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Background: The progression of breast cancer (BC) is highly dependent on the tumor microenvironment. 
Inflammation, stromal cells, and the immune landscape have been identified as significant drivers of BC in 
multiple preclinical studies. Therefore, this study aimed to clarify the predictive relevance of stromal and 
immune cell-associated genes in patients suffering from BC.
Methods: We employed the estimation of stromal and immune cells in malignant tumor tissues using 
expression data (ESTIMATE) algorithm to calculate the stromal and immunological scores, which were 
then used to evaluate differentially expressed genes (DEGs) in BC samples using The Cancer Genome 
Atlas (TCGA) database. Univariate analyses were conducted to identify the DEGs linked to survival in BC 
patients. Next, the prognostic DEGs (with a log-rank P<0.05) were used to create a risk signature, and the 
least absolute shrinkage and selection operator (LASSO) regression method was used to analyze and optimize 
the risk signature. The following formula was used to compute the prognostic risk score values: Risk score = 
Gene 1 * β1 + Gene 2 * β2 +… Gene n * βn. The median prognostic risk score values were used to divide BC 
patients into the low-risk (LR) and high-risk (HR) groups. The patient samples of the validation cohort were 
then assessed using this formula. We used principal component analysis (PCA) to determine the expression 
patterns of the different patient groups. Gene Set Enrichment Analysis (GSEA) was used to determine 
whether there were significant variations between the groups in the evaluated gene sets.
Results: The present study revealed that DEGs linked with survival were closely associated with 
immunological responses. A prognostic signature was constructed that consisted of 12 genes (ASCL1, 
BHLHE22, C1S, CLEC9A, CST7, EEF1A2, FOLR2, KLRB1, MEOX1, PEX5L, PLA2G2D, and PPP1R16B). 
According to their survival, BC patients were separated into LR and HR groups using the identified 12-gene 
signature. The immunological status and immune cell infiltration were observed differently in the LR and 
HR groups. 
Conclusions: Our results provide novel insights into several microenvironment-linked genes that influence 
survival outcomes in patients with BC, which suggests that these genes could be candidate therapeutic 
targets.
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Introduction

Globally, breast cancer (BC) is a highly prevalent form of 
carcinoma. Over the last two decades, advances in early 
diagnostic tools and treatments have reduced BC mortality 
rates by a factor of three when compared to the incidence in 
1990 (1,2). However, BC is still a major cause of mortality 
and threatens women's health throughout the world. 

Growing evidence shows that BC tumors are highly 
heterogeneous. The local tumor microenvironment (TME) 
is critical for cancer progression, and it is becoming clear that 
the local TME plays a crucial role in tumor growth (3,4), 
including BC initiation, progression, metastasis as well as 
drug resistance(5). This dynamic TME includes endothelial 
progenitor cells (EPCs), stromal and immunological cells, 
complex extracellular matrix (ECM), and a wide range 
of growth factors (GFs) and cytokines (6). Stromal and 
immunological cells are key cells that promote tumor 
progression and metastasis. The crosstalk between stromal 
and immunological cells in the TME has been considered 
as another key factor in promoting tumor progression. 
For example, cancer-associated fibroblasts interact with 
tumor-infiltrating immune cells as well as other immune 
components over time by secreting various cytokines, 
growth factors, chemokines, ectoplasmic and other 
immune molecules, thus creating an immunosuppressive 
TME that allows cancer cells to evade surveillance by the 
immune system(7).Various tumor cell characteristics, such 
as chemotaxis and survival, can be influenced by proteins 
and the microenvironment of the cells. Recently, several 
immunomodulatory pharmacological methods have been 
reported for the treatment of BC (8,9). In order to improve 
the prognosis of BC and provide reliable information to 
guide individual treatment strategies, there is an urgent need 
to screen for reliable TME-related prognostic indicators 
that can be used clinically for patient management.

The estimation of stromal and immune cells in malignant 
tumor tissues using expression data (ESTIMATE) algorithm 
uses datasets of gene expressions to evaluate stromal and 
immunological cell infiltration in tumor tissues (10). 
This approach has previously been used to assess the 
microenvironment composition of colon cancer (11), 
prostate cancer (12), and glioblastoma (13). Although, there 
were several reports about the immune cell-associated genes 
or immune and stroma related genes in patients suffering 
from BC (14-16), study focus on signature based on both 
stromal and immunological cell infiltration in BC is still 
absent to date. 

In this study, we used The Cancer Genome Atlas 
(TCGA) genome expression profiles and the ESTIMATE 
algorithm to determine immune/stromal scores for 
BC patients, resulting in the discovery of a group of 
microenvironment-related genes linked to the overall 
survival (OS) of BC patients. The genes were then used 
to create a gene signature associated with patient survival 
outcomes and investigate the importance of this profile to 
the immunological response and immune cell infiltration. 
In conclusion, our findings shed new light on the BC 
microenvironment, also suggest possible prognostic and 
therapeutically important gene targets in these cancers.

We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6748/rc).

Methods

Sample datasets

TCGA database was used to obtain raw mRNA expression 
data as well as clinical information from BC patients. A 
total of 1,069 BC samples (combined set) were randomly 
separated into training and validation sets of equal size. 
The validation set was used for validating the findings 
of the training set. Because all of the data in this report 
was derived from public sources, no ethical oversight was 
necessary. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Evaluation of differentially expressed genes (DEGs) 
according to the immune/stromal scores

The sample stromal and immunological scores were 
est imated us ing the ESTIMATE algori thm. The 
ESTIMATE R program (www.bioconductor.org/packages/
release/BiocViews.html) was used to generate stromal, 
immune, and ESTIMATE scores by Gene Set Enrichment 
Analysis (GSEA). Patients were separated into low-
risk (LR) and high-risk (HR) groups based on whether 
their immune/stromal scores were above or below the 
median value. To discover the immune/stromal score-
related DEGs, the expression profiles of BC patients with 
a high immunological/stromal score were compared to 
those of BC patients with a low score. The data were then 
analyzed using the “edgeR” package (www.bioconductor.
org/packages/release/bioc/html/edgeR.html), with DEGs 
classified as those that met the following criteria: false 

https://atm.amegroups.com/article/view/10.21037/atm-21-6748/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6748/rc
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discovery rate (FDR) <0.05 and |log2 fold change| >1.

Functional enrichment analysis of DEGs

Functional enrichment analyses were carried out to evaluate 
key cascades in which the identified genes were enriched. 
The “org.Hs.eg.db” package (www.bioconductor.org/
packages/release/data/annotation/html/org.Hs.eg.db.html) 
was initially used to convert gene symbols into entrez IDs, 
after which Gene Ontology (GO) analyses were conducted 
using the “clusterProfiler”, “ggplot2”, and “enrichplot” 
packages (www.bioconductor.org/packages/release/
BiocViews.html), with FDR <0.05 as the significance 
threshold. A Kyoto Gene and Genome Encyclopedia 
(KEGG) pathway enrichment analysis was also conducted. 
A P<0.05 was considered statistically significant. 

Development and validation of a DEG (survival-associated) 
prognostic signature

Univariate Cox regression analyses were carried out to 
find DEGs associated with the survival of BC patients by 
using the “survival” R package (www.bioconductor.org/ 
packages/survival). Next, the prognostic DEGs (with a log-
rank P<0.05) were used to create a risk signature, and the 
least absolute shrinkage and selection operator (LASSO) 
regression method was used to analyze and optimize the 
risk signature. The following formula was used to compute 
the prognostic risk score values: Risk score = Gene 1 * β1 
+ Gene 2 * β2 +… Gene n * βn. The β symbol represents 
a regression coefficient calculated from the training 
dataset for each gene of interest. After that, the median 
prognostic risk score values were used to divide BC patients 
into the LR and HR groups. The patient samples of the 
validation cohort were then assessed using this formula. 
The prognostic relevance of the signature risk score was 
determined using univariate analyses of patients in both 
cohorts, followed by multivariate analysis to determine its 
independent prognostic value in these two cohorts.

Bioinformatics analysis

We used principal component analysis (PCA) to determine 
the expression patterns of the different patient groups. Gene 
set enrichment analysis (GSEA) was used to determine 
whether there were significant variations between the 
groups in the evaluated gene sets. We focused on two gene 
sets (immune system process, M13664, and immunological 

response, M19817) from the Molecular Signatures Database 
v4.0 (http://www.broadinstitute.org/gsea/msigdb/index.jsp). 
We also used the Molecular Signatures Database (MSigDB) 
derived from the KEGG gene sets. To establish significance, 
we used a normalized enrichment score (NES) <0.05 and an 
FDR <0.05.

Immune infiltration analysis

The cell-type identification by estimating relative subsets of 
RNA transcripts (CIBERSORT) R v.12 (www.bioconductor.
org/packages/release/BiocViews.html) was utilized to 
transform the gene expression profiling of BC into the 
fraction of 22 tumor-infiltrating immune cells in the given 
samples. One-tailed t-tests were used to compare the 
characteristics between groups.

Statistical analysis

Statistical evaluations were conducted using R v3.6.3 (http://
www.Rproject.org). The “glmnet” software was used to run 
the LASSO regression analysis. After weighting by gene-
specific regression coefficient (β) values, the final gene 
signature was specified as the accumulative individual gene 
expression. Kaplan-Meier (K-M) curves and log-rank tests 
were used to evaluate the rate of OS. Uni- and multivariate 
Cox regression analyses were carried out to evaluate the 
prognostic markers. The survival receiver operator curve 
(ROC) program was used for the ROC analysis (time-
dependent). A P value <0.05 was considered statistically 
significant.

Results

Cohort characteristics

TCGA gene expression data were obtained from 1,069 
patients suffering from BC, as represented in Table 1. A total 
of 17.12%, 56.88%, 22.45%, and 2.05% of patients had 
stage I, II, III, and IV tumors, respectively, and the median 
patient age was 58.08 years. 

Association of clinical features with stromal/immune scores

The ESTIMATE algorithm was employed to evaluate 
the stromal, immune, and ESTIMATE scores ranging 
between −2,065.59–2,109.48, −1,277.91–3,672.57, and 
−2,916.86–5,355.63, respectively (Figure 1 and Table S1). 

http://www.Rproject.org
http://www.Rproject.org
https://cdn.amegroups.cn/static/public/ATM-21-6748-Supplementary.pdf
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Next, score distributions were evaluated among the various 
tumor stages, including T, N, M, and TNM, to identify 
the relationship between stromal/immune scores and 
the pathologic features of patients with BC. The results 
revealed that the stromal/immune scores were significantly 
associated with the T and TNM stages. Elevated stromal 
scores were significantly correlated with higher T (P<0.05) 
and TNM stages, while elevated immune scores were 
associated with lower T (P<0.05) and TNM stages (all 
P<0.05). However, both scores (stromal and immune) were 
not significantly associated with the N or M stages (all 
P>0.05), as depicted in Figure 1A.

The patients were categorized into LR and HR groups 
according to the median score values (median stromal 

score =529.92; median immune score =634.34; median 
ESTIMATE score =1,206.08) to identify the prognostic 
relevance of the immune and stromal scores. According to 
the K-M analyses, the OS rate was longer in patients with 
high immune scores than those with low immune scores 
(P=0.022), as depicted in Figure 1C-1E. 

Evaluation of DEGs according to the immune/stromal 
scores

We used the RNA-seq data from the identified BC patients 
in TCGA database to see if there was any correlation 
between the gene expression levels and the immune/stromal 
scores calculated earlier. To find the immune (or stromal) 

Table 1 Clinical characteristics of the combined, training, and validation cohorts

Characteristics Combined cohort, n=1,069 Training cohort, n=535 Validation cohort, n=534

Age (year) 58.08±12.75 57.71±14.51 58.45±11.72

T stage

T1 279 (26.10) 146 (27.29) 133 (24.91)

T2 617 (57.72) 305 (57.01) 312 (58.43)

T3 132 (12.35) 65 (12.15) 67 (12.55)

T4 38 (3.55) 18 (3.36) 20 (3.75)

Tx 3 (0.28) 1 (0.19) 2 (0.37)

N stage

N0 502 (46.96) 257 (48.04) 245 (45.88)

N1 357 (33.40) 178 (33.27) 179 (33.52)

N2 120 (11.23) 51 (9.53) 69 (12.92)

N3 73 (6.83) 43 (8.34) 30 (5.62)

Nx 17 (1.59) 6 (1.12) 11 (2.06)

M stage

M0 1,036 (96.91) 517 (96.64) 519 (97.19)

M1 22 (2.06) 14 (2.62) 8 (1.50)

Mx 11 (1.03) 4 (0.75) 7 (1.31)

TNM stage 

Stage I 183 (17.12) 93 (17.38) 90 (16.85)

Stage II 608 (56.88) 307 (57.38) 301 (56.37)

Stage III 240 (22.45) 113 (21.12) 127 (23.78)

Stage IV 22 (2.05) 14 (2.62) 8 (1.50)

Other 16 (1.50) 8 (1.50) 8 (1.50)
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Figure 1 The relationship between patient clinical characteristics and stromal/immune scores in the combined cohort. (A) Stromal and 
immune scores among BC patients with different stages (T, N, M, and TNM) of the disease. (B) The violin plot of the stromal, immune, 
and ESTIMATE scores. (C-E) Kaplan-Meier plots demonstrating OS outcomes between low- and high-score groups. BC, breast cancer; 
ESTIMATE, estimation of stromal and immune cells in malignant tumor tissues using expression data; OS, overall survival.
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score-related DEGs, researchers compared the expression 

patterns of BC patients with high immune (or stromal) 

scores to those with low scores. We found 764 stromal 

score-related DEGs (n=626; n=138) and 829 immune score-

related DEGs (n=726; n=103) in the high- and low-score 

groups, respectively (|log2 fold change|>1 and FDR <0.05) 

(Tables S2,S3). 

Functional enrichment analyses highlight the roles of  
the DEGs 

GO and KEGG analyses were performed to evaluate 
the immune and stromal score-related DEGs that were 
enriched (Figure 2). With respect to GO, DEGs were 
primarily enriched in T cell activation, regulation of T cell 
activation, lymphocyte differentiation, and regulation of 

Fold change
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−0.4

0.6

0

−0.6

Positive regulation of mononuclear cell proliferation

Positive regulation of lymphocyte proliferation

T cell differentiation

Positive regulation of cytokine production

T cell proliferation

Regulation of T cell proliferation

Extracellular structure organization

Negative regulation of immune system process

Extracellular matrix organization

Positive regulation of lymphocyte activation

Leukocyte migration

Regulation of cell-cell adhesion

Lymphocyte differentiation

Positive regulation of cell adhesion

Positive regulation of cell-cell adhesion

Positive regulation of leukocyte activation

Positive regulation of T cell activation

Mononuclear cell proliferation

Lymphocyte proliferation

Positive regulation of leukocyte cell-cell adhesion

Leukocyte proliferation

Regulation of mononuclear cell proliferation

Positive regulation of cell activation

Regulation of lymphocyte proliferation

Regulation of leukocyte proliferation

Regulation of leukocyte cell-cell adhesion

Leukocyte cell-cell adhesion

Regulation of T cell activation

Regulation of lymphocyte activation

T cell activation

Antigen processing and presentation

Asthma

Th1 and Th2 cell differentiation

Inflammatory bowel disease

Leishmaniasis

Viral myocarditis

Malaria

Autoimmune thyroid disease

Staphylococcus aureus infection

Primary immunodeficiency

Type | diabetes mellitus

Chemokine signaling pathway

Rheumatoid arthritis

Graft-versus-host disease

Allograft rejection

Intestinal immune network for IgA production

Cell adhesion molecules

Hematopoietic cell lineage

Viral protein interaction with cytokine

Cytokine-cytokine receptor interaction

A

B

Figure 2 GO and KEGG pathway enrichment analysis results for DEGs. (A) and (B) show GO and KEGG pathway enrichment analysis 
of DEGs, respectively. The FDR approach was employed to alter the P values. GO, gene ontology; KEGG, kyoto gene and genome 
encyclopedia; DEGs, differentially expressed genes; FDR, false discovery rate.

https://cdn.amegroups.cn/static/public/ATM-21-6748-Supplementary.pdf
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lymphocyte activation. We also conducted a KEGG analysis 
that revealed that these DEGs were primarily associated 
with cytokine-cytokine receptor interaction, chemokine 
signaling pathway, Th1 and Th2 cell differentiation, and 
primary immunodeficiency.

Construction of a prognostic signature based on DEGs

We first identified 35 prognostic DEGs as candidates for 
the development of a gene risk signature based on the BC 
patient survival data from the training cohort (Figure 3A). 
Ultimately, 12 genes were chosen for inclusion in this 
signature using a LASSO Cox regression technique (Table 2, 
Figure 3B,3C). The predictive significance of the signature-
derived risk scores was next investigated for the training 
cohort by stratifying patients into LR and HR groups using 
the cohort's median risk score (0.92985) (Figure 4A,4B).

LR BC patients had a considerably longer OS than HR 
BC patients (16.4±2.07 vs. 11.16±1.23 years, P<0.001), which 

was in line with our predictions. Importantly, we discovered 
that in the validation cohort, LR patients had a longer OS 
than HR patients (16.57±1.32 vs. 12.62±1.32 years; P=0.002)  
(Figure 4C,4D). Multivariate Cox regression models were used 
to evaluate the independent risk factors in the two cohorts. 
Multivariate analysis included several clinicopathological 
factors as well as the 12-gene signature scores, revealing 
that age (Training set: HR =1.028, 95 % CI: 1.008–1.049, 
P=0.007; Validation set: HR =1.046, 95% CI: 1.025–1.068, 
P<0.001) and the 12-gene signature score (Training set:  
HR =1.192, 95% CI: 1.111–1.28, P<0.001; Validation 
set: HR =1.512, 95% CI: 1.286–1.779, P<0.001) were 
independent prognostic indicators both in the training and 
validation cohorts, as depicted in Figure 4E,4F.

We used a ROC analysis to test the predictive value 
of our 12-gene signature risk model against that of other 
clinicopathologic parameters, such as age, T, N, M, and 
TNM stage. Compared to the other clinicopathologic 
feature curves in the training and validation cohorts, the 12-
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Figure 3 Generation and validation of a 12-gene signature risk score model. (A) Survival-associated DEGs. (B) A coefficient distribution 
map for a logarithmic (λ) sequence was generated as appropriate. (C) Selection of the optimal BC-related parameters in the LASSO model (λ). 
DEGs, differentially expressed genes; BC, breast cancer; LASSO, least absolute shrinkage and selection operator.
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Table 2 12-gene signature

Gene symbol Gene ID Description Coefficient

ASCL1 429 Achaete-Scute family bHLH transcription factor 1 0.00349

BHLHE22 27319 Basic Helix-Loop-Helix Family Member E22 0.04779

C1S 716 Complement component C1s activity −0.00067

CLEC9A 283420 C-Type Lectin Domain Containing 9A −0.03476

CST7 8530 Cystatin F −0.00614

EEF1A2 1917 Eukaryotic Translation Elongation Factor 1 Alpha 2 0.00033

FOLR2 2350 Folate Receptor Beta 0.01399

KLRB1 3820 Killer Cell Lectin Like Receptor B1 −0.09338

MEOX1 4222 Mesenchyme Homeobox 1 −0.01082

PEX5L 51555 Peroxisomal Biogenesis Factor 5 Like 0.05008

PLA2G2D 26279 Phospholipase A2 Group IID −0.00362

PPP1R16B 26051 Protein Phosphatase 1 Regulatory Subunit 16B −0.004

gene signature curve had the highest AUC value (Training 
set: AUC =0.806; Validation set: AUC =0.776). As a result, 
this 12-gene signature risk score could be more accurate 
than other clinical factors in identifying BC patients (Figure 
4G,4H).

HR and LR BC patients exhibit differences in immune 
status and infiltration

A PCA analysis was used to determine the variations in 
distribution patterns between the LR and HR groups using 
the 12-gene signature risk scores. The LR and HR groups 
were distributed into two separate clusters, as depicted in 
Figure 5A. Additionally, a GSEA functional annotation 
technique was used, revealing that LR samples were highly 
enriched for immune response pathway-related genes 
compared with HR samples (Figure 5B). When tumor 
samples from LR and HR BC patients were classified 
according to their 12-gene signature risk scores, variations 
were observed in the immunological status of these tumor 
samples. Additionally, samples from the LR group were 
enriched for immunological cascades, including the 
cytokine-cytokine receptor interaction, Notch signaling, 
primary immunodeficiency, JAK-STAT, Toll-like receptor, 
and T cell receptor signaling. On the other hand, the 
enriched cascades were primarily connected with the TGF- 
signaling cascades in the HR group, as depicted in Figure 
5C. An immune cell-based study was performed, which 

suggested an elevation in the numbers of M1 macrophages, 
plasma cells, naive/memory B cells, activated CD4+ memory 
T cells, CD8+ T cells, resting NK cells, and follicular 
helper T cells in the LR group patients. In comparison, HR 
patients showed elevated levels of M2 macrophages, M0 
macrophages, and regulatory T cells (Tregs), as shown in 
Figure 5D,5E.

Discussion

BC is a form of rapidly progressing cancer with a poor 
prognosis that can be profoundly impacted by the TME. 
According to previous research, both immunological and 
stromal cells are key components of the TME and can have 
a significant impact on tumor growth and proliferation, 
as well as therapeutic responsiveness (17). A growing 
body of evidence suggests that the TME promotes BC 
growth and development, as well as influencing tumor 
invasion and metastasis. While alterations in immune cells, 
soluble molecules, and the ECM have all been shown to 
promote cancer growth, the link between TME-related 
genes and BC prognosis remains unknown. Therefore, 
extensive research is needed to assess the genome profiling 
correlated with existing tumor sequencing datasets to 
better understand the interaction between BC cells and the 
TME. In present study, we, as the first, constructed a 12-
gene signature (ASCL1, BHLHE22, C1S, CLEC9A, CST7, 
EEF1A2, FOLR2, KLRB1, MEOX1, PEX5L, PLA2G2D, and 
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Figure 4 The risk score, survival time, and 12-gene expression (heatmap) distributions in the training (A) and validation cohorts (B). In 
the heatmap, rows represent genes, while columns correspond to individual patients. Survival analysis of LR and HR BC patients as shown 
by the Kaplan-Meier analysis of BC patients' OS in the HR and LR subgroups of the training (C) and validation cohorts (D). Multivariate 
independent prognostic analysis of 12-gene signature risk score and other clinical features in the training (E) and validation cohorts (F). 
Time-dependent ROC analysis comparing the 12-gene signature risk model and other clinicopathologic features as tools for predicting the 
OS of BC patients in the training (G) and validation cohorts (H). HR, high risk; LR, low risk; BC, breast cancer; OS, overall survival; ROC, 
receiver operating characteristic curve, AUC, area under the cure.

PPP1R16B) based on both stromal and immunological cell 
infiltration in BC. According to their survival, BC patients 
were separated into LR and HR groups using the identified 
12-gene signature. The immunological status and immune 

cell infiltration were observed differently in the LR and HR 
groups.

We assessed the prognostic value of TME-associated 
genes using TCGA database. We discovered that BC patients 
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Figure 5 HR and LR BC patients demonstrate differences in immune status. (A) Principal components analysis between LR and HR groups 
based on the 12-gene signature risk score model. (B) Functional annotation of the 12-gene signature in the Immune response set and the 
Immune system process set in a GSEA analysis. (C) KEGG enrichment analysis. (D) Estimated immune cell populations as determined 
using the CIBERSORT algorithm. (E) Violin plots demonstrating the immune cell populations in the LR (blue) and HR (red) groups. P 
values have been identified based on the Wilcoxon Test. HR, high risk; LR, low risk; BC, breast cancer; GSEA, gene set enrichment analysis; 
KEGG, kyoto gene and genome encyclopedia; CIBERSORT, cell-type identification by estimating relative subsets of RNA transcripts.
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with elevated immune scores had a considerably longer OS 
rate than those with lower immune scores. DEGs were found 
to be linked to immune and stromal scores as well as survival. 
The above genes were used to create a predictive risk profile 
that assessed differences in OS and immunological cell 
infiltration between LR and HR BC patients. Our work 
provides a comprehensive and accurate tool for assessing 
the TME and survival outcomes of BC patients. Our results 
thus hold great promise for identifying innovative molecular 
targets for immunotherapy and, hence, the improvement of 
treatment strategies available to BC patients.

TME-related genes have a significant impact on clinical 
outcomes in a variety of solid tumors. In this study, we 
used a gene signature risk model to incorporate a subset of 
survival-associated DEGs. Patients were divided into LR 
and HR groups using risk scores obtained from this model, 
with additional analyses revealing considerable variations 
in the OS rates of the patients in these two risk cohorts 
that corresponded to an elevated AUC value. Among 
the 12 genes included in this prognostic risk signature, 
some have previously been shown to be correlated with 
BC tumorigenesis. For example, eukaryotic translation 
elongation factor 1-alpha 2 (EEF1A2) has been reported as 
a putative oncogene owing to its pronounced expression in 
BC (18). One prior report indicated that EEF1A2 induced 
Akt-dependent actin remodeling and enhanced the invasion 
of BC cells (19). Furthermore, Sun et al. confirmed that 
mesenchyme homeobox 1 (MEOX1) is a critical molecular 
target involved in regulating breast cancer stem cells and 
mesenchymal-like cell proliferation. MEOX1 has been 
linked with poor survival, lymph node metastasis, and tumor 
stage in BC patients (20). And others have been reported 
to be associated with other tumors or diseases. ASCL1 is a 
transcription factor and required for neural differentiation, 
which is also essential for the development of pulmonary 
neuroendocrine cells (21,22). BHLHE22 was found to be 
involved in the development of psychiatric disease (23). C1S 
is part of the complement system family, while CLEC9A is 
a surface marker on tumor-associated macrophage. FOLR2 
is expressed in macrophages, placental and hematopoietic 
cells (24). Expressing KLRB1 (encoding CD161, a surface 
marker on NK cells and several T cell subsets) was reported 
to be associated with favorable outcomes in pan-cancer (25). 
PLA2G2D, a metabolism- and immune-related molecule, 
was identified to be a biomarker for immune cell infiltration 
and patient survival in cervical squamous cell carcinoma (26). 
While upregulated expression of PLA2G2D was reported 
to be associated with adaptive resistance to immune 

checkpoint blockade (pembrolizumab) (27).
In addition, the immunological phenotypes identified 

in the HR and LR groups were shown to be considerably 
varied. According to the GSEA, LR patient samples had 
gene expression patterns that were enriched for genes 
related to the immune system. While TME composition 
is of great interest to researchers, immune cells in the BC 
TME vary greatly and are linked to patient outcomes. 
Tumor-infiltrating lymphocytes (TILs), especially CD8+ 
T cells, are important mediators of tumor immune 
surveillance. Normally, antigen and co-stimulatory molecule 
exposure activate the effector CD8+ T cells, allowing them 
to lyse tumor cells and inhibit tumor growth. In patients 
with BC, T cell infiltration plays an important role. CD8+ 
T cell monitoring is useful in tracking the course of cancer 
and the prognosis of patients. Our results are consistent 
with these prior findings, as LR patients exhibited an 
increased CD8+ T cell profile. Although the involvement 
of Tregs in BC prognosis has often been the subject of 
research, controversy remains regarding the specific 
prognostic impact of these cells and whether they are 
beneficial or harmful. According to Shang et al. (28), Treg 
infiltration was reportedly linked to a favorable prognosis 
in estrogen receptor (ER)- but not ER+ BC patients. We 
observed significant Treg enrichment in HR patients. 
The role of B cells in BC remains poorly understood. Our 
results demonstrated enrichment of B cells in LR patients, 
indicating a negative correlation between these cells and 
risk. However, the precise mechanistic role of B cells 
remains to be defined in this prognostic context. 

Tumor-associated macrophages (TAMs) also play a 
regulatory role in tumor cell-immune system interactions 
(29,30). TAMs have traditionally been divided into two 
groups: M1 and M2. Because of their anti-inflammatory, 
angiogenic, and ECM-remodeling actions, M2 macrophage 
infiltration within tumors has been associated with a 
poorer prognosis. In samples from HR BC patients, M2 
macrophages were shown to be abundant.

However, we only have a rudimentary understanding of 
the balance between M1 and M2 phenotypes. The JAK/
STAT signaling cascades are among the most significant 
polarization regulators. According to the GSEA data, 
signaling cascades, such as JAK/STAT signaling were shown 
to be elevated in the LR group. IFN-γ triggers STAT1 and 
produces M1 macrophage polarization, with the IFN-γ/
JAK/STAT1 signaling cascade serving as a critical regulator 
of the M1 phenotype. According to previous research, the 
activation of the IL-6/JAK/STAT3 signaling cascade is 
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thought to be the primary mediator of macrophage M2 
polarization.

The current study has some shortcomings. For one, 
this was an in silico analysis and as such, all conclusions 
were correlative. Additional  and in vivo functional analyses 
will thus be needed to validate and expand upon these 
results. In addition, while we made efforts to verify the 
microenvironment-associated DEGs and subsequently 
assess their prognostic significance in BC patients, further 
large-scale prospective studies will be necessary to validate 
this hypothesis. It is also worth noting that the immune 
signature discovered in this study is based on an assessment 
of immunological cell infiltration within tumors derived 
from algorithmic analyses of RNA-sequenced data. To 
establish the accuracy of the immune infiltration data and 
examine the cell-to-cell interactions that may emerge within 
these tumors and affect BC development or prognosis, 
more in-depth studies will be required in the future.

Conclusions

To assess the BC TME, we performed an extensive 
bioinformatics analysis for gene expression in BC patients 
based on TCGA. Using this method, we were able 
to identify microenvironment-associated DEGs and 
subsequently assess their prognostic significance in BC 
patients. To fully validate their association with patient OS, 
future clinical studies of the functional roles of the identified 
genes will be required. Taken together, our findings shed 
light on the complicated interplay between BC stromal cells 
and immunological cells in the TME, possibly pointing to 
novel therapeutic possibilities for future clinical trials.
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