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Discriminant analysis and binary 
logistic regression enable more 
accurate prediction of autism 
spectrum disorder than principal 
component analysis
Wail M. Hassan1, Abeer Al‑Dbass2, Laila Al‑Ayadhi3,4, Ramesa Shafi Bhat2 & 
Afaf El‑Ansary4,5*

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social 
interaction and restricted, repetitive behavior. Multiple studies have suggested mitochondrial 
dysfunction, glutamate excitotoxicity, and impaired detoxification mechanism as accepted etiological 
mechanisms of ASD that can be targeted for therapeutic intervention. In the current study, blood 
samples were collected from 40 people with autism and 40 control participants after informed 
consent and full approval from the Institutional Review Board of King Saud University. Sodium (Na+), 
Potassium (K+), lactate dehydrogenase (LDH), glutathione-s-transferase (GST), and mitochondrial 
respiratory chain complex I (MRC1) were measured in plasma of both groups. Predictive models were 
established to discriminate individuals with ASD from controls. The predictive power of these five 
variables, individually and in combination, was compared using the area under a ROC curve (AUC). 
We compared the performance of principal component analysis (PCA), discriminant analysis (DA), 
and binary logistic regression (BLR) as ways to combine single variables and create the predictive 
models. K+ had the highest AUC (0.801) of any single variable, followed by GST, LDH, Na+, and 
MRC1, respectively. Combining the five variables resulted in higher AUCs than those obtained using 
single variables across all models. Both DA and BLR were superior to PCA and comparable to each 
other. In our study, the combination of Na+, K+, LDH, GST, and MRC1 showed the highest promise 
in discriminating individuals with autism from controls. These results provide a platform that can 
potentially be used to verify the efficacy of our models with a larger sample size or evaluate other 
biomarkers.

The use of multivariate profiles as diagnostic biomarkers of autism spectrum disorder (ASD) is often superior 
to the use of individual biomarkers1–4. Multiple methods have been used to combine individual biomarkers into 
multivariate profiles. We have previously used principal component analysis (PCA) for this purpose1. PCA is a 
statistical method that aims to simplify the interpretation of high-dimensional data by displaying data points 
in low-dimensional space. This is accomplished by displaying the data in a new coordinate system designed to 
maximize the amount of variance aligned with each axis. PCA consolidates clusters of correlated variables into 
common dimensions, known as eigenvectors or principal components (PCs), which serve as axes in the new 
coordinate system. The first PC (PC1) is positioned so that it accounts for the most variance that can be explained 
in one dimension. PC2 is orthogonal to (i.e., uncorrelated with) PC1 and is positioned in such a way that it 
explains the most possible of the remaining variance. Other PCs are selected in a similar manner culminating 
in as many PCs as variables, ordered by the amount of explained variance5,6. Although the number of PCs is 
equal to the number of variables, most of the variation in the data are contained in the first PCs. In practice, 
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the first two or three components account for most of the variance and can, thus, be used to graph the data in 
a new two- or three-dimensional coordinate system with minimal data loss. PCA transforms values across all 
variables using coefficients that dictate how much each variable contributes to any given principal component. 
This process computes a new value, known as a component score, for each data point for each PC. These scores 
are then used to plot the data in the new coordinate system5, resulting in what is commonly known as score 
plots. To create multivariate biomarkers, we inspected PCA score plots to identify the PC along which groups 
(e.g., ASD and control participants) were most distinctively separated, and used the corresponding scores as a 
combined biomarker1. The rationale is that these scores were weighted sums of the original values, with each 
variable contribution proportional to its correlation with the PC that accounts for most of the intergroup vari-
ance. This creates one score per subject that harbors information from all variables with proportionally greater 
contributions from the most discriminatory variables.

Other ways to compute multivariate biomarkers include using Z-scores. Abruzzo et al.3 combined variables by 
calculating the sum of Z-scores over all variables for each subject. We have previously compared the performance 
of PCA and sum of Z-scores (Eq. 1) using the area under a receiver operating characteristic (ROC) curve (AUC) 
method and found that the use of PCA was superior1. Both methods rely on the variance contained in the data set 
without directly focusing on intergroup variance. In PCA, the orientation of PCs is aligned with maximum total 
variance contained in the data set. In the sum-of-Z-scores method, transformed values are reliant on dispersion 
around the means of variables, also, in the whole data set.

where Z is the Z-score, x is the observed value for any given variable, μ is the mean of the variable over all sub-
jects, and σ is the standard deviation.

Discriminant analysis (DA) is conceptually similar to PCA, except that its computation is geared towards a 
different goal, namely the discrimination between user-defined groups. Therefore, the main difference between 
PCA and DA is that the former maximizes the amount of variance accounted for by each PC, while the latter 
maximizes group separation. In theory, DA should be superior in discriminating between groups because, unlike 
PCA, DA directly selects the most discriminatory eigenvectors or discriminants6. The mathematical basis of 
binary logistic regression (BLR) is conceptually distinct from both PCA and DA. Instead of defining eigenvec-
tors, it calculates odds ratios and probabilities of falling into one of two groups (e.g., control or ASD group). The 
odds ratio is the probability of falling in one of the two groups divided by the probability of falling in the other; 
these probabilities and odds ratios are calculated for each participant. The coefficients used in the calculation of 
a BLR model are aimed at maximizing the model’s fit or the model’s ability to correctly classify participants into 
their respective groups6. Therefore, both DA and BLR consider the a priori knowledge of group membership, 
while PCA ignores such knowledge. Like PCA, DA and BLR both provide single scores for each participant that 
have been derived from multiple observed variables, which makes it possible to combine biomarkers using any 
of these techniques.

In this study, we compare the utility of DA, BLR, and PCA in creating multivariate biomarkers of ASD using 
first discriminant (Disc1) scores, predicted probabilities (PProb), and PC1 scores, respectively. We hypothesize 
that DA and BLR should show higher accuracy in distinguishing ASD and control participants compared to 
PCA. The goal of this study is to empirically test this hypothesis. For this purpose, we selected five analytes 
or variables, K+, Na+, LDH, GST, and MRC1, all of which show potential diagnostic value. These variables are 
directly or indirectly related to selected etiological mechanisms in ASDsuch as channelopathy, mitochondrial 
dysfunction, oxidative stress, and glutamate excitotoxicity7–12. It is well accepted that ion transport across the 
membrane regulates diverse and important neuronal cell functions, ranging from generation of action potential 
to gene expression and cell morphology. Therefore, it is not surprising that channelopathies have intense effects 
on ASDbrain functions7. Genetic analyses of individuals with ASDrevealed damaging mutations in several K+ 
channel types, which supports the notion that their down regulation may play a critical role in ASDpathogenesis8. 
It is widely accepted that K+, Na+, and H+ ion channels are involved in controlling mitochondrial function13,14, as 
the movement of these ions across the mitochondrial membrane is essential in establishing membrane potential 
and maintaining H+ flux. Mitochondrial channelopathies have also been causally linked to ASD pathogenesis15. 
K+ channels play an important role in excitotoxicity, a pathogenic mechanism that has been linked to ASD and 
is provoked by continuous overstimulation of glutamate receptors and oxidative neuronal damage16–18. Accord-
ingly, the five selected variables of the current study have been well considered and repeatedly shown to correctly 
predict relevant clinical presentation of ASD across a variety of treatments and populations, thus, their use is 
entirely justified and appropriate.

Results
Initial evaluation of the analytes.  Five plasma variables were tested: K+, Na+, LDH, GST, and MRC1. 
Measurements on all five variables significantly differed between ASD patients and age-matched typically 
developing volunteers as determined by an unpaired student’s t-test (p values ranging from 8.7 × 107 to 0.0038) 
(Fig. 1). The initial evaluation of the utility of the five variables in distinguishing between ASD and control vol-
unteers was accomplished by examining their natural partitioning using PCA and hierarchical clustering. Both 
methods showed partial separation of ASD patients from control participants. We show using PCA that the 
separation of the two groups was mostly stretched along PC1. The statistical significance of PC1 was validated 
using Monte Carlo simulation, but it only explained 35% of the data set variance. A Bartlett’s test of sphericity p 
value of 0.005 indicated that the use of PCA in our data set was appropriate, and a Kaiser–Meyer–Olkin (KMO) 
of 0.659 was consistent with a barely acceptable sample size. According to our PCA results, LDH and K+ were 

(1)Z =
x − µ
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the most important in separating autistic patients from controls as they had the largest contributions to PC1, 
followed by Na+ and MRC1. GST was the least important in this regard (Fig. 2). Hierarchical clustering results 
showed incomplete separation between ASD and control subjects, with ASD patients predominating two large 
branches and controls clustering in one central branch of the dendrogram (tree) (Fig. 3).

Generating a group‑membership model and a multivariate biomarker profile using discrimi‑
nant analysis.  We first confirmed the absence of highly correlated variables and the homogeneity of vari-
ance across groups using Pearson Correlation Coefficient and Box’s M test, respectively (Table 1a). As explained 
in the materials and methods section, these criteria are both important whenever the use of DA is considered. 
We then generated two DA models, one containing all five analytes (all-inclusive model), and another exclusively 
comprised of the analytes that significantly improved the model (stepwise model). Both models were highly 
significant, as indicated by their respective Chi-square p values (2.66 × 10–9 and 2.24 × 10–9) and explained more 
than 45% of data variance as indicated by the corresponding Wilks’ Lambda statistics (Table 1b). The stepwise 
model contained four analytes: K+, GST, MRC1, and LDH, in descending order of their contribution to the 
model as indicated by their respective standardized canonical discriminant function coefficients. K+ had the 
largest portion of any biomarker’s variance associated with group membership (26.8%), which highlights the 
importance of this biomarker to the model. Close to 90% of Na+ variance did not explain group membership 
and, therefore, it was not incorporated into the model (Table 1c). The all-inclusive model showed comparable 
standardized canonical discriminant function coefficients to the stepwise model. Since the Wilks’ Lambda sta-
tistic and group means were determined before model construction, these values were identical for both models. 
Since there were two groups (i.e., ASD and control), a single discriminant function was extracted in each model. 
The all-inclusive model had slightly higher eigenvalue (0.904) and canonical correlation (0.689) than the step-
wise model (eigenvalue: 0.837; canonical correlation: 0.675) (Table 1d). The relatively high eigenvalues of both 
models indicate that Disc1 explained a large amount of variance in each model; combined with moderate to bor-
der-line high canonical correlation, it indicates a discriminant function with fairly high discriminating power. 
Finally, we evaluated the rate of correct classification (RCC) of ASD and control participants based on our discri-
minant models. Thirty-one control participants (77.5%) and 34 ASD participants (85%) were correctly classified, 
amounting to an overall RCC of 81.3% using the stepwise DA model. Using the all-inclusive model, 33 (82.5%) 
control and 32 (80.0%) ASD participants were correctly classified, also with 81.3% overall RCC (Table 2).

Generating the binary logistic regression model.  A stepwise and all-inclusive BLR models were con-
structed. The stepwise model was constructed in three steps, all of which were highly significant as indicated 
by their respective Chi-square p values that were lower than 0.05 and Hosmer–Lemeshow p values greater than 
0.05. The model’s ability to distinguish between ASD and control participants improved at each step as indicated 
by the progressively increasing Nagelkerke’s pseudo-R2 values (Table 3). The all-inclusive model was also highly 
significant with a comparable Nagelkerke’s pseudo-R2 value. Considering regression weights, we conclude that 
MRC1 (highest regression weights) was the most influential in both models, followed by GST and K+. Na+ and 

Figure 1.   Five biomarkers differ between ASD patients (n = 40) and healthy controls (n = 40). Potassium (K), 
sodium (Na), lactate dehydrogenase (LDH), glutathione S-transferase (GST), and mitochondrial respiratory 
chain complex I (MRC1) were measured in plasma samples collected from autistic and age-matched healthy 
volunteers. A two-tailed student’s t-test was used to estimate statistical significance. Figure was generated in 
GraphPad Prism version 6 for Windows, GraphPad Software, San Diego California USA, https://​www.​graph​pad.​
com.

https://www.graphpad.com
https://www.graphpad.com
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LDH were not incorporated in the stepwise model and were not significant in the all-inclusive model (Table 3). 
When empirically tested for their ability to correctly classify participants, the all-inclusive model slightly over-
performed the stepwise model with overall RCCs of 82.5% and 80.0%, respectively (Table 3).

Assessment of the predictive power of potential biomarkers using receiver operating charac‑
teristic curves.  The next step was to test the predictive power of the five variables individually and in combi-
nation, with emphasis on comparing PCA, DA, and BLR. We used the AUC method for this purpose. Our results 
indicate that K+ had the highest AUC (0.801) of any single variable, followed by GST, LDH, Na+, and MRC1, 
respectively. Combining the five variables resulted in higher AUCs than those obtained using single variables. 
Creating combined variables using PCA resulted in an AUC of 0.883, while using DA and BLR resulted in AUCs 
of 0.897 and 0.903, respectively (Fig. 4). We also recorded the cutoff value for each variable that corresponded to 
80% sensitivity and the corresponding specificity. In line with the AUC results, K+ and GST yielded the highest 
specificity (62.5% and 77.5%, respectively) and PC1 yielded equal specificity to that produced by GST. Both DA 
and BLR were superior to PCA and comparable to each other (Table 4).

Discussion
In congruence with our previous studies1,19 and the studies of other groups2–4,20–22, we show that the use of 
combined biomarkers augments their diagnostic efficacy. In addition, we directly compare the utility of PCA, 
DA, and BLR in combining potential ASD diagnostic biomarkers. Our results clearly demonstrate that DA and 
BLR are superior to PCA in discriminating between ASD and control subjects. A pertinent question is whether 
these results are broadly applicable to other biomarker panels and participant populations. Given that PCA is 
not computed specifically to maximize the distinction between groups, while DA and BLR are, we predict that 
DA and BLR will remain superior to PCA regardless of the biomarkers and populations studied. In theory, PCA 
can be equivalent to DA in differentiating between two groups whenever PC1 is perfectly parallel to Disc1. In 
such case, the scores of PC1 would likely be as good as Disc1 scores when used to combine biomarkers. The 
problem is that this is seldom, if ever, the case; there is almost always some degree of diversion between the PC 
and the line connecting group centroids in DA (i.e., Disc1). In practice, however, combining multiple biomarkers 

Figure 2.   Separation of ASD (n = 40) and age-matched healthy (n = 40) subjects using principal component 
analysis. The analysis was performed using five variables: potassium (K), sodium (Na), lactate dehydrogenase 
(LDH), glutathione S-transferase (GST), and mitochondrial respiratory chain complex I (MRC1). Table (top 
right) shows variable contributions to the first principal component. Graph (bottom) shows the results of Monte 
Carlo simulation with eigenvalues plotted for raw data and 50th and 95th percentile simulated data. Results of 
Kaiser–Meyer–Olkin measure of sampling adequacy (KMO) and Bartlett’s test of sphericity are indicated. Figure 
panels were compiled in Microsoft PowerPoint Slide Presentation Software, Microsoft 365, Microsoft.com. PCA 
panel (top) was generated in BioNumerics version 6.6, Applied Maths, Austin, Texas, https://​www.​bionu​merics.​
com. Monte Carlo simulation panel (bottom) was generated in IBM SPSS Statistics for Windows, Version 27.0, 
IBM Corp., Armonk, New York, https://​www.​ibm.​com.

https://www.bionumerics.com
https://www.bionumerics.com
https://www.ibm.com
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with strong predictive power using PCA has returned perfect AUCs. For example, we have previously reported 
AUCs equal or close to 1 (i.e., perfect sensitivity and specificity) when using a panel of 7 or 9 biomarkers1,19 or 
the ratios of 5 pairs of biomarkers19. In these cases, the predictive power and number of biomarkers seemed to 
have offset the imperfection of using PCA scores as a means of combining biomarkers. Another advantage of 
using specifically BLR, but not DA, over PCA is that BLR does not require the absence of collinearity nor does 
it require homoscedasticity (homogeneity of variance–covariance) across groups6. Therefore, BLR is most suit-
able for data sets that lack these characteristics. We, therefore, encourage the use of DA and BLR in creating 
multivariate biomarkers in future studies. Although it is likely that our results will be reproducible in the context 
of other biomarkers and populations, we acknowledge the need for empiric verification of our predictions and 
precise identification of the limitations and clinical utility of PCA, DA, and BLR. That is particularly true given 
our sample size, which although is sufficient for PCA and DA by available statistical standards and is comparable 
to the numbers typically used in phase I trials, it is much smaller than the numbers of participants typically used 
in phase II and III clinical trials23.

There are two approaches when constructing DA and BLR models: one restricts the model to the most useful 
biomarkers (stepwise), while the other forces all biomarkers into the model (all-inclusive). The stepwise approach 
can be advantageous as it reduces the number of analytes needed to achieve the distinction between groups and 
may, therefore, result in cost, labor, and time savings. On the other hand, our data show that incorporating all 

Figure 3.   Separation of ASD (n = 40) and age-matched healthy (n = 40) subjects in hierarchical clustering. The 
dendrogram was constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 
algorithm using a similarity matrix generated using Canberra distances (Eq. 2). Dendrogram branches and 
corresponding squares (on the far right) are colorized by group (autistic: red, control: green). Black-and-white 
heat maps represent relative level of the corresponding variables. Figure was generated using BioNumerics 
version 6.6, Applied Maths, Austin, Texas, https://​www.​bionu​merics.​com.

https://www.bionumerics.com
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biomarkers in the model seemed to improve the DA model’s eigenvalue and canonical correlation, and BLR 
model’s R2 and RCC. Additional studies are also needed to determine the breadth of applicability of these find-
ings, and whether it is best to use a restrictive approach, such as the stepwise models described here, or a broader 
range of biomarkers.

In the current study, DA and BLR models differed in their utilization of each of the five analytes tested. The 
top three most important biomarkers were K+, GST, and MRC1, in descending order of importance in DA models 

Table 1.   Discriminant models data. (a) Test results aiming to evaluate data suitability for discriminant 
analysis. (b) Model significance and fitness indicators. (c) Indicators of importance of individual variables to 
the model. SCDFC indicates the contributions made by each variable to the model, Wilks’ Lambda indicates 
the amount of variance that is unrelated to group membership with the percentage of relevant variance 
in parentheses, and the F test p value indicates the significance of differences between group means for 
each variable. (d) Canonical discriminant function ability to discriminate between groups. The higher the 
eigenvalue and canonical correlation, the better the model’s ability to discriminate between groups. Results of 
the all-inclusive and stepwise models are shown separated by a forward slash in (b), SCDFC column in (c), and 
(d). SCDFC standardized canonical discriminant function coefficient, NC not calculated.

(a) Data suitability for discriminant analysis

Pooled within-groups matrices (correlation between predictor variables) Box’s M test p value 
(cutoff > 0.001)K+ Na+ LDH MRC1 GST

K+ 1 −0.065 −0.215 −0.016 0.12

0.015

Na+ −0.065 1 0.136 −0.038 −0.03

LDH −0.215 0.136 1 −0.129 −0.103

MRC1 −0.016 −0.038 −0.129 1 0.049

GST 0.12 −0.03 −0.103 0.049 1

(b) Model fitness

Wilk’s Lambda p value

0.525/0.545 2.66 × 10–9/2.24 × 10–9

(c) Variable contribution to the discriminant model and inter-group difference of means

SCDFC
Wilks’ Lambda (equal for both 
models)

F test p value (cutoff < 0.01) 
(equal for both models)

K+ −0.626/0.661 0.732 (26.8%) 8.66 × 10–7

GST 0.529/−0.547 0.876 (12.4%) 0.0013

MRC1 −0.392/0.414 0.871 (12.9%) 0.0011

LDH 0.294/−0.341 0.839 (16.1%) 0.0002

Na+ (excluded stepwise) 0.276/NC 0.898 (10.2%) 0.0038

(d) Discriminant function discriminatory power

Eigenvalue Canonical correlation

First discriminant function 0.904/0.837 0.689/0.675

Table 2.   Rate of correct classification based on discriminant analysis. Participants [autistic (n = 40) and 
controls (n = 40)] were classified as either autistic or control based on the discriminant model that had been 
developed from five plasma biomarkers (potassium, sodium, lactate dehydrogenase, glutathione S-transferase, 
and mitochondrial respiratory chain complex I). The number of classified subjects is shown in parentheses.

Participants’ group Rate of correct classification Rate of misclassification Biomarker merger method

Control 77.5% (31) 22.5% (9)
Discriminant analysis
Stepwise (only significant predictor variables)ASD 85.0% (34) 15.0% (6)

Overall 81.3% (65) 18.8% (15)

Control 82.5% (33) 17.5% (7)
Discriminant analysis
All-inclusive (all predictor variables)ASD 80.0% (32) 20.0% (8)

Overall 81.3% (65) 18.8% (15)

Control 77.5% (31) 22.5% (9)
Binary logistic regression
Stepwise (only significant predictor variables)ASD 82.5% (33) 17.5% (7)

Overall 80.0% (66) 20.0% (16)

Control 80.0% (32) 20.0% (8)
Binary logistic regression
All-inclusive (all predictor variables)ASD 85.0% (34) 15.0% (6)

Overall 82.5% (66) 17.5% (14)
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Table 3.   Quality assessment of binary logistic regression models. R2 Nagelkerke’s pseudo-R2 (0–1; 1 
corresponds to perfect identification of group membership), HL Hosmer–Lemeshow test p value (cut-
off > 0.05).

Chi-square p value HL test R2 Variables entered (regression weights/p value)

Stepwise model

Step 1 5.19 × 10–7 0.833 0.360 K+ (0.223/7.4 × 10–5)

Step 2 1.85 × 10–8 0.215 0.479 K+ (0.223/1.4 × 10–4)
GST (−0.255/0.007)

Step 3 1.82 × 10–9 0.840 0.560
MRC1 (0.509/0.014)
GST (−0.257/0.007)
K+ (0.225/3.3 × 10–4)

All-inclusive model (all predictor variables)

One step 4.7 × 10–9 0.446 0.596

MRC1 (0.419/0.048)
GST (−0.222/0.015)
K+ (0.194/0.003)
Na+ (−0.010/0.227)
LDH (−0.004/0.209)

Figure 4.   Testing the predictive power of five biomarkers using receiver operating characteristic curve. Areas 
under the curve (AUC) and p values are indicated. Analysis was performed on ASD (n = 40) and healthy (n = 40) 
volunteers. PC1: first principal component scores computed in principal component analysis. Disc1: first 
discriminant scores computed in discriminant analysis. PProb predicted probability computed by binary logistic 
regression, K plasma potassium, Na plasma sodium, LDH plasma lactate dehydrogenase, GST plasma glutamate 
S-transferase, MRC1 mitochondrial respiratory chain complex I activity, PC1 the first principal component in 
principal component analysis. Figure was generated using IBM SPSS Statistics for Windows, Version 27.0, IBM 
Corp., Armonk, New York, https://​www.​ibm.​com.

https://www.ibm.com
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and ascending order of importance in BLR models. The outcome of ROC analysis concurred with DA—at least 
more so than with BLR—since K+ and GST yielded the largest AUC and highest specificity among all analytes. 
In addition, MRC1, which was the most important biomarker in BLR models, along with Na+, had the smallest 
AUCs and lowest specificities. Inquisitively, in the stepwise model of BLR, K+ and GST were introduced in the first 
and second steps, respectively, while MRC1 was not introduced until the third step. Furthermore, K+ and GST 
performed well in larger panels of biomarkers. We have previously reported that GST returned one of the largest 
AUCs in a nine-biomarker panel (gamma-aminobutyric acid, dopamine, serotonin, GST, vitamin E, mercury, 
lead, gamma-interferon-inducible protein 16, and oxytocin)1 and a twelve-biomarker panel (LDH, glutathione, 
GST, creatine kinase, coenzyme Q10, caspase 7, and melatonin, lactate, pyruvate, aspartate aminotransferase, 
alanine aminotransferase, and electron transport chain complex I)24. In another study, we showed that K+ and 
GST produced the largest AUCs in another nine-biomarker panel (Na+, K+, LDH, glutathione, GST, creatine 
kinase, coenzyme Q10, caspase 7, and melatonin)19. Taken together, our data suggest that K+ and GST had the 
highest potential in distinguishing between ASD and control participants, followed by MRC1.

Despite the heterogeneity and the multifactorial nature of ASD and the diverse functions of our biomarkers, 
our participants showed a homogeneous response across all five biomarkers. This is not unpredictable since these 
biomarkers are integral to pathways known to be impaired in ASD. Oxidative stress, mitochondrial dysfunction, 
and channelopathy have all been consistently reported in the local ASD community in Saudi Arabia18,19,24. These 
same dysfunctions have also been linked to ASD in various other geographical locations10,14,25–28, implying a 
global, rather than a local, trend.

The reported potential of blood K+ levels in the discrimination between individuals with autism and controls 
is well supported in the literature and could be related to glutamate excitotoxicity, a recognized pathogenic mech-
anism implicated in ASD. Several ASD-related SNPs were identified in CNTNAP2, a member of the neurexin 
family of transmembrane proteins that regulates neuron-astrocyte interactions and K+ channel clustering29,30. 
These same variants of CNTNAP2 locus were found to correlate with language impairment, which is a core 
feature of ASD; reduced number of GABAergic interneurons, which represent an integral part of glutamate 
excitotoxicity; and abnormal neuronal synchronization30–32. A growing body of evidence has linked ion channel 
dysfunction, including K+ channel dysfunction, to vulnerability to autism14. K+ channel defects may contribute to 
ASD pathogenesis by altering important brain neural networks. Since a single astrocyte may control the activity 
of thousands of synapses, defective astrocyte K+ ion channels could plausibly contribute to ASD pathogenesis33,34. 
Additionally, treatment with the antipsychotic drug risperidone alleviated excessive grooming and hyperactivity 
in rodent models of autism, suggesting a potentially useful therapeutic intervention that could improve certain 
symptoms of autism related disorders and schizophrenia through increasing the number of GABAergic interneu-
rons and potentially restoring the function of CNTNAP2 variants-related defects of K+ channels35,36. Depletion 
of intracellular K+ can also be related to apoptosis or neuronal death through activation of caspases37,38. Multiple 
studies have shown that altered K+ current following glutamate N-methyl-d-aspartate (NMDA) receptor activa-
tion, a major event in glutamate excitotoxicity, induces apoptotic changes in hippocampal neurons in vitro39–41.

In addition to K+, GST showed a high predictive value, when used as a single biomarker (Fig. 4), compared 
to the other three variables we have investigated. The central nervous system is particularly sensitive to oxidative 
stress because of the formation of reactive oxygen species (ROS) concomitant with the alteration of the balance 
between prooxidant and antioxidant molecules and deregulation of GSH homeostasis42,43. The significantly 
higher utility of GST as an ASD biomarker reported in the present study could be related to epilepsy—a common 
co-morbidity among ASD patients—and to neurobiological, cognitive, psychological, and social impairments44. 
Recently, resistance to anti-epileptic drugs has been attributed to abnormal GST levels, which is the most impor-
tant detoxification enzyme known to show altered levels in several neurological disorders44,45. GST catalyzes the 
conjugation of metabolites to GSH, favoring the removal of epoxide metabolites that are generated during the 

Table 4.   Sensitivity and specificity as determined by ROC analysis. PC1 first principal component scores 
computed in principal component analysis, Disc1 first discriminant scores computed in discriminant analysis, 
PProb predicted probability computed by binary logistic regression, K+ plasma potassium, Na+ plasma sodium, 
LDH plasma lactate dehydrogenase, GST plasma glutamate S-transferase, MRC1 mitochondrial respiratory 
chain complex I activity.

Biomarker Cutoff Sensitivity (%) Specificity (%)

K+ 29.799043 80.0 62.5

Na+ 148.350000 80.0 40.0

LDH 207.648000 80.0 55.0

GST 8.281250 80.0 77.5

MRC1 3.972000 80.0 40.0

PC1 1.217333 80.0 77.5

Disc1 −0.227751 80.0 87.5

PProb 0.436506 80.0 85.0

Caspase 7 30 27 57

Coenzyme Q10 30 27 57

Melatonin 32 29 61
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metabolism of antiepileptic drugs46. The relevance of MRC1 to ASD is similarly supported by its physiological 
role as a component of the impaired electron transport chain oxidative phosphorylation bioenergetics known 
to have profound effects on physiological neurogenesis and on the proper establishment of neuronal function in 
the brain of ASD patients24. Increase of LDH is consistent with altered energy metabolism previously reported 
in Saudi ASD patients47.

Finally, we observed remarkable increases of AUC were observed when combining the five variables (K+, Na+, 
LDH, GST and MRC1) using PC1 scores, Disc1 scores, and the PProb from BLR. The increased AUCs could have 
resulted from combining biologically diverse biomarkers, which might have enabled the proper identification 
of participants despite ASD heterogeneity.

Conclusion
Multivariate biomarkers emerge as a potentially powerful tool in ASD diagnostics and beyond. DA and BLR 
are more suited for creating such multivariate biomarkers, and the latter is more suited for data sets that do 
not satisfy DA assumptions. Future studies should investigate larger populations and aim to optimize both the 
mathematical approach and the selection of individual analytes with the ultimate goal of maximizing specificity, 
sensitivity, and reproducibility across diverse patient populations.

Materials and methods
Participants.  This work was ethically approved by the ethical committee of King Khalid Hospital, King Saud 
University (Approval number is 11/2890/IRB). All subjects enrolled in the study had written informed consent 
provided by their parents and assented to participate if developmentally able. All methods were performed 
in accordance with the relevant guidelines and regulations. The diagnosis of ASD was ascertained in all ASD 
participants using the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation 
Schedule (ADOS) and 3DI (Developmental, dimensional diagnostic interview) protocols. The control group was 
recruited from the well-being pediatric clinic at King Khalid University Hospital. Subjects were excluded from 
the investigation if they had dysmorphic features, or diagnosis of fragile X or other severe neurological (e.g., sei-
zures), psychiatric (e.g., bipolar disorder) or known medical conditions. All participants were screened through 
parent conversation for current and earlier physical illness. Children with known pulmonary, cardiovascu-
lar, endocrine, liver, kidney, or other health problems were excluded from the study. All patients and controls 
were receiving average local diet and were not on any nutrient-restrictive diet. Forty male mild-moderate ASD 
patients and 40 typically developing participants were included in the study (Table 5). Data for 13 ASD patients 
and 24 control participants have been included in a previous study investigating nine biomarkers, including four 
of the five biomarkers investigated in this study (K+, Na+, LDH, and GST)19. Using fewer variables in this study 
enabled the inclusion of a larger number of participants than what was possible in the previous study. We also 
included MRC1 in the current study, which was not included in previous work.

Specimen collection.  Whole blood samples were collected by venipuncture after overnight fasting. Each 
10 ml sample was collected in heparin tubes. Plasma was purified by centrifugation promptly after sample col-
lection and was store at − 80 °C until used for analysis.

Biochemical assays.  Plasma levels of K+, Na+, LDH, GST, and MRC1 were measured according to the pro-
tocol previously published by Khemakhem et al.24. K+, Na+, LDH were measured using diagnostic kits, products 
of United Diagnostics Industry (UDI), Dammam, and KSA. GST was measured using spectrophotometer at 
340 nm, and activity was indicating in μmol/mL/min23. Positive and negative controls were measured to check 
the validity of the measurement, and to determine the detection limits. MRC1 was measured using ELISA kit, 
product of MyBiosource USA. This kit is suitable to assay the levels of ETCComplex I in undiluted human 
plasma samples using a quantitative sandwich ELISA technique. Detection limit of this kit is 3.12–100 ng/ml.

Principal component analysis.  PCA was performed using either BioNumerics version 6.6 (Applied 
Maths, Austin, Texas) or IBM SPSS version 24 (IBM Corporation, Armonk, NY) as previously described1,48. 
Briefly, PCA was performed on covariance matrices and data were normalized by subtracting the mean and 

Table 5.   Demographic data of autistic and control participants.

ASD (N = 40) Control (N = 40)

Age/years 7.5 ± 4.28 7.6 ± 3.96

Males 40 40

Females 0 0

Born by caesarian section 60% 30%

Affected individual/family 1 0

Paternal age/year 37.06 ± 4.23 34 ± 4.82

Maternal age/year 28.56 ± 4.27 27.96 ± 4.03

Prematurity 0 0
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dividing by the variance. Normalization was performed to minimize biased contributions of variables to PCs 
that may result due to unequal scale across variables. In other words, normalization was performed to elimi-
nate the dominance of variables expressed in large numerical values and the underrepresentation of variables 
expressed in small numerical values. Bartlett’s test of sphericity provided a p value that represents the likelihood 
that a data set has no correlated variables. In the absence of correlated variables, PCA generates as many PCs as 
variables with each representing one variable, which makes the use of PCA in such data sets useless. Therefore, 
a p value < 0.05 is required for PCA to be useful49. KMO measure of sampling adequacy was used to evaluate the 
adequacy of sample size for PCA to be meaningful50,51.The significance of principal components was determined 
using Monte Carlo simulation—also known as parallel Analysis—using Brian O’Connor’s syntax for SPSS52. 
Bartlett’s test of sphericity, KMO, and Monte Carlo simulation were performed using IBM SPSS version 24.

Discriminant analysis.  A few verification tests were performed to confirm the suitability of the data for 
DA. Predictor variables should not be highly correlated53, which was determined by inspecting a Pearson Cor-
relation matrix that can be found in SPSS DA analysis output under “Pooled Within-Groups Matrices”. Correla-
tions with r <|0.5| were considered acceptable in the current study. Variance–covariance homogeneity, which is 
one of the assumptions of DA, was tested using Box’s M test. The null hypothesis of Box’s M states that dependent 
variables covariance matrices are equal across groups, which needs to be retained to satisfy the assumption of 
covariance matrices homogeneity54. Box’s M null hypothesis is rejected at a p value > 0.00155. Our sample size is 
80 participants, 40 per group. Sample size requirement in DA and similar techniques is not well defined in the 
literature. Based on currently available data, it has been suggested that the size of the smallest group in a data 
set should outnumber the independent variables by at least three-fold56. Since we have five independent vari-
ables, our sample size well exceeds this standard. The overall significance of the model was evaluated using the 
Wilks’ Lambda statistic, which corresponds to the proportion of discriminant function variance that cannot be 
explained by differences in group membership (i.e., variance in a single discriminant or a set of discriminants 
that is nonpredictive of group membership). Therefore, Wilks’ Lambda is a “badness-of-fit” measure with lower 
values indicative of a better discriminant model. The values of the Wilks’ Lambda statistic may range from 0 
to 1, with 0 indicating perfect group discrimination and 1 indicating lack of any discrimination. A chi-square 
statistic is used to test the null hypothesis stating that the discriminant model is as good as random chance 
alone, which is rejected at p values < 0.056. We have also evaluated the efficacy of discriminant functions and 
the relative importance of each of the five biomarkers for group discrimination. Indicators of efficacy of dis-
criminant functions include eigenvalues and canonical correlations. The higher the eigenvalues, the higher the 
amount of variance a discriminant function explains. Canonical correlation is the function’s correlation with the 
groups, with more efficacious functions having higher correlations. The importance of individual biomarkers 
to the model was evaluated in two ways. One way was to evaluate the ability of each biomarker to discriminate 
between groups without controlling for its correlation with other biomarkers. To accomplish this, two values 
were considered. The significance of differences in group means on each variable was tested using an F-test 
with a Bonferroni-corrected p value of 0.01 (0.05/number of variables)6 .The other value we used to evaluate 
the importance of individual biomarkers was the Wilks’ Lambda statistic, which showed how much of the bio-
markers variance was not explained by inter-group differences; the closer this value is to zero, the better the dis-
criminatory power of the corresponding biomarker in isolation (as opposed to as part of a model6.The other way 
individual biomarkers were evaluated was by looking at their scalers (i.e., standardized canonical discriminant 
function coefficients), which directly measures the contribution of biomarkers to the discriminant model. The 
model is further validated by calculating the rate of correctly classifying participants into their respective groups 
based on the model, or RCC. For the purposes of RCC calculations, the discriminant model was recalculated for 
each classification step (i.e., for each participant), with the participant being classified left out of the model. RCC 
was compared when using stepwise DA versus DA performed with all independent variables incorporated into 
the model. DA and associated tests were performed using IBM SPSS version 24.

Binary logistic regression.  BLR uses data from one or more predictor variables (e.g., biomarkers) to pre-
dict the odds of a binary dependent variable (e.g., odds of being diagnosed with ASD or being free of such 
diagnosis). The odds are calculated using Eq. (2). Since the odds themselves rarely form a linear relationship 
with the dependent variable, the predictive model is built around the natural log of odds (Li). Li is computed by 
selecting a regression coefficient for each predictor variable aiming to maximize the goodness of fit of the model 
(Eq. 3). Regression coefficients of each predictor variable represent the average change in this variable with each 
unit change in the dependent variable while accounting for the effects of other independent variables. The odds 
and probability of falling into either group (i.e., ASD or control) can then be calculated from Li using Eqs. (4) 
and (5), respectively6. The significance of the model is evaluated using a Chi-square test that tests whether incor-
porating predictor variables into the model caused significant improvement over the null model (i.e., a model 
with no predictor variables). Significant models will have p values < 0.05. Further testing is done to evaluate the 
quality of improvement afforded by the model over the null model, for which we used the Hosmer–Lemeshow 
test and the Nagelkerke’s pseudo-R2. The null hypothesis of Hosmer–Lemeshow test is that the model predicts 
group membership with perfect accuracy, which is retained with p values > 0.0557. Nagelkerke’s pseudo-R2 takes 
values between zero and one. The closer Nagelkerke’s pseudo-R2 to one, the higher the model’s quality58. Similar 
to DA, BLR can incorporate all variables or sequentially add variables starting with the variable that introduces 
the most significant model improvement and ending when incorporating more variables into the model results 
in no significant improvement. The RCC was compared using both approaches. BLR was performed using IBM 
SPSS version 26.
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where P is the  probability of falling in the ASD group and 1− P is the probability of falling in the control group.

where Li is the natural log of odds, ln is the natural log, P is the probability of falling in the ASD group, 1− P  is 
the probability of falling in the control group, B0 is the intercept, Bi is the ith logistic regression coefficient, and 
Xi is the ith predictor variable.

where Li is the natural log of odds and e is the base of the natural log and is approximately equal to 2.71828.

where Pi is the probability of falling in the ASD group for the ith participant, Li is the Logit statistic, and e is the 
base of the natural log and is approximately equal to 2.71828.

Hierarchical clustering.  Hierarchical clustering aims to organize a data set in such a way that similar data 
points are grouped together in clusters. These clusters are displayed in the form of a tree or a dendrogram. The 
first step in hierarchical clustering is to calculate a similarity matrix composed of all possible pairwise similarities 
in the data set. In the current study, we used Canberra distances (Eq. 6) to calculate similarity matrices. Dendro-
grams are then constructed from these similarity matrices in one of two ways. One way uses divisive (top-down) 
algorithms that start with all data points in one group that are gradually divided into branches. The other way 
uses agglomerative (bottom-up) algorithms that start with individual data points that are gradually linked into 
clusters59 In the current study, we used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 
algorithm to construct our dendrograms since it gave us the most easily discernable segregation between ASD 
and control participants (data not shown). UPGMA is an agglomerative algorithm that initially links the most 
similar pair of data points to form the first cluster. It then treats the newly formed cluster as an individual, 
recalculates the similarity matrix using the first cluster as an individual data point, and links the most similar 
pair forming a second cluster. This process is repeated until all data points are joined into one dendrogram60. 
Hierarchical clustering was performed using BioNumerics versions 6.6.

where D is the Canberra distance, n is the number of data points, and X and Y are the data points being compared 
in any given pairwise comparison.

Receiver operating characteristic curve.  The predictive power of biomarkers was evaluated by calcu-
lating AUC. AUC calculation was done in IBM SPSS version 26 as previously described1. Briefly, an AUC of 1 
corresponds to 100% sensitivity and 100% specificity, while an AUC of 0.5 indicative of the complete lack of 
predictive power61. Biomarker profiles used in ROC analyses were constructed by performing PCA, DA, or BLR 
and substituting the observed data by the scores of the principal component responsible for most of the segre-
gation between the ASD and control groups, the scores of Disc1, or PProb, respectively. To select the principal 
component responsible for most group separation, participants were plotted on the coordinates of the first 3 
components (PC1, PC2, and PC3). The resulting three-dimensional plots were visually inspected to identify the 
PC on which most of the group separation occurred. Visual inspection was augmented by the ability to rotate 
these plots in BioNumerics. All variables were incorporated into PCA, DA, and BLR models for the purposes of 
this analysis.

Other statistical analysis.  Two-tailed student’s t-test was performed in Microsoft Excel (Microsoft Tech-
nology Company, Redmond, Washington).
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