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To convey meaning, human language relies on hierarchically organized, long-
range relationships spanning words, phrases, sentences and discourse. As the
distances between elements (e.g. phonemes, characters, words) in human
language sequences increase, the strength of the long-range relationships
between those elements decays following a power law. This power-law
relationship has been attributed variously to long-range sequential organiz-
ation present in human language syntax, semantics and discourse structure.
However, non-linguistic behaviours in numerous phylogenetically distant
species, ranging from humpback whale song to fruit fly motility, also demon-
strate similar long-range statistical dependencies. Therefore, we hypothesized
that long-range statistical dependencies in human speech may occur indepen-
dently of linguistic structure. To test this hypothesis, we measured long-range
dependencies in several speech corpora from children (aged 6 months–
12 years).We find that adult-like power-law statistical dependencies are present
in human vocalizations at the earliest detectable ages, prior to the production of
complex linguistic structure. These linguistic structures cannot, therefore, be
the sole cause of long-range statistical dependencies in language.
1. Introduction
Since Shannon’s original work characterizing the sequential dependencies
present in language, the structure underlying long-range information in language
has been the subject of a great deal of interest in linguistics, statistical physics, cog-
nitive science and psychology [1–20]. Long-range information content refers to
the dependencies between discrete elements (e.g. units of spoken or written
language) that persist over long sequential distances spanning words, phrases,
sentences and discourse. For example, in Shannon’s original work, participants
were given a series of letters from an English text and were asked to predict the
letter that would occur next. Using the responses of these participants, Shannon
derived an upper bound on the information added by including each preceding
letter in the sequence. More recent investigations compute statistical depen-
dencies directly from language corpora using either correlation functions
[3,4,7,8,10,12,13] or mutual information (MI) functions [2,5,6,14] between
elements in a sequence. In both cases, dependencies are calculated as a function
of the sequential distance between pairs of elements. For example, in the sequence
a→ b→ c→ d→ e→ f, at a distance of three elements, relationships would be cal-
culated over the pairs a and d, b and e and c and f.

On average, as the distance between elements increases, statistical depen-
dencies weaken. Across many different sequence types, including phonemes,
syllables and words in both text and speech, the decay of long-range corre-
lations and MI in language follows a power law (equation (2.6)) [2–14,18,19].
This power-law relationship is thought to derive at least in part from the
hierarchical organization of language, and has been variously attributed to
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Figure 1. Comparison of long-range statistical dependencies between sequences with and without deep latent relationships. (a) The MI between elements in an
iteratively (Markov model) generated sequence decays exponentially as a function of sequential distance. (b) An example sequence with hierarchical latent structure.
The latent distance between the two end elements in the sequence is 6 (blue), while the sequential distance is 17 (red). (c) In sequences with hierarchical latent
structure, the sequential distance between elements is logarithmically related to the latent distance (fit model: a*log x*b + c where x is sequential distance). (d ) Like
sequential distance in (a), the MI between elements in a hierarchically generated sequence decays exponentially as a function of latent distance. (e) The MI between
elements in a hierarchically generated sequence decays following a power law as a function of sequential distance, which is related to the exponential MI decay seen
in (d ) and the logarithmic relationship between sequential and latent distance seen in (c). In (a), the probabilistic Markov model used to generate the empirical data
has two states with a self-transition probability of 0.1. In (c–e), a probabilistic context-free grammar [5] with the same transition probability is used.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212657

2

hierarchical structure in human language syntax [5],
semantics [3] and discourse structure [4].
(a) Mechanisms for long-range organization
To understand the link between hierarchical sequential
organization in language and long-range sequential depen-
dencies, it is helpful to consider both the latent and surface
structure of a sequence (figure 1). When only the surface
structure of a sequence is available, as it is for language
corpora, a power-law decay in the MI between sequence
elements gives evidence of an underlying hierarchical latent
structure [5]. This phenomenon can be demonstrated by
comparing the MI between elements in a sequence generated
from a hierarchically structured language model, such as a
probabilistic context-free grammar (PCFG), to the MI between
elements in a sequence generated by a non-hierarchical
model, such as a Markov process (figure 1). For sequences
generated by a Markov process, the strength of the relation-
ship between elements decays exponentially (equation (2.5))
as sequential distance increases [5,21] (figure 1a). In the
PCFG model, however, linear distances in the sequence are
coupled to logarithmic distances in the latent structure of
the hierarchy (figure 1b,c). While information continues to
decay exponentially as a function of the distance in the
latent hierarchy (figure 1d ), this log-scaling results in a
power-law decay when MI is computed over corresponding
sequential distances (figure 1e).
(b) Hierarchy in language and behaviour
The thought that human language syntax is generated by
CFGs [22] has led many to speculate that the long-range
dependencies observed in language corpora are the product
of abstract linguistic structure [2–5]. Although the long-
range statistical dependencies in language corpora are clearly
tied to linguistic structure [3,4], it does not follow that syntac-
tic structure is necessarily the only source for long-range
dependencies in language. Indeed, hierarchical organization
is unique to neither CFGs nor human language and diverse
classes of mechanisms, many of which are decidedly not
language-like [23–28], are capable of generating power-law
relationships. Many non-linguistic human behaviours [29–34],
animal behaviours [35–40], animal vocalizations [41–50] and
other biologically generated processes [28,51–57] are organized
hierarchically. Likewise, long-range, power-law distributed
dependencies are observed in sequential behaviours, including
whale song [46], birdsong [2,58] and Drosophila [39] and
zebrafish motility [59]. Instead, long-range dependencies in
language and other human behaviour [33,60,61] may reflect
more general biological processes inherited from the organiz-
ation of underlying neurophysiological mechanisms [62–65]
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that are, in turn, characterized by power-law relationships in
temporal sequencing [66–68]. When viewed as an instance of
this more general class of sequentially organized behaviour,
one might reasonably predict that human speech should
display long-range statistical dependencies independent of
linguistic structure.

(c) General hierarchical organization, linguistic hierarchy
and hierarchical description

While many biological, behavioural and other natural signals
can be and have been described using hierarchical terms,
an important distinction exists between the many different
ways in which the term hierarchy is used. For example, the
generative mechanisms underlying some signals are either
known or widely thought to be organized hierarchically,
such as the cascade of motor programs originating in cortex
and ending in affector neurons or the production rules under-
lying formal language theory. In other signals, hierarchicality
is less clear, and what is often used to determine whether a
signal is hierarchical is whether that signal is well described
using hierarchical terms, without explicit hypotheses about
the source of that hierarchy. For example, compression via
tree-based grammars like the one in figure 1 are commonly
used to describe hierarchical organization of non-linguistic
structures such as animal behaviours and genomic and
protein sequences [59,69,70].

In this work, we specifically explore the relationship
between long-range statistical dependencies in speech and
the emergence of hierarchical linguistic organization (i.e. syn-
tactic, semantic and discourse structure). We ask whether the
long-range statistical dependencies present in speech originate
alongside the presence of syntactically complex linguistic pro-
ductions, or whether they precede the production of this
specific form of hierarchical structure during development.
The developmental emergence of hierarchical organization in
linguistic productions is well studied [71–73]. Meylan et al.
[72], for example, demonstrate that linguistic productivity is
initially low and rapidly develops at around 24 months of
age, suggesting that young children’s speech lacks the rich
grammatical structure that enables language’s remarkable pro-
ductivity when they are first producing language. Hierarchical
organization in semantic and discourse structure also grow in
hierarchical complexity throughout ontogeny [71]. By 5–6
years of age, children are capable of producing well-formed
narratives, which continue to increase in complexity to adult-
hood [74,75]. Thus, if long-range statistical dependencies are
observed at an age prior to the emergence of complex linguistic
structure, at both syntactic and discourse levels, those depen-
dencies are not driven by those levels of linguistic structure
and are therefore not likely to be driven fully by those linguistic
structures in adult speech either.

(d) Origins of long-range statistical dependencies
in language

To test whether long-range statistical dependencies occur inde-
pendently of complex linguistic structure in speech, we used
MI decay as ameasure of long-range dependencies over several
speech corpora from children ranging from six months of age
to adults [76–89]. Because complex linguistic productions
emerge during language acquisition, we use these corpora to
determine whether long-range relationships are present in
human vocalizations prior to the production of linguistically
complex speech, or whether they emerge alongside linguisti-
cally complex productions. If long-range dependencies were
to emerge over the course of development alongside complex
utterances, we could conclude that abstract linguistic structure
plays a dominant role in the sequential statistical structure of
speech. However, if long-range statistical dependencies are
observed in infant speech prior to the production of structu-
rally complex utterances, then it is likely that the long-range
dependencies observed in adult speech are not solely governed
by abstract linguistic structure. Indeed, we find that human
speech exhibits long-range power-law statistical dependencies
like those observed in mature human language early in devel-
opment, at 6–12 months of age, while children are still in the
‘babbling’ stage of language development.
2. Methods
(a) Datasets
We examined MI decay in sequences of words over nine datasets
of natural speech from English speaking children included in the
CHILDES repository [77,82–89] and three datasets of sequences
of phonemes from the PhonBank repository [76,78–80], both of
which are part of the TalkBank repository [77]. Each dataset
within CHILDES and PhonBank was collected in a slightly
different manner. In our analyses, we included only transcripts
of spontaneous speech that were collected from typically devel-
oping children (usually at an in-home setting with family or
an experimenter). The subset of CHILDES we used includes
word-level transcripts of speech from children aged 12 months
to 12 years of age. The subset of PhonBank we used includes
phonetic transcriptions of speech given in the International Pho-
netic Alphabet (IPA) from children aged six months to four years
of age. Between the phoneme and word-level datasets, a large
range of speech and language development is covered.

For the MI analysis on phonemes, we binned transcripts into
five 6-month age groups (6–12, 12–18, 18–24, 24–30, 30–36) and
one age group from3 years to 4 years. Each transcriptwas analysed
as sequences of phonemes, where phoneme distributions for each
transcript are treated independently to account for variation in
acquired vocabulary across individuals during development.
Because transcript lengths varied between age groups (electronic
supplementary material, figure S1), we analysed MI at sequential
distances up to the median transcript length for each age group.
For the MI analysis on words, we binned transcripts into four 6-
month age groups (12–18, 18–24, 24–30, 30–36) and one age
group from 3 years to 12 years. We analysed words in the same
manner as phonemes. No 6–12 month age group was used in
word-level analyses because of the sparsity of word-level pro-
ductions at that age. We additionally repeated our analysis on a
set of French transcripts gathered from PhonBank [90–95].

(b) Transition entropy and Sequitur hierarchical
compressability

Before performing the MI decay analysis we looked at the tran-
sition structure and hierarchical compressibility for the 25
longest PhonBank transcripts for each age group to determine
whether any sequential structure is present in speech at each age
group and if so to quantify and compare how well each speech
dataset can be described hierarchically.

To quantify whether non-random transition structure is pre-
sent in the vocalizations of each age group, we computed a
transition matrix between phonemes in each corpus (i.e. a first-
order Markov model). We then compared the non-randomness
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of the sequence on the basis of the mean transition entropy across
states. This transition entropy captures the level of uncertainty
about the next state, given the current state. For example, an
element (A) that transitions to another element (B) 100% of the
timewill have a transition entropyof 0. Thus, if themean transition
entropy of a transcript is lower than the mean transition entropy of
a randomized transcript, there is some degree of predictability in
that transcript beyond randomness. As speech at all ages is dic-
tated both by motor constraints and experience with language
starting in utero [96], we expect non-random structure to be
observed at all ages.

We then quantify how hierarchically compressible each tran-
script is relative to a transcript of equal length generated by a
Markov model. To quantify the hierarchical compressibility, we
use the Sequitur algorithm [69] which infers a hierarchical
re-write system from symbolic sequences. Sequitor infers a
form of deterministic grammar that is a restriction on context-
free grammars and does not allow recursion or the capacity for
a symbol to take more than one expansion from a non-terminal
[97]. Sequitur has been used to losslessly and compressively rep-
resent data spanning linguistic, biological, behaviour and
generally hierarchical signals (see [69] for the algorithm) and
can be used to compare the relative compressibility of sequences
[70]. We compare the hierarchical compressibility of transcripts
to Markov-generated sequences as controls for each transcript.
(c) Mutual information analysis over sequences
For each dataset, we calculate the sequential MI over the
elements of the sequence dataset (e.g. words produced by a
child). Each element in each sequence is treated as unique to
that transcript to account for different distributions of behaviours
across different transcripts within datasets.

Given a sequence of discrete elements a→ b→ c→ d→ e. We
calculate MI as:

IðX, YÞ ¼ SðXÞ þ SðYÞ � SðX, YÞ; ð2:1Þ
where X and Y are the distributions of single elements at a given
distance. For example, at a distance of two, X is the distribution
[a, b, c] and Y is [c, d, e] from the set of element-pairs (a− c, b− d
and c− e). ŜðXÞ and ŜðYÞ are the marginal entropies of the distri-
butions of X and Y, respectively, and ŜðX, YÞ is the entropy of the
joint distribution of X and Y.

To estimate entropy, we employ the Grassberger [98]
method which accounts for under-sampling true entropy from
finite samples:

Ŝ ¼ log2ðNÞ � 1
N

XK

i¼1

Nic (Ni), ð2:2Þ

where ψ is the digamma function, K is the number of categories
of elements (e.g. words or phones) and N is the total number of
elements in each distribution.

We then adjust the estimated MI to account for chance. To do
so, we subtract a lower bound estimate of chance MI (̂Ish):

MI ¼ Î � Îsh ð2:3Þ

This sets chance MI at zero. We estimate MI at chance (̂Ish) by
calculating MI on permuted distributions of labels X and Y:

ÎshðX, YÞ ¼ Ŝ(Xsh)þ Ŝ(Ysh)� Ŝ(Xsh, Ysh): ð2:4Þ
Xs h and Ys h refer to random permutations of the distributions

X and Y described above. Permuting X and Y effects the joint
entropy S(Xsh, Ysh) in Ish, but not the marginal entropies S(Xsh)
and S(Ysh).

1 Îsh is related to the expected mutual information
[99–101] which accounts for chance using a hypergeometric
model of randomness.
Importantly, MI calculated over a sequence as a function
of distance is referred to as a ‘MI function’, to distinguish it as
the functional form of MI, which measures the dependency
between two random variables [14]. In the MI function, samples
from the distributions X and Y are taken from the same sequence,
thus they are not independent. MI as a function of distance acts
as a generalized form of the correlation function that can
be computed over symbolic sequences and captures nonlinear
relationships [14].

(d) Fitting mutual information decay
We fit the three following models: An exponential decay model:

MI ¼ a � e�x�b þ f : ð2:5Þ
A power-law model:

MI ¼ c � xd þ f : ð2:6Þ
A composite model of the power-law and exponential models:

MI ¼ a � e�x�b þ c � xd þ f ; ð2:7Þ
where x represents the inter-element distance between units
(e.g. phones or syllables).

To fit the model on a logarithmic scale, we computed the
residuals between the log of the MI and the log of the model’s
estimation of the MI. We scaled the residuals during fitting by
the log of the distance between elements to emphasize fitting
the decay in log-scale because distance was necessarily sampled
linearly as integers. Models were fit using the lmfit Python pack-
age [102] using Nelder–Mead minimization. We compared
model fits on the basis of AICc and report the relative probability
of each model fit to the MI decay [2,103].

(e) Mutual information decay controls
Datasets are organized hierarchically into transcripts, utterances,
words and phonemes allowing us to shuffle the dataset at mul-
tiple levels of organization. To ensure that our MI decay results
are a direct result of the sequential organization of each dataset,
we performed a control on each dataset shuffling behavioural
elements within each individual transcript at each hierarchical
level. In addition, to ensure that long-range relationships were
not due to trivial repetitions of behaviours, for each dataset we
looked at MI decay over sequences in which repeated elements
were removed. Finally, we analysed transcripts from a subset
of the longest individual transcripts to confirm that our results
were not the product of mixing together multiple datasets
and transcripts.
3. Results
(a) Transition entropy and hierarchical compression
We analysed the transition entropy and hierarchical compres-
sibility of the 25 longest transcripts for each age group in the
PhonBank datasets. An example Markov model inferred from
three of these age groups is given in electronic supplementary
material, figure S2. Across each age group, as expected,
we found non-random transition structure indicated by the
mean transition entropy (figure 2a).

We then compared the Sequitur hierarchical compressibil-
ity of each transcript to a length-controlled Markov-generated
transcript as well as a randomly permuted version of the
original transcript. Because in our datasets transcripts vary
in size, with younger age groups typically having shorter
transcripts available, we artificially varied the length of
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each transcript between 1 and 100% of the full transcript and
computed the compressibility of the transcript at each length
to enable comparison between age-groups.

We find that, across all age groups, transcripts are more
hierarchically compressible than their Markov or randomized
counterparts (figure 2b). We also find that the degree to
which these transcripts are compressible over their Markov
counterparts is similar across each age group (figure 2c).
These results indicate non-random and hierarchical structure
across corpora from all age groups. In the following MI ana-
lyses, we measure the sequential relationships underlying
these signals.
(b) Mutual information
Althoughmuchwork has explored the information content and
long-range sequential organization of human language, rela-
tively few studies have examined these properties in speech
[2] or language development directly. Here we investigate the
long-range information present in speech during language
development using datasets from the TalkBank project [76,77].

We examined MI decay in sequences of phones over three
datasets of natural speech from English-speaking children
included in the PhonBank repository. Across all age groups,
starting at 6–12 months of age, the decay in MI over sequences
of phonemes is best fit by a composite power-lawand exponen-
tial decay model (figure 3a–c; relative probabilities 0.897 to >
0.999; electronic supplementary material, table S1). In each
age group, we observe both a clear power law, prominent
over long distances (figure 3b), and a clear exponential decay
at short, word-length distances (figure 3c), consistent with
prior results adult speech [2]. We then examined MI decay in
sequences of words over nine datasets of natural speech from
English-speaking children included in the CHILDES reposi-
tory. As with phonemes, the MI decay between words is best
fit by a composite model of power-law and exponential
decay (equation (2.7); relative probability = 0.989 for 12–18
months and greater than 0.999 for all other age groups; figure
3d–f; electronic supplementary material, table S2). To ensure
that our results are not specific to English, we repeated this
analysis over French corpora also taken from PhonBank and
found the same power-law and exponential components of
the decay in each age group (electronic supplementary
material, figure S3). The parameters for each best-fit model
for figure 3 can be found in electronic supplementary material,
table S3. We additionally plotted the decay parameters of the
PhonBank datasets for individual corpora across age groups
varying corpus size in electronic supplementary material,
figure S4.
(c) Mutual information decay controls
As controls, we also computed the MI decay over sequences of
words and phonemes that had been shuffled to isolate sequen-
tial relationships at different levels of organization (e.g.
phoneme, word, utterance, transcript). A subset of these con-
trols over the PhonBank dataset are shown in figure 4 while
the remainder are given in electronic supplementary material,
figures S5 and S6.

To aid in interpreting these controls, we additionally per-
formed equivalent shuffling controls with the PCFG model
from figure 1 extended with Markov-generated endpoints
(figure 4a; as in Sainburg et al. [2]). In this model, we replace
each terminal state generated from the PCFG with a Markov-
generated sequence. These two separate models (hierarchical
and finite-state) capture the distinction between the finite-
state, Markovian, organization of phonological relationships
at short distances (e.g. within and between words) [104]
and the hierarchical organization which extends beyond
(e.g. syntax, discourse). We have previously found that this
model captures the observed interplay between the exponen-
tial and power-law MI decay found in speech [2], where the
exponential decay is driven by the Markovian model and the
power-law is driven by the context-free grammar.

Broadly, across each age group, we find results that are
consistent with the model from figure 4a–e. We observe that
short-range relationships captured by exponential decay
are largely carried within words and utterances, while long-
range relationships are captured by a power-law decay carried
across longer timescales between words and utterances. In the
full model, as in figure 3a, the MI decay (figure 4b) is well
explained by an exponential decay occurring at shorter
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distances (dashed line) and a power-law decay at longer
distances (dotted line). Shuffling at different levels of organiz-
ation modifies the relative contribution of these exponential
and power-law components of the decay.

Shuffling Markov sequences within the transcript (figure
4c) relates to shuffling words within the transcript (figure 4g).
Because the hierarchical structure is eliminated but the Mar-
kovian structure is preserved, the power-law component of
the decay is effectively eliminated (figure 4c, dashed line).
Likewise, because within-word structure is largely preserved
but between word structure is destroyed, the power-law com-
ponent of the decay is also eliminated (figure 4g).

On the opposite endof thehierarchy,whenMarkovian struc-
ture is destroyed by shuffling the sequence within the Markov-
generated sequences (figure 4d), the exponential component of
the decay is lost (dashed line) and the decay is dominated by the
power law. Similarly, when phones are shuffled within utter-
ances (figure 4h), the power-law component of the decay is
largely retained while the exponential component is reduced
(relative to figure 3a). Consistent with the analyses over words
in the CHILDES transcripts (figure 3f), the exponential com-
ponent of the decay is not entirely destroyed when shuffling
within utterances (figure 4h) or words (electronic supplemen-
tary material, figure S5c), indicating that a boundary between
Markovian and hierarchical organization cannot be fully
assigned at either level of organization.
Finally, in an intermediary shuffling, as in the mid-level
branch sequences (figure 4e), the model is still well explained
by both the exponential and power-law decay components,
however, the power-law component (dotted line) now falls
between what it did when all of the hierarchical structure
was destroyed (figure 4c) and when the full signal was pre-
sent (figure 4b). Again, we observe similar results with the
transcript data in figure 4i (in comparison to figure 3a and
figure 4g). A complete set of shuffling results at more levels
of organization as well as with the CHILDES dataset are
given in electronic supplementary material, figures S5 and S6.

As an additional control, to ensure that the observed MI
decay patterns are not the product of mixing datasets from
multiple individuals, we also computed the MI decay of the
longest individual transcripts comprising each age cohort
across both phonemes and words. The decay of the longest
individual transcripts parallel the results across transcripts
shown in figure 3 (electronic supplementary material, figures
S7 and S8). We also analysed the MI decay of transcripts
when repeated elements were removed to ensure long-range
relationships were not the product of behavioural repetitions
(as in e.g. [41]). Removing repeats does not qualitatively
alter the pattern of long-range relationships between elements
(electronic supplementary material, figure S9).

One reasonable hypothesis is that these long-range relation-
ships in child speech are driven by interaction. Child speech in
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Figure 4. MI decay between phones under different shuffling conditions. (a) An example PFSG model with endpoints generated from Markov models as in [2].
Shuffling controls are given at three levels of organization in the model: within Markov-generated sequences (bottom/blue), between Markov-generated sequences
(middle/green) and at a mid-level branch in the generated hierarchy (top/orange). (b) The MI decay curve for the model from (a). (c) The MI decay curve for the
shuffle Markov sequences condition from (a). (d ) The MI decay curve for the shuffle within Markov sequences condition from (a). (e) The MI decay curve for the
shuffle within mid-level branch condition from (a). ( f ) An example sequence of utterances from the PhonBank dataset. Utterances are grouped by colour, words are
grouped by rounded rectangles, and phones are displayed in bold above orthographic transcriptions. (g) MI decay, as in figure 3 when words are shuffled within
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the datasets used here is produced in an interactive context
with adults, which affects discourse structure in children’s
speech [105] thus, adult speech could be driving the long-
range relationships observed in child speech. If this were the
case, one could argue that the complex hierarchical structure
underpinning the adult’s speech was driving the long-range
dependencies found in infant speech. To test whether this is
the case, for each corpus where adult speech was transcribed
(nCHILDES = 1630, nPhonBank = 309) we tested the effect of
non-subject engagement (the proportion of speech not pro-
duced by the child) on the improvement in model fit (ΔAICc)
of a power-law model over exponential model alone. In both
datasets, we observe that adult involvement provides no
additional predictive information about the improvement in
fit of the power-law model over the exponential model, when
controlling for the dataset, child’s age and length of the tran-
script (CHILDES: F1,1620 = 1.49, p = 0.22; PhonBank: F1,306 =
0.21, p = 0.65). Although our results do not provide irrefutable
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evidence that the long-range range relationships observed are
driven by adult speech, these results do not rule out the possi-
bility. Our analyses were based on the natural variability in
adult speech across corpora and are not explicitly controlled.
ietypublishing.org/journal/rspb
Proc.R.Soc.B
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4. Discussion
We analysed the developmental time course of long-range
sequential information present in speech throughout early
childhood. We observed adult-like long-range statistical
relationships [2] present as early as 6–12 months in phoneme
sequences, and at 12–18 months in word sequences. Our find-
ings compel reconsideration of the mechanisms that shape
long-range statistical relationships in human language. Adult
speech is characterized by both long-range and short-range
statistical relationships characterized by power-law and expo-
nential decays in MI, respectively. Traditionally, the power-
law decay in information between the elements of language
(phonemes, words, etc.) has been thought to be imposed by
the hierarchical linguistic structure of syntax, semantics, and
discourse [3–5]. Early speech development provides a natural
experiment in which one can examine human vocal communi-
cation absent the production of complex syntactic and
discourse structure [71–75]. Remarkably, even at a very early
age, prior to the production of mature linguistic structures,
vocal sequences show adult-like long-range dependencies.

The long-range dependencies observed in adult language
corpora have been clearly tied to linguistic structure [3–5],
but the absence of these organizational components in pro-
ductions of the youngest children rule out the possibility that
linguistic structure is the only driver of long-range dependen-
cies in human speech. One reasonable hypothesis consistent
with our results is that multiple mechanisms impose long-
range dependencies on human speech and language and that
these operate on different developmental timescales. Below
we consider non-linguistic mechanisms that could generate
long-range dependencies in speech at early ages. Limitations
of the current dataset prevent quantitative exploration of
these mechanisms, but we note how they could be pursued
in future research.

One possibility is that the long-range structure we observe
in young children is driven by proximal environmental fac-
tors, such as the long-range statistics in a child’s linguistic
environment. In animal behaviour, long-range statistical
relationships between behavioural states can be affected by
seemingly inconsequential variables such as lighting environ-
ment [59]. In the child’s environment, linguistic behaviour
could be influenced by similar environmental variables.
Furthermore, communication is an inherently interactive
behaviour with other humans. While our results did not pro-
vide evidence that long-range relationships are driven by
interactions with adult speakers, we cannot rule out language
interaction or other exogenous variables as possible drivers for
the observed long-range relationships. It would be valuable to
explore the impact of environment on the parameters of the
observed information decay (e.g. the exponential and power-
lay decay parameters and transition between exponential
and power-law decay). These factors cannot be properly
adjudicated in the present study because our study relies on
datasets where corpus variability across environments and
age groups makes it difficult to compare model fits directly
(e.g. electronic supplementary material, figure S4).
Another possible non-linguistic source of the observed
long-range relationships in early speech is the general hier-
archical organization of the motor control systems that
produce speech and all other overt behaviours. Consistent
with this, we note the observation of similar long-timescale
dynamics in recent computational ethology studies examin-
ing comparatively simple behaviours such as Drosophila
motility [39]. From this perspective, our results are consistent
with the notion that specialized, hierarchical linguistic struc-
ture is overlaid on a more general (non-linguistic) hierarchical
motor control structure. Accordingly, long-range dependen-
cies relevant to language may emerge more slowly with
the development of adult-like linguistic competence. Little
is known at present, however, about the neural and motor
control underpinnings of these long-range statistical dependen-
cies in non-vocal behavioural sequences, and/or whether these
relationships are driven by environmental structure.

The observation of similar power laws in diverse non-
linguistic behaviours reinforces the idea that multiple mech-
anisms can shape the sequential dynamics of behaviour,
including speech. There are many potential sources for
long-range correlations in biological and physical systems
that do not necessarily guarantee an underlying hierarchical
structure [23–28]. For example, 1/f long-range statistical
relationships are characteristic of both physiological and
environmental signals. Although 1/f signals are often associ-
ated with hierarchical organization, their origins in physical
systems remains an area of active research [27,106–108]. The
presence of long-range correlations characterized as 1/f
‘noise’ in human neural signals is associated with healthy
brain states and disappears in disease states and age-related
impairments in working memory [108–110]. 1/f power spec-
tra produce similar power-law correlations and MI decay as
those we observe in speech; thus, it is possible that long-
range statistical relationships in speech may originate from
such physiological sources as those observed to generate
1/f power spectra. In electronic supplementary material,
figure S10 we show that behavioural states tied to 1/f noise
would produce the same power-law MI decay as the con-
text-free grammar model from figure 1b,e. Comparing
measurements of long-range statistical relationships in
speech in both healthy and disease states in relation to the
degradation of 1/f characteristics in neural signals would
indicate whether long-range dependencies in speech and
1/f noise in neural systems are related.

Regardless of any further understanding of the specific
mechanisms that underlie the sequential dependencies in
speech, clear patterns in the information conveyed across
time exist in human vocal behaviour at very early ages. In prin-
ciple, this structure is available to listeners and can provide
predictive information to any cognitive agent that engages
with it. Humans are necessarily sensitive to long-range
relationships in language, and althoughmore sparse, evidence
for long-range sensitivities outside language has also been
reported, such as scale-invariance in retrospective memory
tasks [111] and attention to power-law timescales in antici-
pation of future events in cognitive tasks [112]. Among
non-human animals, the evidence supporting sensitivity to
the long-range dynamics (power-law or otherwise) of infor-
mation in the environment is not well studied, especially at
long intervals. If non-human animals can perceive the long-
range statistical dependencies present in their environment,
this capacity may constitute a broad faculty of language
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[113], that is, a necessary, but not uniquely human, component
of language. Indeed, the presence of long-range statistical
dependencies in non-linguistic behaviours and a generalized
perceptual sensitivity to them could provide a scaffold for
language to evolve, andwhere hierarchical syntax and seman-
tics can be understood as later additions that exploit existing
long-range structures and sensitivities.

Data accessibility. All scripts used in this study are openly accessible at
https://github.com/timsainb/LongRangeSequentialOrgPaper. The
data are provided in the electronic supplementary material [114].
The datasets can be acquired from the TalkBank repository [77]
and PhonBank repository [76]. We performed analyses over these
transcripts without any modification. Example transcripts for each
dataset are displayed in the electronic supplementary material,
Supplementary Information. The distribution of sequence lengths
of each dataset is shown in electronic supplementary material,
figure S1.
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