TABLE 2.
Backbone | Accuracy | Specificity | Sensitivity | AUC |
ResNet-18 | 0.9817 | 0.9800 | 0.9833 | 0.9960 |
ResNet-50 | 0.9733 | 0.9700 | 0.9767 | 0.9967 |
VGG-11 | 0.9833 | 0.9833 | 0.9833 | 0.9984 |
VGG-16 | 0.9783 | 0.9833 | 0.9783 | 0.9983 |
DenseNet-121 | 0.9767 | 0.9767 | 0.9767 | 0.9976 |
DenseNet-161 | 0.9767 | 0.9867 | 0.9667 | 0.9971 |
The bold figures represent the maximum value of each evaluation index.