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Interactions between microbes can both constrain and enhance their
adaptation to the environment. However, most studies to date have
employed simplified microbial communities and environmental conditions.
We determined how the presence of a commercial potting compost microbial
community affected adaptation of the soil bacterium Pseudomonas fluorescens
SBW25 in potting compost. Pseudomonas fluorescens clones isolated from
populations evolved in both the presence and absence of the community
showed similar fitness increases when measured in the absence of the com-
munity. This suggests the presence of the community did not constrain
adaptation. By contrast, fitness measured in the presence of the community
increased for community-evolved populations, but decreased below the
ancestral state for populations evolved in the absence of the community.
This suggests some, but not all, mutations that were beneficial with
respect to the abiotic environment were costly in the presence of the commu-
nity, with the former selected against in the presence of the community.
Whole-genome sequencing supports this interpretation: most mutations
underpinning fitness changes were clone-specific, suggesting multiple
genetic pathways to adaptation. Such extreme mutational effects have not
been observed in comparable in vitro studies, suggesting that caution
is needed when extrapolating results from simplified in vitro systems to
natural contexts.

Understanding how the presence of interacting species affects adaptation to
other (abiotic and biotic) components of the environment is a fundamental
aspect of evolutionary ecology [1]. Adaptation may be constrained by other
species through a range of processes, including reductions in population size
(in the case of negative interactions) [2], trade-offs between adaptation to differ-
ent components of the environment [3] and species filling ecological niches
faster than evolution occurs [4,5]. Conversely, adaptation may be enhanced if
interactions increase population size, open up new ecological niches [6,7] or
buffer population sizes in the face of environmental perturbations [8]. Thus,
examining the extent to which community affects species interactions is crucial
to understand how species adapt and shape ecosystem functioning.
Experimental work in this area has primarily used microbes, because
of the speed at which they evolve. Studies frequently report constrained
adaptation to other components of the environment as a consequence of
species interactions, primarily through reductions in population size and
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trade-offs [3,9-13] (but see [14]). However, the majority of
studies focus on short-term adaptation to greatly simplified
communities grown under nutrient-rich in vitro conditions.
The novelty of the abiotic environments and the high den-
sities of other organisms will invariably impose very strong
selection on the focal organism, potentially leading to find-
ings that may not be observed under more natural
conditions. Even in conditions where the abiotic environment
more closely resembles a natural environment (such as the
use of beech leaf ‘tea’, to emulate a beech tree hole environ-
ment [10], or wheat grass [14]), the interacting community
is invariably greatly simplified.

In this study, we examine the interplay between
adaptation to the biotic and abiotic environment within a
managed natural system: potting compost. We previously
evolved the soil and plant-associated bacterium Pseudomonas
fluorescens SBW25 in commercial potting compost, in the
presence or absence of the naturally associated community
[15,16]. We found that the community imposed selection on
the population (density was reduced) and inhibited meta-
bolic diversification [16]. Here, we measure the fitness of
evolved clones in the presence and absence of the resident
microbial community by competing each against an isogenic
marked ancestral strain. Additionally, we sequence whole
genomes of the clones in an attempt to provide insight into
mechanisms underpinning fitness differences.

2. Material and methods
(a) Selection experiment

From a previous study [15], we randomly isolated single bacterial
clones of a gentamicin-resistant strain of P. fluorescens SBW25 [17]
that had been evolving in 12 independent populations in commer-
cial potting compost (John Innes no. 2) microcosms for 48 days;
six in the presence and six in the absence of the natural potting
compost community. Briefly, 5 ml of a P. fluorescens suspension
(at 2 x 108 CFU ml ™ in M9 buffer) was inoculated into 12 polypro-
pylene trays (10 x 10 cm) with lids containing 100 g of twice-
autoclaved potting compost. The potting compost microbial com-
munity from a potting compost wash (20 g of potting compost in
100 ml M9 buffer [15,16,18,19]) was inoculated into half of the
microcosms. Microcosms were placed in an environmental
chamber at 26°C and 80% relative humidity. After 48 days, a
soil suspension wash from each of the 12 microcosms was
plated onto gentamicin (15 pg ml™') KB agar plates, and individ-
ual clones isolated. Note that the previous experiment focused
on bacteria—phage coevolution, but here we only focus on the
phage-free control populations.

(b) Competition assays

Competition experiments between all bacterial clones and a
lacZ-marked SBW25 ancestor were carried out as in previous
studies [20,21] to estimate the fitness of evolved bacteria in
both the presence and absence of the soil microbial community.
Briefly, bacterial clones were independently grown in Lysogeny
Broth (LB) liquid medium overnight, and 5 ml M9 buffer (mini-
mal salts solution) containing approximately 10° CFU of each
clone was inoculated into two microcosms each, along with the
same density and volume of the ancestral competitor. The soil
microbial community, or M9 buffer only, was then added to
one of the microcosms per clone. Prior to inoculation and after
5 days growth, bacterial population densities were determined
by plating on LB agar supplemented with X-gal (40 pgml™),
in order to distinguish lacZ-marked P. fluorescens SBW25 strain

and evolved SBW25 populations [20,22]. Selection rate constants n

(S = Meyolved — Mancestor Where m =1In (density after 5 days/start-
ing density)) [23] were calculated for each clone; positive
values of S indicate higher fitness of the evolved bacteria as com-
pared with the ancestor. Competition experiments were
replicated three times per clone.

(<) Genome re-sequencing

The whole genomes of the 12 bacterial clones were sequenced by
HiSeq-Illumina technology at the Centre for Genomic Research
(University of Liverpool). First, each bacterial clone was incubated
at 28°C and shaking at 140 r.p.m. overnight, reaching densities
of approximately 10° CFU ml™". Then bacterial cultures were
aliquoted to carry out the total genomic DNA extraction, which
was performed using the Qiagen DNeasy Blood and Tissue kit
according to the manufacturer’s instructions. DNA libraries
were prepared with the Illumina-TrueSeq kit and sequenced by
2 x 100 bp paired-end reads on an Illumina-HiSeq2000 platform.
Casava v. 1.8.2, Cutadapt v. 1.2.2 and Sickle v. 1.200 were used
to perform the basecalling, de-multiplexing and trimming of the
indexed reads, with a minimum window quality score of 20,
and reads with more than 3 bp of adapter or shorter than 10 bp
were removed. Per sample, an average of 12.4 million filtered
read pairs (range 7.3-18.7 million) were mapped to the SBW25
reference genome (GenBank NC_012660.1) using BWA (v. 0.5.9-
r16), with local realignment and variant calling (relative to
the ancestral SBW25 genome sequenced at the same time)
achieved using GATK Unified Genotyper (v. 2.1-13-g1706365)
followed by snpEff (v. 4.1) to assign effects on coding genes.
Only non-synonymous SNPs with high impact effect were
considered. The data for this study have been deposited in
the European Nucleotide Archive (ENA) at EMBL-EBI under
accession number PRJEB38430.

(d) Data analyses

Relative fitness analysis for each individual bacterial clone was
performed with a linear mixed effects model fitted with REML,
where the selective environment (presence and absence of the
community) was fitted as a main factor, and nested replicates
(n=23) as a random effect. This was carried out in JMP software.
To test whether different sets of genes were mutated in clones
evolved in the absence/ presence of the community, we used per-
mutational analysis of variance, PERMANOVA [24,25], using the
adonis function of the vegan package in R v. 3.3.3 and Euclidean
distance as the measure of dissimilarity (distance was measured
at the level of mutated genes, so the distance between two clones
decreases if they have mutations in the same genes, even if the
nucleotide changes involved are different). Dataset files are avail-
able from the Dryad repository linked to https://doi.org/10.
5061/dryad.vdncjs [26].

3. Results

(a) Fitness of P. fluorescens clones in the presence and
absence of the community

We measured the fitness of each bacterial clone in both selec-
tive environments (i.e. in the presence and absence of the
microbial community), and found that there was a significant
interaction between the selection environment and the
environment in which fitness was measured (F;s5=382.32,
p <0.001). Figure 1 shows that bacterial clones that were
evolved in sterile potting compost or in the presence of the
community had similar fitness in the absence of community
(F1,10=0.018, p = 0.896), with fitness greater than the ancestor
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Figure 1. Fitness (selection rate constant) of P. fluorescens SBW25 in different selective environments: in sterile potting soil and in potting soil with the microbial
community. Each bar represents the bacterial growth rate of the different evolved clones (A: in the absence, and B: in the presence of the microbial community)
related to the ancestral after 5 days competition calculated by the difference in the estimated Malthusian parameter (m). Each competition assay was performed
with three replicates. Positive values indicate higher relative fitness of the evolved bacteria as compared with the ancestor.

in both treatments (t5 =4.83 and t5 = 5.64; p < 0.002). However,
community-evolved populations had much greater fitness in
the presence of the community than populations evolved in
sterile potting compost only (Fy10=32.64, p<0.002), with
the former showing significantly higher fitness than the
ancestor (t5=6.12, p<0.001), and the latter significantly
lower (t5=8.22, p<0.001). The community-evolved popu-
lations had approximately equal fitness in both
environments (t;;=0.63, p <0.533). These data suggest no
cost to adaptation to the community, while populations
rapidly became maladapted to the community when evolved
in its absence.

We re-sequenced the 12 evolved clones to attempt to identify
mutations underpinning the phenotypic differences between
treatments. The number of non-synonymous single nucleotide
polymorphisms (SNPs) ranged between 0 and 17 per clone
(table 1), and between 1 and 6 INDELs (table 2), with mean
numbers of each not differing between treatments (Welch's
t-test: p > 0.05 for SNPs and INDELS). The majority of mutations
were unique to individual clones. There were seven cases

(4 SNPs and 3 INDELs) where the same gene was mutated in
two out of six clones in one treatment and zero out of six in
another; six of these seven genes were mutated only in clones
evolved without the community. Despite this, clones evolved
in the same treatment group (with/without community) did
not have significantly smaller genetic distances than those
from different treatment groups (PERMANOVA at level of
SNPs: F 19=1.15, p=0.18; INDELs: F; 10=1.17, p=0.33; SNPs
and INDELS combined: F; 1o=1.14, p = 0.21). Linking mutated
genes to specific biological process (tables 1 and 2) did not
reveal any pattern between treatments in the functional conse-
quence of mutations. For example, PFLU2423 and PFLU3233
are both components of type Il secretion and both only mutated
in absence-evolved, but PFLU3230 is also linked to type II SS
and mutated in presence. One gene (PFLU1668—a putative epi-
merase) was mutated in three populations evolved with the
community and two without. In particular, the A2 and Bl
clones displayed the similar insertion type at the same location
for this PFLU1668 gene, possibly generating the same alterna-
tive sequence, but it should be noted that the A2 clone
additionally exhibited a non-synonymous mutation in the
PFLU?2493 hypothetical gene predicted to be of moderate
impact. Taken together, these results suggest there are many
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mutations that can lead to adaptation and maladaptation to the
complex potting soil environment.

We investigated how the presence of the microbial commu-
nity affected the rate of adaptation of a focal bacterium in a
commercial potting compost. Populations that had been
evolved for 48 days in both the presence and absence of a pot-
ting soil community showed equal increases in fitness when
measured in the absence of the community. This suggests
no major community-imposed constraint on adaptation,
despite reductions in population size reported in our pre-
vious study [16]. This contrasts with many in vitro studies
using highly simplified communities in nutrient media,
where biotic interactions typically constrain adaptation. It is
notable that in another recent study using a more natural
environment, the community interactions increased abiotic
adaptation of one of the species [14]. It is possible that the
extreme selection pressures associated with laboratory
environments may greatly exaggerate inhibitory effects
of community interactions. Fitness increases of the com-
munity-evolved populations were comparable in both the
presence and absence of the community, suggesting that
most adaptation is to the abiotic environment. We previously
reported increased metabolic diversity evolved in the absence
of the community [16], but this clearly had no major effect on
mean fitness of individual clones.

Our most striking finding, and not observed in com-
parable in vitro studies, is the large reduction in fitness in
the presence of the community, following evolution in the
absence. This suggests that some mutations (or epistatic
combinations) confer advantages in the absence of the
community, but are costly in the presence, i.e. they are antag-
onistically pleiotropic [27]. However, the absence of any

1. Baraclough TG. 2015 How do species interactions 6.
affect evolutionary dynamics across whole
communities? Annu. Rev. Ecol. Evol. Syst. 46,

25-48. (doi:10.1146/annurev-ecolsys-112414-
054030)

2. Johansson J. 2008 Evolutionary responses to 7.
environmental changes: how does competition
affect adaptation? Evolution 62, 421-435. (doi:10.
1111/j.1558-5646.2007.00301.x)

3. Zhang Q, Lambert G, Liao D, Kim H, Robin K, 8.
Tung CK, Pourmand N, Austin RH. 2011
Acceleration of emergence of bacterial antibiotic
resistance in connected microenvironments.

Science 333, 1764-1767. (doi:10.1126/science. 9.
1208747)

4. Urban MC et al. 2008 The evolutionary ecology of
metacommunities. Trends Ecol. Evol. 23, 311-317.
(doi:10.1016/j.tree.2008.02.007) 10.

5. Bolnick DI et al. 2011 Why intraspecific trait
variation matters in community ecology.

Trends Ecol. Evol. 26, 183—192. (doi:10.1016/].tree.
2011.01.009)
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bacterial metacommunities. Nat. Commun. 3, 1234.  12.
(doi:10.1038/ncomms2239)
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Northfield TD, Ives AR. 2013 Coevolution and the
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resistance. Nature 467, 82—85. (doi:10.1038/
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Phillimore AB, Bell T, Barraclough TG. 2012 Species
interactions alter evolutionary responses to a novel ~ 16.
environment. PLoS Biol. 10, €1001330. (doi:10.
1371/journal.phio.1001330)

obvious cost to adaptation of the community-evolved popu-
lations suggests that other equally accessible mutations are
not antagonistically pleiotropic in these contexts. Our geno-
mics analyses are consistent with this interpretation. Total
mutations, including SNPs and INDELs, varied between 1
and 21 per clone, and the vast majority were unique. This
suggests there are many ways in which populations could
adapt to the complex potting soil environment. However,
we note that by phenotyping and sequencing only a single
clone per population, this between-population variation
may be exaggerated given within-population variation.
Mutations that were beneficial in the absence but costly in
the presence of the community would be selected against
when the community was present, and selected for in the
absence (mutation accumulation [28]). Our results highlight
the need to be cautious about extrapolating results from sim-
plified in vitro systems to real-world contexts, particularly
without clear-cut theoretical expectations.

Dataset files are available from the Dryad repository,
linked to https://doi.org/10.5061/dryad.vdngcjs [26]. Sequencing
data for this study have been deposited in the European Nucleotide
Archive (ENA) at EMBL-EBI under accession number PRJEB38430.
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