 2009

200 μg/ml in 
drinking water, 3 
weeks

Immortalized WT 
and SIRT6 null 
fibroblasts
Conditional 
SIRT6 
overexpressing 
mice (C57BL/6J 

Reduced abundance and 
secretion of TNFα in a 
SIRT6-dependent manner, 
promoting neuron survival

Suppression of SIRT6 
increases AKT signaling 
and reduces the secretion 
of TNFα, both of 
which likely mediate the 
impact of SIRT6 on DA 
neuron survival and PD 
pathology

Nicholatos et 
al., 2018
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Nicotine Exposure 
(dose, route 
of administration, 
duration)

Rat/Mouse, 
Strain, and Age 
of Exposure

Behavioral Findings and 
Age of Evaluation

Molecular Mechanisms Reference(s) Relevant 
Human 
Studies

background), 
Adulthood (P60+)

G: Gestational day, P: Postnatal day, i.p.: intraperitoneal, i.v.: intravenous, s.c.: subcutaneous.
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