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Divergent Sepsis Pathophysiology in Older Adults
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Abstract

Significance: Both incidence and mortality rates of sepsis significantly increase with advanced age, and the
majority of sepsis patients are late middle-aged or older. With the proportion of older adults rapidly increasing
in developed countries, age-dependent sepsis vulnerability is an urgent medical issue. Due to an increasing life
expectancy, postsepsis complications and health care costs are expected to increase as well.
Recent Advances: Older patients suffer from higher sepsis incidence and mortality rates, likely resulting from
frequent comorbidities, increased coagulation, dysgylcemia, and altered immune responses.
Critical Issues: Despite a large number of ongoing clinical and basic research studies, there is currently no
effective therapeutic strategy targeting older patients with severe sepsis. The disparity between clinical and
basic studies is a problem, and this is largely due to the use of animal models lacking clinical relevance.
Although the majority of sepsis cases occur in older adults, most laboratory animals used for sepsis research are
very young. Further, despite the wide use of combination fluid and antibiotic treatment in intensive care unit
(ICU) patients, most animal research does not include such treatment.
Future Directions: Because sepsis is a systemic disease with multiple organ dysfunction, combined therapy
approaches, not those targeting single pathways or single organs, are essential. As for preclinical research, it is
critical to confirm new findings using aged animal models with clinically relevant ICU-like medical treatments.
Antioxid. Redox Signal. 35, 1358–1375.
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Introduction

Sepsis is a life-threatening illness that results from infec-
tion. Despite advancing medicine, sepsis remains a seri-

ous global health issue, with an annual estimated 48.9 million
cases and 11.0 million deaths worldwide (138). In the United
States alone, annual incidence rates range from 15% to 20%
with mortality rates upward of 30%, making sepsis the most
expensive condition treated in U.S. hospitals (68, 99, 167).
Similar trends are observed in other developed countries such
as Japan, Australia, China, Canada, and Germany (4, 138).
Figure 1 shows the increase in sepsis-related hospitalizations
compared with total hospital costs over the past decade.
Annual estimates range from $23.7 to $62 billion, and those
numbers are only expected to rise with increased life ex-
pectancies and a growing aging population (138).

Sepsis is particularly devastating to older adults, with
58%–65% of sepsis cases presenting in those ‡65 years of age

(13, 41, 105). It is estimated that 1 in 9 adults will be older
than 65 by 2030 and the global aged population will double
by 2050 (173a). Thus, advancements in sepsis research and
clinical care targeting older adults are critical. In this article,
we will review our current understanding of sepsis patho-
physiology characteristics of older adults (i.e., ‡65 years of
age) and the biological mechanisms that likely contribute to
their higher incidence and mortality rates.

Sepsis Pathophysiology Characteristics of Older Adults

Increased incidence and mortality

Sepsis incidence has been steadily increasing over the past
several decades. Hajj et al. reported an incidence of 82 per
100,000 individuals in 1979, which increased to 436 per
100,000 in 2012 (65). Current estimates for 2017 are 677.5
per 100,000 (138). Sepsis is especially prevalent in older
patients, with incidence rates nearly 100-fold higher as
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determined by Angus et al. (0.2/1000 in children, 5.3/1000 in
those aged 60–64, and 26.2/1000 in patients ‡85) (13, 14).
Martin et al. found that over a 24-year period (1979–2002),
growth rates of sepsis incidence were 20.4% higher for those
‡age 65; those <age 65 showed a mean increase of 9.5% per
year over the 24 years; and those 65 and older had an annual
incidence increase of 11.5% (105).

Older patients also have markedly increased sepsis
mortality rates. A set of early studies concluded that older
patients have mortality rates of 30%–40% whereas younger
patients have rates of 4%–5% (152, 162). More recently,
Kotfis et al. reported that sepsis patients age 50 and younger
have an in-hospital mortality rate of 25.2%, whereas those
aged 61–70 have a rate of 33.1%, and those older than 80
years have an even higher in-hospital mortality rate of
49.3% (89). Nasa et al. found that in severe sepsis/septic
shock, those older than 80 had mortality rates of 78.9%
whereas those younger than 60 had a mortality rate of
45.6% (113). Older patients suffer from gram-negative
bacterial sources of infection at higher rates than younger
individuals (38, 58, 99, 105, 113). This may be attributed to
multimorbidity, increased rates of prior surgical interven-
tion and catheter use among older patients, age-associated
immunosenescence, and overall increased antibiotic resis-
tance (58, 107, 113).

The burden of sepsis lasts long after an individual is dis-
charged from the hospital, as sepsis survivors often suffer
from prolonged fatigue, mental health issues, cognitive im-
pairment, an altered immune system, and even death (37, 40,

130). After sepsis, nearly one-third of sepsis survivors are
discharged to assisted living facilities, and this is associated
with higher 1-year mortality rates (43). Indeed, older patients
are more frequently discharged to assisted living facilities,
underscoring the more severe course of sepsis in older pa-
tients (113). In the time after hospital discharge, those who
were admitted for sepsis have higher 30-day to 3-year mor-
tality rates when compared with nonsepsis-related hospital-
izations, with advanced age having even higher mortality
rates at the 1-year mark (26, 68, 113). Buchman et al. re-
ported that those patients aged 65–74, 75–84, and 85+ are
predicted to have 1.36, 1.92, and 3.38 higher odds of death 1
week after discharge and 1.66, 2.68, and 5.77 higher odds of
death at the 1-year mark, respectably, as compared with those
younger than 65 years of age (26).

Generally, aging is associated with a reduction of stress
tolerance (Fig. 2A). An age-associated increase in mortality
rates has been confirmed by studies using animal models of
sepsis and systemic inflammation. Earlier studies, with sterile
systemic inflammation models using bacterial endotoxin or
lipopolysaccharides (LPS), reported significantly increased
mortality rates in aged mice as compared with younger mice
or rats (35, 63, 140). These findings were later confirmed by
abdominal sepsis models, including the cecal ligation and
puncture (CLP) surgical model and the cecal slurry injection
model (Fig. 2B) (157, 172). Besides increased mortality, aged
animals exhibit increased inflammatory cytokine production
and enhanced coagulation, indicating severe systemic in-
flammation (Fig. 2C, D).

FIG. 1. The percentage of sepsis hospitalizations and costs has risen significantly over the past 20 years. Hospital
costs related to sepsis have risen from 1.9% of total U.S. hospital costs in 1997 to 8.8% of total hospital costs in 2017. Once
adjusted for 2020 inflation, this translated to an increase from $5 billion in 1997 to $41 billion in 2017. The percentage of
sepsis-related hospitalizations has risen from 1.2% to 5.8% of total hospitalizations over the same 20-year period. The data
for 2012 and 2014–2016 were unavailable. A graph is generated from the summarized data from HCUP Statistical Briefs
(11, 12, 44, 99, 138, 165, 166, 181, 182).
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Absence of fever

A common manifestation of sepsis is the development of
fever. However, as older adults tend to have lower body
temperatures, fever (oral temperature ‡37.8�C [100�F] or
rectal temp ‡37.5�C [99.5�F]) is absent in older sepsis pa-
tients up to 50% of the time, making diagnosis more difficult
(137). In addition, hypothermia (<36.0�C [96.8�F]), which
also occurs during sepsis, is more common in older patients
and is associated with higher sepsis mortality rates (165). The
development of hypothermia after sepsis is confirmed by our
several preclinical studies with murine models; although
sepsis- and endotoxemia-induced hypothermia is common in
both young and aged mice, these studies found that hypo-
thermia is more profound in older animals and is highly as-
sociated with increased systemic inflammatory cytokine
production and mortality (141, 158).

Dysglycemia

Sepsis often causes abnormalities in blood glucose levels (i.e.,
dysglycemia). Both hyperglycemia and hypoglycemia occur

with sepsis and can contribute to in-hospital and postdischarge
mortality (9, 32, 33, 54, 117). An early study by Kagansky et al.
found that aged (‡70 years) hypoglycemic patients had double
the in-hospital and 3-month mortality rates, despite hypogly-
cemia not being an independent predictor of mortality (81).
Higher mortality rates for hypoglycemic sepsis patients were
confirmed by another study also showing that longer inpatient
stays are associated with low blood sugar (54, 129).

During sepsis, hypoglycemia is often a result of intensive
insulin therapy to avoid hyperglycemia. Nugent et al. re-
ported that mild and severe hyperglycemia in sepsis patients
correlated with older age, and those with severe hypergly-
cemia suffered higher 30-day mortality rates regardless of
diabetic state (117). However, there is emerging evidence
that mild hyperglycemia may be beneficial, and intensive
insulin therapy should be avoided (62, 143, 164). Noting that
closely maintained glycemic control protocols do not ap-
pear to improve mortality, Marik and Bellomo suggested
that hyperglycemia is an adaptive response to promote
survival (104). Green et al. found that hyperglycemia alone
did not impact mortality rates in nondiabetic patients

FIG. 2. Age-associated vulnerability to stress. (A) Aging is associated with reduced physiological stress tolerance.
Older adults develop more exaggerated responses to mild infection, injury, surgery, or trauma whereas younger individuals
do not. (B) A survival test demonstrating age-dependent mortality by sepsis. Survival after cecal slurry-induced abdominal
sepsis was monitored in young adult (4- to 6-month-old, n = 7), middle-aged (12- to 14-month-old, n = 9) and aged (24–26
months old, n = 8) male C57BL/6 mice. [Adapted from Starr et al. (157).] (C) Northern blot analysis demonstrating age-
dependent overexpression of cardiac IL-6 mRNA 6 h after induction of endotoxemia. Young adult (4 months old) and aged
(24 months old) male Blab/c mice were injected intraperitoneally with LPS (*1.5 mg/kg body weight, n = 4 pooled in each
group.) [Adapted from Saito et al. (140).] (D) Western blot analysis demonstrating age-dependent increase in fibrin
formation (i.e., blood clot) 24 h after sepsis induction. Abdominal sepsis was induced in young adult (4–6 months old) and
aged (24–25 months old) male C57BL/6 mice by cecal ligation and puncture, and whole lung was collected for fibrin
analysis (n = 4–5 in each group). [Adapted from Starr et al. (158).] LPS, lipopolysaccharide.
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admitted to the hospital for sepsis (62). In fact, Tiruvoipati
et al.’s study found stress hyperglycemia to be associated
with lower intensive care unit (ICU) mortality rates in
septic shock (164).

Coagulation

Disseminated intravascular coagulation (DIC), resulting
from inflammation-driven microvascular endothelial cell
damage and vascular leakage, is a particularly deadly com-
plication in sepsis. Not only does inflammation drive coag-
ulation, but also increased coagulation further perpetuates
inflammation resulting in a positive feedback loop (96).
Hypotension, compromised blood circulation, tissue ische-
mia, and organ failure are all downstream consequences of
increased coagulation. The DIC also commonly results in
coagulopathy (bleeding) once platelets and coagulation fac-
tors are exhausted (75, 78). Kelm et al. reported that DIC
development in sepsis led to higher mortality rates when
compared with sepsis controls without DIC (68% instead of
38%) (85). Lyons et al. found that as the severity of sepsis-
associated coagulopathy increased, the duration of hospital-
ization and requirement for ICU care did in tandem (102).
This study also found an association between increased
mortality and coagulopathy (102). ‘‘Sepsis-induced coagu-
lopathy’’ that can progress to DIC was recently introduced to
better describe and diagnose the fibrinolytic phenotype of
coagulopathy in sepsis (75, 76). However, its relation to ag-
ing has yet to be characterized.

Enhanced thrombosis in the aged has been demonstrated in
preclinical models of sepsis. We have shown that age-
dependent fibrin formation in the lung and kidney using
murine models of LPS-endotoxemia, CLP-abdominal sepsis,
and acute pancreatitis is an inflammatory disease that often
progresses to sepsis (Fig. 2D) (119, 158, 159). In two of our
previous studies in which the sepsis or endotoxemia mortality
rate was titrated to be equivalent in young and aged mice,
only aged mice showed significant fibrin formation, indicat-
ing that enhanced coagulation is due to advanced age, not the
age-dependent severity of sepsis (158, 159). This is in con-
trast to cytokine production; IL-6 production in young and
aged mice is equivalent when sepsis severity is similar be-
tween the groups (159).

It is noteworthy that young mice hardly show fibrin for-
mation although thrombotic biomarkers such as d-dimer and
plasminogen activator inhibitor 1 (PAI-1) are elevated,
highlighting that the use of appropriately aged animals for
studying sepsis-induced coagulopathy is critical.

Comorbidities

Comorbidities typically develop with advancing age, and
their role in sepsis should not be overlooked. Figure 3 out-
lines several factors that contribute to the increased rate of
sepsis incidence and mortality in older individuals. Co-
morbidities and multimorbidities emerge increasingly
starting at age 50, and several of these are negatively as-
sociated with both the initial survival of sepsis and survival
in the months after sepsis (188, 48). This suggests that co-
morbidities are a factor not only in sepsis development and
survival but also in long-term quality of life after sepsis
recovery.

Cancer

Cancer-related sepsis has an 8.4% higher mortality rate
than noncancer-related sepsis, and 9% of all cancer-related
deaths are due to sepsis (5, 68). Sepsis patients with cancer
make up 12% of total sepsis admissions in the United States,
and malignancy serves as the most common sepsis co-
morbidity (50, 68). In a retrospective study of sepsis patients
in Lebanon, the mean age of septic patients with cancer
(65.39 – 15.04 years) was lower than the noncancerous sepsis
control group (74.68 – 14.04 years), indicating that cancer
predisposes patients to earlier bouts of sepsis (5). The in-
creased incidence and mortality rates of cancer-related sepsis
are typically associated with the immunosuppressive effects
of chemotherapy. Indeed, Li et al. found that 18.8% of cancer
patients developed infections requiring hospitalization after
their first round of chemotherapy (98).

Murine models have revealed that cancer, without che-
motherapy treatment, also leads to worsened mortality rates.
Allen et al. recently published that cancer itself can decrease
the body’s ability to fight infections, as T cell dysfunction
accompanies malignancies (10). Fox et al. looked at the in-
teraction between sepsis and cancer and found that septic
mice with cancer had higher rates of B and T cell apoptosis
(50). Taken together, cancer itself can elevate the risk of
sepsis incidence and mortality, whereas chemotherapy
treatment further increases both.

Diabetes mellitus

Diabetes is a major comorbidity of sepsis, comprising
20%–23% of sepsis patients (4, 88). Indeed, both type 1
(T1DM) and 2 (T2DM) diabetes increase sepsis incidence
and mortality (29, 53, 74, 88, 129, 144, 168, 190). Hsieh et al.
found that sepsis patients with T2DM have higher in-hospital
and 28-day mortality rates when compared with nondiabetic
sepsis controls (74). Both T1DM and T2DM cause a de-
creased innate immune response, thus increasing the risk of
general infections and sepsis in terms of both incidence and
mortality (29, 57, 129, 168, 190). Neutrophil function, in-
cluding decreased adhesion and migration, is especially
common in T1DM and leads to a reduced ability to clear and
regulate sepsis-causing infections (6, 27, 168). In T2DM,
higher mortality rates may be driven by heightened insulin
resistance and inflammation (21, 168).

Animal models of sepsis in rats with T1DM and T2DM
revealed 75% and 30% higher mortality rates, respectively
(168). Schuetz et al. reported higher mortality rates in dia-
betic mice, crediting decreased bacterial clearance as a major
reason for the increase (144).

Dementia

A study by Shen et al. found that dementia increases severe
sepsis incidence by 50%, in-hospital mortality risk by 28%,
and also increases the risk of acute organ dysfunction in
sepsis patients by 32% (148). Bouza et al. reported that de-
mentia raises mortality rates in individuals aged 65–69 as
well as individuals ‡90 years of age, despite a greater degree
of comorbidities in the older age group (25). However, the
same study also reported that patients with sepsis and de-
mentia had paradoxically lower rates of organ dysfunction
and shorter hospital stays than nondementia sepsis patients
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(25). These disparities need to be clarified in future studies.
Sepsis itself induces long-term cognitive impairment in
more than 50% of sepsis survivors, with some cases war-
ranting a mild Alzheimer’s disease diagnosis (37). Pre-
existing cognitive deficits and neurological disorders have
been deemed a risk factor for developing sepsis-associated
encephalopathy, further suggesting that dementia could
have a negative impact on both sepsis survival and quality
of life after sepsis (37).

Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a
chronic inflammatory lung disease that starts at or after
middle age and elevates the risk of chronic and acute respi-
ratory tract infections (95, 146). Pulmonary infection, in-
cluding pneumonia, is a leading cause of sepsis. A study by
Montull et al. determined COPD to be a risk factor for severe

sepsis brought on by pneumonia (110). The study found that
37.6% of those hospitalized for community-acquired pneu-
monia had already developed severe sepsis on hospital
admission, confirming that the two are closely linked (110).
Kukrety et al. concluded that accelerated aging leads to
COPD, noting that several hallmarks of aging such as
telomere shortening and cellular senescence are seen in
COPD pathogenesis (90). A Taiwanese study by Chen et al.
sorted COPD patients into sepsis and nonsepsis groups and
found that the sepsis survivors with COPD had higher in-
hospital to 2-year mortality rates than the nonsepsis COPD
individuals (34).

Obesity

Obesity, though not unique to older adults, is among the
most common and costly comorbidities, representing more
than 20% of total annual medical spending in the United

FIG. 3. Age-associated multiple comorbidities and other factors that contribute to increased sepsis incidence and
mortality rates. Shown by the solid arrows, decreased immune function (73), cancer (50, 68), COPD (34, 90, 95, 109, 145),
chronic kidney disease (69), dementia (25, 37, 147), increased rates of coagulation (64, 183), poor oral/dental health (80,
132, 146), cardiovascular disease (94), and diabetes (27, 88, 167) all increase sepsis risk and mortality. Further, obesity
serves as a comorbidity and risk factor for several conditions, notably diabetes and cardiovascular disease. Although
obesity’s role in sepsis is still unclear, it may have a negative impact on incidence and mortality rates in older adults (dashed
line) (3, 107, 122, 186). All of these conditions occur more frequently with age, thus contributing to higher rates of sepsis
incidence and mortality in older populations (‡65 years old) (186a, 48). COPD, chronic obstructive pulmonary disease.
Figure created with BioRender.com
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States (30). Although obesity increases the risk of developing
poor health conditions such as diabetes, cardiovascular dis-
ease, and some cancers, epidemiological studies have re-
ported that being overweight or obese confers a survival
advantage during sepsis (30, 84, 97, 125, 126, 177, 179). This
emerging phenomenon is referred to as the ‘‘obesity para-
dox’’ (84, 115, 136).

With respect to aging, current data are inconclusive as to
whether age plays a role in the obesity paradox. In their recent
retrospective analyses of 55,038 adult sepsis patients, Pepper
et al. conducted subgroup analyses for age (<65 or ‡65) and
found that overweight and obese patients (class I–III) had
lower short-term mortality (in-hospital or discharge to hos-
pice) than normal-weight patients, regardless of age group
(125). However, Abbate et al. found that the association
between obesity and sepsis survival was modified by age in
that obesity was associated with lower mortality in older
adults (>50 years) but not younger adults (<50 years) (3).
Although the association between obesity and increased
survival is reflected in numerous clinical studies, a few
studies were inconclusive or found no association after ad-
justing for age or other comorbidities (15, 56, 92, 123).

Further complicating the validity of this phenomenon is
the fact that preclinical studies have mostly been unable to
confirm the obesity paradox using sepsis models with dietary-
induced obese animals (108, 187). Some preclinical studies
reported that diet-induced obesity increased survival after
CLP-induced sepsis (151, 170), whereas others found no
effect (122), or showed reduced survival in obese mice (83).
This discrepancy may well be due to different experimental
designs, including the age of animals used and the degree of
metabolic syndrome influenced by a varied duration of high-
fat diet feeding. Many studies using LPS, single-strain bac-
teria, or single-strain viruses failed to reproduce the obesity
paradox showing either no effects of obesity on survival or
reduced survival in the obese (187).

Though questions surrounding the ability of obesity to
promote survival during sepsis remain, it is known that vis-
ceral adipose tissues (VAT) have pathological roles in sepsis
as both clinical and preclinical studies found that VAT is a
major source of several pro-inflammatory cytokines (e.g., IL-6)
and pro-thrombotic mediators (e.g., PAI-1) (153, 154, 194).
Short-term dietary restriction has also been shown to sig-
nificantly reduce body weight, the amount of VAT, and result
in increased survival of middle-aged mice under both sepsis
and endotoxemia models (156). Thus, a balance between the
negative pathological role of visceral fat and the potential
protective effects of the obese state must exist if obesity is
deemed protective in sepsis.

Dental and periodontal diseases

Recently, it is increasingly recognized that poor oral
health negatively affects older adults’ general health (42).
Ondontogenic infections—those of the tooth or surround-
ing areas—can lead to sepsis as described by Jevon et al.
(80). Older adults are more prone to ondontogenic infec-
tions as they undergo thinning of the oral mucous mem-
brane, which is a critical barrier in pathogen protection
(133). Oropharyngeal gram-negative rods are common in
cases of nursing home-acquired pneumonia, suggesting
that poor dental health has a role in nosocomial pneumonia

development (147). Indeed, community-acquired pneu-
monia is responsible for a significant number of sepsis
cases (31), indicating the importance of further investiga-
tion focusing on the link between ondotogenic infections,
dental hygiene, and sepsis in older adults.

Other comorbidities

Various other comorbidities exist, and a few studies
have attempted to highlight a link between them and sepsis
incidence/mortality; however, the data are sparse. Chronic
kidney disease can be classified as both a source of chronic
inflammation and an immunodeficient state with decreased
innate and adaptive immune responses, thus leading to a
higher risk of developing sepsis (69).

Reports of cardiovascular disease developing after sepsis
are also emerging, with heart failure and atherosclerosis
commonly developing in the years after treatment for sepsis
(94). Lai et al. found that those who are recovering from
sepsis have a 4.48-fold increased risk of developing acute
coronary heart disease in the first year after sepsis, with a
1.18-fold risk at the 4-year mark (94). Interestingly, younger
sepsis survivors, those aged 20–45 years, had a higher ab-
solute risk of myocardial infarction and stroke than those ‡75
years (94).

Biological Mechanisms for Increased Severity
of Sepsis in Older Adults

Altered immune function

It is well established that immune system function declines
with age. Age-associated low-grade chronic inflammation, or
inflammaging, may underlie the exaggerated inflammation
and subsequent immunosuppression observed in sepsis (51,
91, 191). Sepsis itself alters immune function, exacerbating the
deleterious changes that occur with aging (7, 40, 73, 113).
Nearly two-thirds of sepsis survivors develop chronic immu-
nosuppression and inflammation, now termed PICS (persistent
inflammation/immunosuppression and catabolism syndrome),
which leaves them vulnerable to secondary infections, ac-
counting for roughly 65% of total sepsis-related deaths (72,
106, 127). Platelet, T cell, B cell, neutrophil, natural killer
(NK) cell, macrophage, and toll-like receptor (TLR) dys-
function all lend themselves to worsened sepsis outcomes (7,
36, 40, 55, 71, 145). Age- and sepsis-associated alterations of
specific immune cell types are briefly discussed here.

Myeloid cells

Monocytes serve as precursors for macrophages and den-
dritic cells (145). Total monocyte counts do not change with
age, but the proportion of monocytes in each subtype (clas-
sical, nonclassical, and intermediate) is reportedly altered
(36, 55, 71). Namely, nonclassical monocytes increase with
age; however, Seidler et al. suggest that increased number
does not mean increased function, as migration and
monocyte-derived macrophage half-life times are likely
negatively impacted by aging (145). With sepsis, all three
monocyte subclasses typically undergo expansion, and high
total monocyte levels are linked to reduced bacteremia and
better outcomes (36, 55, 71). Clinical data indicate that
monocyte counts decreased with sepsis progression in non-
survivors, whereas survivors saw increases (36). Further, low
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levels, specifically of nonclassical monocytes (proinflam-
matory subtype with high TLR expression), are associated
with worse outcomes (55).

Macrophages, classically divided into M1 (pro-inflammatory)
and M2 (anti-inflammatory), play an important role in sepsis
(101, 112, 118, 128, 150, 181). M2 macrophages aid in inflam-
mation resolution and wound healing, whereas M1 macrophages
produce pro-inflammatory cytokines and reactive oxygen spe-
cies (ROS) to carry out their phagocytic and bactericidal func-
tions (17, 103, 112, 118, 150). With aging, the ability of
macrophages to mount an effective pro-inflammatory response
is diminished (103). For example, macrophage-derived IL-1b
and TNF-a levels are reduced by 25% compared with young
mice (128). Concurrently, sepsis-induced apoptosis depletes
macrophages, limiting their pathogen clearing abilities and
eventually immunosuppression and secondary infection (28).

Neutrophils play a major role in phagocytosis, and de-
creased neutrophil migration and phagocytosis are linked to
worse sepsis prognoses (36, 71, 192). Shen et al. noted that
neutrophils can aggregate in the vasculature, promoting or-
gan dysfunction during sepsis (149). Visan stated that with
aging, neutrophils form extracellular traps, produce more
ROS, and promote adhesion (176). Tsukamoto and Machida
found that men older than 60 years old demonstrated de-
creased neutrophil function and correlated stressful events
with age and lower rates of phagocytosis (171).

Platelets play critical roles in inflammation and hemostasis
by interacting with other immune cells and promoting en-
dothelial adhesion and extravasation of leukocytes at sites of
inflammation. Platelet counts decrease by about 10% after
age 70, and this is further depressed in sepsis (70, 109). Low
platelet counts in sepsis have been associated with the de-
velopment of DIC, although this trend is apparent only for the
severely ill (16). Despite decreased platelet counts, platelet
activity increases in both aging and sepsis, causing an ex-
aggerated inflammatory response (16, 109). During sepsis,
platelets can spontaneously aggregate, elevating the risk of
arterial occlusions and coronary events (16, 169). Since older
individuals already have increased coagulation, this is par-
ticularly dangerous in aged sepsis patients (64).

Lymphocytes

Lymphocytes include three main subclasses: T cells, B
cells, and NK cells. Aging introduces changes to all three
subclasses, which likely contribute to increased sepsis inci-
dence and mortality in older adults (52, 59, 73, 111). Al-
though the absolute number of T cells remains the same with
age, the balance between naive and memory T cells shifts to
favor memory cells (19, 59). This is problematic, because the
ability of the remaining naive T cells to replicate in response
to pathogen stimulation is suppressed (59). Further, T cells
also lose their ability to recognize a diverse range of antigens
with age, giving rise to decreased immunity (19). In sepsis, T
cell exhaustion and persistent inflammation increase mor-
tality rates, especially in older adults (77). Functional unre-
sponsiveness and replicative senescence characterize T cell
exhaustion, which ultimately results in an inability to activate
macrophages and eliminate pathogens (77). T cell apoptosis
also occurs during sepsis, driving immunosuppression (73).

Among the four B cell subsets (naive, IgM memory, late
memory, and switched memory), late memory B cell pro-

portions increase with age, and their higher proportions in
blood are associated with poor vaccine response in the aged
(52). This is pertinent to sepsis as vaccines are recommended
to help prevent the progression of infection to sepsis, espe-
cially in older adults (22). Sepsis has also been shown to
decrease antigen-specific antibody production in B cells,
which leads to worse outcomes and diminished response to
vaccines (38, 73). In sepsis, B cells also demonstrate ex-
haustion (120). This decreases the immune response as the
ability of B cells to produce cytokines, secrete immuno-
globulins, and activate T cells decreases (120).

NK cells are vital to the immune response, as decreased
NK cell activity is associated with increased infection inci-
dence (111). NK cells function declines with age as their
ability to secrete cytokines and defend against pathogens
decreases (52, 111).

The overall dysregulation of lymphocytes during sepsis
may also inhibit the cross-talk between the innate and
adaptive immune systems, further increasing the difficulty
for the body to clear the infection (120). Combined with the
impacts of aging, the sepsis-induced alterations to lympho-
cytes doubtlessly contribute to future infection incidence and
increased mortality after discharge.

Toll-like receptors

Though not immune cells themselves, TLRs are critical in
the immune response. TLRs are a class of pattern recognition
receptors that have roles in detecting pathogens, regulating
cytokine production, recognizing self and nonself antigens,
and linking together the innate and adaptive immune system
(116). Signaling downstream of TLRs is impaired in aging, as
TLR2 and TLR4 become unable to mount proper cytokine
responses (18). Indeed, whole blood treated with LPS ex vivo
demonstrated decreased responses with increased age (18).
This is likely a result of lower levels of CD80, decreased ERK
phosphorylation, and/or chronic inflammation that causes an
upregulation of TLR inhibiting deubiquitinases (18). Due to
the critical role of TLRs in pathogen detection, their sup-
pressed function in aging may contribute to a higher inci-
dence of infection in older individuals. Acknowledging that
TLRs play a central role in the development of sepsis, several
therapies are attempting to target TLR4 (93, 142, 187).

Wound healing

Wound healing is an important component of the immune
response, as it resolves tissue injury and prevents future in-
fection (60, 61, 128, 131). The four overlapping stages of the
wound healing process—hemostasis, inflammation, prolif-
eration, and remodeling—require coordinated action by
various types of cells, including macrophages, keratinocytes,
endothelial cells, neutrophils, platelets, and fibroblasts (46,
61, 86, 87, 128, 134). Aging impacts each stage of the wound-
healing response, which is delayed 20%–60% in aged ani-
mals (60, 131). Macrophage and neutrophil infiltration
progress more slowly with advanced age, thus delaying
healing (46). Keratinocyte migration slows as much as 50%
in aged animals (60). Wound closure slows in older animal
models as a function of decreased proliferation and produc-
tion of fibroblasts, vascular endothelial cells, and keratino-
cytes (23, 60).
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Older adults are more susceptible to infection as a result of
these changes (23, 60). These age-related changes in wound
healing are linked to an increased population of senescent
cells, or cells displaying a senescence-associated secretory
phenotype (180, 185). After sepsis in a murine model,
wound-healing abilities are diminished compared with non-
sepsis controls (39). In their review, Thornton et al. noted that
sepsis may increase collagenolysis and that collagen syn-
thetic capacity is decreased significantly in abdominal sepsis,
diminishing strength in wound healing (163). Sepsis-induced
immunosuppression may be furthered when wound fluid that
depresses lymphocyte function in sepsis spills into the sys-
temic circulation (163). Sepsis can also decrease the response
of the cell types involved in wound healing, namely mono-
cytes, macrophages, neutrophils, and platelets (7, 16, 40).

Coagulation

Although advancing age alone is associated with height-
ened coagulation, the propensity for this chronic condition to
worsen DIC during sepsis is unknown (82, 184). Further,
although the tendency to develop DIC is well characterized in
sepsis, little is known about age-associated differences in the
expression of thrombotic factors and how these relate to
clinical outcomes (78, 82, 96). Although data are lacking on
age-related differences in prothrombotic factors, clinical
trials with activated protein C (aPC; Xigris) in severe sepsis
showed that efficacy was greatest in elderly patients, sug-
gesting heightened thrombosis in old age (8, 45).

Several preclinical studies address the mechanisms for
age-dependent coagulation during sepsis or related systemic
inflammatory conditions. An early study reported that in-
duction of PAI-1 is augmented in aged mice with en-
dotoxemia, which is linked to suppressed fibrinolysis and

increased thrombosis (190). Age-dependent DIC in the lung
and kidney and increased plasma levels of PAI-1 were later
confirmed in a murine model of severe acute pancreatitis, an
acute systemic inflammatory disease of the pancreas that
often leads to sepsis (119). We also found that activation of
protein C (PC) is strongly suppressed in aged mice with en-
dotoxemia: This causes insufficient production of a potent
anti-coagulation factor, aPC (158, 159). Activation of PC to
aPC requires thrombin and thrombomodulin (TM). The in-
sufficient production of aPC is at least partly due to a pro-
found/prolonged downregulation of TM during systemic
inflammation in aged animals (159). Similarly, age-
associated suppression of aPC production and increased
thrombosis was confirmed in an abdominal sepsis model
using a cecal ligation puncture (158).

Taken together, two major anti-coagulant mechanisms,
fibrinolysis and the PC pathway, are suppressed in aged an-
imals during sepsis, which likely contributes to elevated
thrombosis in the aged during sepsis (Fig. 4). We found that
several pro-coagulant factors such as tissue factor,
thrombospondin-1, PAI-1, and PAI-2 are strongly expressed
in VAT during systemic inflammation, with higher levels
observed in the aged, suggesting a pathophysiological role of
fat tissue in age-dependent coagulation (154). Our recent
work utilizing patient-derived visceral fat specimens has
demonstrated a role specifically for adipose tissue-derived
PAI-1 in the development of acute kidney injury in septic
patients (194).

Oxidative Stress

During the inflammatory response, neutrophils undergo a
respiratory burst and produce superoxide (O2

�-). The super-
oxide anion reacts with nitric oxide (NO) and produces a

FIG. 4. Two mechanisms for age-dependent enhancement of coagulation during sepsis. (i) Suppression of the PC
pathway: Sepsis or systemic inflammation causes conversion of pro-thrombin to thrombin, which converts fibrinogen to
fibrin, leading the blood to clot. Although thrombin stimulates positive feedback mechanisms to enhance coagulation by
activating factors V and VIII to further produce thrombin, it also acts as a negative feedback mechanism called the PC
anticoagulant pathway. In this pathway, thrombin, with its cofactor TM, converts PC to aPC. The produced aPC negatively
regulates coagulation by inactivating factors Va and VIIIa. However, in aged animals, sufficient production of aPC is
blocked during sepsis and endotoxemia, leading to increased coagulation (158, 159). The reduced aPC production is likely
due to age-dependent reduction of TM expression during acute inflammation (159). (ii) Suppression of fibrinolysis: Plasmin
is an anti-coagulation factor that degrades cross-linked fibrin (blood clots). PAI-1 inhibits conversion of plasminogen to
active plasmin. PAI-1 production during sepsis and systemic inflammation tends to be augmented in aged animals, causing a
reduction of plasmin-mediated fibrinolysis and resulting in increased accumulation of blood clots (119, 159, 189). aPC,
activated protein C; PAI-1, plasminogen activator inhibitor 1; PC, protein C; TM, thrombomodulin.
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toxic peroxynitrite (ONOO-). The production of ROS and
reactive nitrogen species (RNS) are typically balanced by
antioxidants to prevent tissue and organ damage.

Superoxide dismutases (SODs) are the only antioxidant
enzymes that can scavenge O2

�-. Among three distinctively
different SODs, only extracellular SOD (EC-SOD or SOD3),
but not CuZnSOD (or SOD1) and MnSOD (or SOD2), is
localized extracellularly to scavenge free radicals. This en-
zyme is predominantly expressed in the lung and protects
animals from systemic inflammation by reducing oxidative
damage (173). Expression of EC-SOD is temporarily
downregulated on systemic inflammation in young animals;
however, such downregulation is significantly more profound
and prolonged in aged mice (160). Aged animals also show
significantly augmented iNOS expression in the lung during
systemic inflammation, suggesting an overproduction of NO.
The combination of reduced EC-SOD expression and aug-
mented NO production in the aged appears to cause an
overproduction of peroxynitrite, resulting in pulmonary in-
jury (Fig. 5) (160).

In human studies, plasma SOD and catalase are signifi-
cantly decreased in sepsis patients when compared with
healthy, nonsepsis controls (91). The ‘‘plasma SOD’’ as
stated in the article is likely to be EC-SOD. Importantly, low
plasma SOD and catalase levels were associated with lower
levels of creatinine clearance, linking the decrease of two
enzymes during sepsis pathogenesis with decreased kidney
function (91). In plasma samples from sepsis patients, the
ratio of the oxidized form of coenzyme Q10 to total coen-
zyme Q10 is increased when compared with nonsepsis hu-
man controls, indicating that oxidative stress increases during

sepsis pathogenesis (100). In the same study, the plasma
concentration of antioxidant ascorbic acid was significantly
decreased in sepsis patients (100).

Age-associated increases in coagulation and oxidative
damage can further exaggerate systemic inflammation (193).
Indeed, the oxidative stress theory of aging attributes the
accumulation ROS and RNS as a source of functional issues
and presentation of age-related comorbidities, such as car-
diovascular disease, COPD, and cancers (188). As a result, it
is likely that these conditions promote organ failure and
possible resulting death, especially in older individuals
(Fig. 6).

Sex hormones

Sex hormones also appear to play a role in sepsis pro-
gression and mortality. Nasir et al. found that males had a
relative risk of mortality of 1.73 with a mortality rate of 46%
compared with a 27% mortality rate in females (114). The
more favorable outcomes in females may, in some part, be
due to differences in sex hormones (24). Estrogen and es-
tradiol are of particular note, as they have roles in jump-
starting the immune response, improving vascular respon-
siveness, and reducing apoptosis and inflammation through
anti-inflammatory cytokines (24, 143). Schroder et al. found
that testosterone levels were diminished in male sepsis pa-
tients, whereas testosterone levels in females fell in the
normal range (143). Lower testosterone levels have been
reported to accompany sepsis, burns, and shock (143).
However, testosterone does not appear to have a protective
effect, and the administration of testosterone to female mice

FIG. 5. Mechanisms for age-dependent increase in oxidative damage during sepsis. Sepsis triggers respiratory burst
of neutrophils that produce superoxide (O2

�-). During sepsis, iNOS is upregulated and produces NO. O2
�- and NO form

biologically harmful peroxynitrite (ONOO-), which is converted to even more harmful NO2. EC-SOD is an anti-oxidant
enzyme that negatively regulates the production of peroxynitrite (ONOO-) by scavenging superoxide (O2

�-) and converting
it to harmless molecules (blue lines). In young healthy animals during sepsis, EC-SOD is temporally downregulated, thus
producing a certain limited amount of harmful radicals that function in host defense against microorganisms (172). In aged
animals, expression of iNOS is significantly augmented whereas EC-SOD downregulation is more profound and prolonged.
Such age-dependent changes cause excessive production of harmful ONOO- and NO2, which contributes to protein/tissue
damage and resulting organ dysfunction (160). EC-SOD, extracellular superoxide dismutase; iNOS, inducible nitric oxide
synthase; NO, nitric oxide; NO2, nitrogen dioxide.
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actually drove immunosuppression (143). Administered forms
of estrogen and estradiol show promise in mediating neuronal
degeneration and hemorrhagic shock (24).

Furthering the notion that sex hormones play an important
role in how individuals respond to sepsis are the promising
results of administering estradiol in male rats after trauma
(87). Testosterone and other male androgens have been
shown to depress the immune system’s response, with their
supplementation in female mice leading to marked immu-
nosuppression (143). Despite this promise, evidence of es-
trogen serving as a protective feature is lacking in the clinical
setting, possibly a function of the higher age of most sepsis
patients.

Future Considerations

Increasing knowledge

A majority of elderly patients have multiple comorbidities,
and each of them potentially negatively affects sepsis out-
comes. Due to insufficient information regarding the effect of
comorbidities on sepsis pathophysiology, the available
treatment options for patients are limited. Expanding our
knowledge in the pathophysiology of older sepsis patients is

urgent. By promoting the establishment of sepsis biospeci-
men repositories and high-throughput analyses of patient-
derived materials, we can begin to fill this knowledge gap.

Wide-spectrum treatment

When it comes to treating sepsis, combined therapy may
be essential since sepsis involves multi-organ dysfunction.
Several pathways are involved in sepsis, including local and
systemic immune responses, oxidative stress, coagulation,
glucose metabolism, fatty acid metabolism, the complement
system, and the acute phase response. Likely a result of the
combined involvement of the pathways described earlier, no
singular biomarker has been identified to definitively diag-
nose sepsis (124). Accordingly, clinical trials focusing on a
single pathway of a single organ are not likely to be effective
in treating sepsis. Attempts to develop a single drug to treat
all types of sepsis appear to be unrealistic, as this condition is
caused by different types of pathogens (such as a variety of
bacterial strains, viruses, and fungi) that target different sites
of infection (such as pulmonary, abdominal, urinary tract,
skin, etc.). Further, as the majority of sepsis patients are older
adults, most of whom carry varying comorbidities (Fig. 3),

FIG. 6. Differential sepsis progression in surviving versus dying patterns. When a young, healthy individual is
infected, local inflammation triggers free radical production to control pathogens, but the free radicals are well regulated by
anti-oxidants. Local inflammation drives the production of pro-coagulation factors that are regulated by anti-coagulation
factors, preventing excessive coagulation. Therefore, oxidative damage, coagulation, and systemic inflammation are well
regulated to the minimum necessary levels that are sufficient for controlling pathogens, leading to the restoration of
homeostasis and subsequent survival (left). In aged individuals, production of free radicals and pro-coagulation factors are
often augmented, partly due to insufficient anti-oxidants and anti-coagulation factors. This results in augmented oxidative
damage and coagulation, which cause enhanced systemic inflammation, all of which lead to a condition with a ‘‘loss of
homeostasis’’ driving organ failure and resulting death (right).
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sepsis treatment strategies should be carefully chosen with
consideration for each patient’s specific set of conditions.

Recombinant aPC (Drotrecogin a or Xigris [Eli Lilly &
Co.]) was developed for the treatment of sepsis because aPC
has multiple functions—it is an anti-coagulant, and it also
serves as an anti-inflammatory and anti-apoptotic mediator.
However, despite an initial promising result, the drug was
withdrawn in 2011 due to the lack of a survival benefit and an
increased risk of bleeding (14, 132).

Recombinant human thrombomodulin (rh-TM) (ART-
123 or Recomodulin) is another anti-sepsis drug primarily
targeting the PC pathway (Fig. 4) and possesses multi-
protective functions similar to aPC. A Japanese study
(2011–2013) reported promising results that treatment with
rh-TM reduced sepsis mortality significantly without in-
creasing bleeding complications (66). A more recent large
international study (2012–2018), however, did not find a
statistical significance to support the efficacy of rh-TM for
increasing sepsis survival (175). Some controversy exists
as to whether significantly improved survival rates would
have been observed if sepsis patients were more adequately
selected for rh-TM treatment (189). Although the data are
still inconclusive, further studies on rh-TM treatment are
anticipated (79).

Appropriately aged animals in preclinical research

It is widely recognized that many sepsis treatments de-
veloped from animal models never successfully rescued
sepsis patients (135). One of the reasons, and possibly the
foremost one, is the fact that although the majority of sepsis
cases occur in the geriatric population, most laboratory ani-
mals used for sepsis research are very young (47, 155). As
compared with young mice, aged mice are frail, have co-
morbidities, and are difficult to rescue from experimental
sepsis by any treatments. Our study demonstrated that in
contrast to aged mice, young mice do not exhibit coagulo-
pathy during sepsis despite an increase in the circulating level
of coagulation markers (158). This highlights an example of
the discrepancy between young septic mice and aged septic
mice, the latter of which more closely mimics sepsis patients.
Although the use of young rodent animals for research is
highly practical due to availability and low cost, any potential
therapeutic intervention for sepsis derived from the study of
young animals should be confirmed by using appropriately
aged animals.

Clinically relevant ICU-like setting

Another reason for the failure of preclinical studies to be
translated to clinical improvements is a lack of clinically
relevant experimental design. A majority of sepsis deaths
occur in the ICU where patients are treated with fluids and
antibiotics, whereas most animal research does not include
such treatments (67). In humans, the timing and duration of
antibiotic intervention are important (49, 174). Delaying
antibiotic intervention increases mortality by nearly 1% per
hour, and waiting 6 h from sepsis development increases
the risk of death 8.5% compared with starting treatment
within an hour (49). When comparing antibiotic administra-
tion via intravenous infusion for long or short periods of
time, prolonged administration resulted in a 30% lower risk
of death once sepsis severity was accounted for (174).

Our laboratory has recently demonstrated that a combined
therapy of antibiotics and fluids (starting 12 h after sepsis
induction, repeated twice a day for 5 days) can rescue nearly
75% of late-middle-aged C57BL/6 mice (16 months old,
equivalent to *50-year-old human) from otherwise com-
pletely lethal (LD100) sepsis (121). It is important to mention
that therapeutic resuscitation should not be initiated too early
after infection, as such practice will prevent sepsis develop-
ment in animals (161).

Numerous studies have reported successful drug treat-
ments that improved survival rates impressively in rodent
models of sepsis without any fluids and/or antibiotics resus-
citation. Had this kind of resuscitation been included, sur-
vival would have increased significantly, and thus the
beneficial effects of the drugs would be completely masked
by the resuscitation effects. Thus, for preclinical therapeutic
studies, we recommend including ICU-like resuscitation
procedures. Drug efficacy should test whether candidate
treatments can further improve the survival beyond the
antibiotics/fluids resuscitation.

Understanding COVID-19 in relation to sepsis

The novel coronavirus 2019 (COVID-19) is caused by
infection with a newly discovered coronavirus (called
SARS-CoV-2). Severe COVID-19 may be considered as
viral sepsis, and some patients diagnosed with COVID-19
meet the Sepsis-3 definition (20). A study reported that
sepsis accounted for 18% of COVID-19 deaths (178). Many
symptoms that are characteristics of COVID-19—fever,
tachypnea, hypercoagulability, and the release of proin-
flammatory cytokines—are consistent with typical sepsis
symptoms (20).

Similar to sepsis, COVID-19 hospitalizations and mor-
tality rates increase with age. Further accumulation of data
will reveal the similarities and differences of sepsis and
COVID-19 and how aging impacts survival in these similar
conditions.
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Abbreviations Used

aPC¼ activated protein C
CLP¼ cecal ligation and puncture

COPD¼ chronic obstructive pulmonary disease
DIC¼ disseminated intravascular coagulation

EC-SOD¼ extracellular SOD (or SOD3)
ICU¼ intensive care unit

iNOS¼ inducible nitric oxide synthase
LPS¼ lipopolysaccharide
NK¼ natural killer
NO¼ nitric oxide

NO2¼ nitrogen dioxide
PAI-1¼ plasminogen activator inhibitor 1

PC¼ protein C
PICS¼ persistent inflammation/immunosuppression

and catabolism syndrome
rh-TM¼ recombinant human thrombomodulin

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

SODs¼ superoxide dismutases
T1DM¼ type 1 diabetes
T2DM¼ type 2 diabetes

TLR¼Toll-like receptor
TM¼ thrombomodulin

VAT¼ visceral adipose tissues
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