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Abstract 

Background:  Sepsis is a life-threatening organ dysfunction. A fast diagnosis is crucial for patient management. 
Proteins that are synthesized during the inflammatory response can be used as biomarkers, helping in a rapid clinical 
assessment or an early diagnosis of infection. The aim of this study was to identify biomarkers of inflammation for the 
diagnosis and prognosis of infection in patients with suspected sepsis.

Methods:  In total 406 episodes were included in a prospective cohort study. Plasma was collected from all patients 
with suspected sepsis, for whom blood cultures were drawn, in the emergency department (ED), the department 
of infectious diseases, or the haemodialysis unit on the first day of a new episode. Samples were analysed using a 
92-plex proteomic panel based on a proximity extension assay with oligonucleotide-labelled antibody probe pairs 
(OLink, Uppsala, Sweden). Supervised and unsupervised differential expression analyses and pathway enrichment 
analyses were performed to search for inflammatory proteins that were different between patients with viral or bacte-
rial sepsis and between patients with worse or less severe outcome.

Results:  Supervised differential expression analysis revealed 21 proteins that were significantly lower in circulation 
of patients with viral infections compared to patients with bacterial infections. More strongly, higher expression levels 
were observed for 38 proteins in patients with high SOFA scores (> 4), and for 21 proteins in patients with worse 
outcome. These proteins are mostly involved in pathways known to be activated early in the inflammatory response. 
Unsupervised, hierarchical clustering confirmed that inflammatory response was more strongly related to disease 
severity than to aetiology.
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Introduction
Sepsis is a life-threatening organ dysfunction caused by 
a dysregulated host response to infection [1, 2]. Septic 
shock is a subset of sepsis in which profound circulatory, 
cellular, and metabolic abnormalities are associated with 
a greater risk of mortality than with sepsis alone [1]. In 
patients with sepsis, the fast initiation of antibiotic therapy 
is crucial and each hour delay results in increased risk of 
mortality [3]. The causative event is an invading pathogen, 
most frequently Escherichia coli, Staphylococcus aureus, 
Streptococcus pneumoniae, and Klebsiella species, but also 
influenza virus. Pneumonia, urinary tract infections, and 
intra-abdominal infections commonly result in sepsis, 
although the initial site of infection is not always known, 
e.g., in primary bloodstream infections (BSI) [2, 4]. How-
ever, infection sites are related to different causative patho-
gens and require different antimicrobial treatment.

Organ dysfunction resulting from infection is repre-
sented in the new definition of sepsis and defined by an 
increased sequential organ failure assessment (SOFA) score 
and is often caused by the dysregulated host response. An 
increase in SOFA score of 2 or more is associated with an 
in-hospital mortality of 10% [1]. The host response can be 
heterogeneous and is characterized not only by excessive 
inflammation, but also by immune suppression. Ultimately, 
the host response can be unbalanced and harmful lead-
ing to failure to return to homeostasis [5]. The increasing 
knowledge on host response in sepsis allows for the meas-
urement of inflammation to identify blood biomarkers for 
a better diagnosis and prognosis of patients with various 
infections. Several biomarkers for inflammation and infec-
tion exist, although they mostly provide an indication on 
the clinical state of the patient while lacking sensitivity or 
specificity needed to be used as a diagnostic tool [6]. Two 
widely used markers are white blood cell count (WBC) and 
C-reactive protein (CRP) although they lack specificity [7, 
8]. In addition, procalcitonin (PCT), a pro-inflammatory 
biomarker released by monocytes and macrophages, corre-
lates with inflammation intensity and highly increased con-
centrations are seen in bacterial infections [7–9]. However, 
a multi-marker approach seems more reliable [6, 8]. Previ-
ous studies already reported sensitivity and specificity for 
prognosis in the intensive care unit (ICU) of 94–96% and 
56–94% [10, 11]. Some studies even reported models that 
perform with better accuracy than PCT [12].Contrarily, 

other studies reported that circulating biomarkers discrim-
inated poorly between sepsis and non-septic inflammatory 
reactions [13]. Biomarkers can help in providing a rapid 
clinical assessment of patients and predict disease sever-
ity. Therefore, they could improve outcomes by rapidly 
guiding triage and the start of adequate treatment [9, 14]. 
A faster diagnosis of the infection and the likely causative 
pathogen, will lead to a faster start of targeted antimicrobial 
therapy, thereby reducing selective pressure for antimicro-
bial resistance (AMR). A faster prognostic assessment will 
guide closer patient monitoring. The aim of this study was 
to identify biomarkers of inflammation for determining the 
aetiology of the infection and its prognosis in patients with 
suspected sepsis.

Materials and methods
Study design and study patients
This study was part of a prospective observational cohort 
study performed between February 2019 and April 2020 
at a 981-bed teaching hospital (clinicaltrial.gov identifier 
NCT03841162).

Adult patients presenting with suspected sepsis at the 
emergency department (ED), the department of infec-
tious diseases/nephrology, or the haemodialysis unit 
could participate in the study. A suspected sepsis proto-
col is in place at the hospital, and patient identification 
is mainly based on physician experience. Therefore, all 
patients from whom blood cultures were drawn were con-
sidered to have suspected sepsis and included in the study. 
Patients were included after collection of the first set of 
blood cultures. The blood culture draw, which means the 
suspicion of sepsis, was the start of the septic episode and 
the moment of inclusion. All other events happened later.

All patients were followed during hospitalization, and if 
they developed a new suspected sepsis episode, they could 
be included multiple times. A new episode was defined as 
a minimal interval of 7 days between positive cultures with 
the same pathogen or at least 24 h between positive cul-
tures with different organisms from the same site.

This is a sub-study in which patients with primary BSI, 
pneumonia, influenza, urosepsis, or other secondary BSI 
and a SOFA score of 1 or more, to include both patients 
with and without sepsis, were selected for biomarker 
identification between February 2019 and March 2020. 
An analysis on risk factors for patient outcomes of the 

Conclusion:  Several differentially expressed inflammatory proteins were identified that could be used as biomarkers 
for sepsis. These proteins are mostly related to disease severity. Within the setting of an emergency department, they 
could be used for outcome prediction, patient monitoring, and directing diagnostics.

Trail registration number: clinicaltrial.gov identifier NCT03841162.
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complete study cohort (1690 episodes of suspected sep-
sis) was performed earlier [15]. The methods of patient 
inclusion, microbiological diagnostics, and definitions of 
infection diagnoses were identical in both analyses.

Sample collection
Blood cultures, EDTA samples for complete blood count 
(CDC) and serum and heparin plasma samples for basic 
laboratory parameters assessing organ function were 
obtained for each patient at the start of each new episode. 
Two 9 mL EDTA blood samples were drawn from the same 
venepuncture. EDTA samples were stored at 4  °C until 
written informed consent was obtained for a maximum of 
3 days. Samples were transferred to the University Biobank 
Limburg (UBiLim) and centrifuged at 400  g for 10  min. 
Plasma was separated and centrifuged at 1500 g for 10 min. 
Four aliquots of 500μL plasma were stored at UBiLim [16] 
for each patient at − 80 °C until further analysis.

Microbiological diagnostics
Blood cultures were performed for all patient episodes 
using the BACTEC FX (Becton Dickinson) system. Bac-
terial identification was done by MALDI–TOF Biotyper 
(Bruker). Susceptibility testing was done by the Phoe-
nix system TM 100 (Becton Dickinson). Blood cultures 
were processed 24  h/day, 7d/week. Other microbiologi-
cal diagnostics were performed if deemed relevant by 
the treating physician. This included cultures of urine, 
lower respiratory tract and samples of specific foci, uri-
nary antigen tests for Streptococcus pneumoniae and 
Legionella pneumophila, and PCR for respiratory patho-
gens on nasopharyngeal swabs.

Data collection
Relevant data was extracted from patients’ electronic 
medical files. SOFA-score at the start of a new episode 
was calculated after blood culture draw for all patients [1, 
17]. Recorded patient outcomes were in-hospital mortal-
ity, ICU admission at any time during hospital admission, 
hospital and ICU length of stay (LOS), and the presence 
of bacteraemia. A composite parameter for worse out-
come was made, since mortality was expected to be low, 
and patients admitted to the ICU are expected to have a 
more severe disease. Patients who were admitted to the 
ICU or who died during hospitalization were classified in 
the worse outcome group.

Definitions
The final diagnosis of infection was extracted from the 
treating physicians’ discharge letter and structured and 
validated according to infectious diseases definitions 

[1, 18–21] by a researcher (V.D.) and an experienced ID 
physician (I.C.G.) not involved in the care or consulta-
tions of study patients. Sepsis-3 definitions were used to 
define the presence of sepsis, i.e., all patients with a SOFA 
score of ≥ 2, and septic shock at the start of an episode [1]. 
Severe disease was defined as SOFA score of > 4 and com-
pared with less severe disease (SOFA < 2). No distinction 
was made between community acquired infections and 
healthcare associated infections. Positive blood cultures 
were classified as true bacteraemia or as contamination 
according to CDC guidelines [18]. Positive blood cul-
tures with skin flora, such as coagulase-negative staphy-
lococci, were considered as contaminated when less than 
two blood cultures bottles from one patient were posi-
tive for skin flora. Patients with a positive blood culture 
with these organisms and a clinical suspicion of an infec-
tion of central venous catheters or surgically implanted 
prosthetic material were considered to have true bacte-
raemia. Primary BSI was defined as true bacteraemia, 
without a focus of infection. Patients with a central-line 
associated BSI (CLABSI) or with confirmed endocarditis 
were included in this group. Pneumonia was defined as 
an acute symptomatic infection of the lower respiratory 
tract, whereby a new infiltrate is demonstrated [19]. Influ-
enza was defined by a positive influenza PCR test. Patients 
with both influenza and pneumonia were classified as 
having influenza and were further classified as influenza 
with or without pneumonia based on the presence of 
chest X-ray abnormalities. Other viral causes of pneumo-
nia were not detected in this population. Therefore, pneu-
monia without the presence of influenza was classified as 
bacterial pneumonia. Secondary bacteraemia patients had 
true bacteraemia with a urinary tract focus [20], an intra-
abdominal focus or a skin and skin structure infection.

Protein identification
EDTA plasma from patients was analysed using a proteomic 
multiplex assay (Olink, Uppsala, Sweden), which is a proxim-
ity extension assay with oligonucleotide-labelled antibody 
probe pairs [22]. Samples were analysed with the inflam-
mation panel, which enables analysis of 92 inflammation-
related proteins. Briefly, a pair of oligonucleotide-conjugated 
antibodies to each protein is added to 50μL EDTA plasma. 
Both antibodies are in close proximity when an antibody–
protein–antibody sandwich is formed. This allows hybridiza-
tion of the oligonucleotides, and an extension reaction forms 
a unique sequence. The sequences are quantified by qPCR.

Statistical analyses
Descriptive statistics were used to analyse patient’s char-
acteristics. Continuous data are shown as median (inter-
quartile range (IQR)). Categorical data are reported as 
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number and proportion. A p value of < 0.05 was consid-
ered statistically significant. Data on protein levels were 
analysed as normalised protein expression (NPX on a log2 
scale). Normalization across batches was performed using 
bridging samples according to manufacturer’s instructions. 
Supervised analyses using Welch’s t test were done to 
search for differences according to aetiology (influenza vs. 
bacterial infection), severity (SOFA score > 4 versus SOFA 
score < 2) and outcome (worse versus less severe outcome). 
This was followed by unsupervised hierarchical clustering 
and pathway enrichment analyses. Elastic net regression 
was performed to search for the best biomarker predic-
tors of different outcomes, which was defined as the model 
with the least number of biomarkers while maintaining an 
accuracy of ≥ 75%. All analyses were performed using R. 
Statistical methods are detailed in the Additional file 1.

Results
Patient characteristics
In total, 406 episodes of suspected sepsis in 397 patients 
were included. Table  1 shows the characteristics of the 
cohort. The median age was 74  years, and 59.4% patients 
were male. Median Charlson Comorbidity Index (CCI) was 
2 (0–2) with hypertension (27.2%), chronic kidney disease 
(27.2%), and cardiac comorbidities (22.7%) being the most 
frequent. Primary BSI was present in 17.7% of episodes, 
secondary bacteraemia including urosepsis in 31.3%, pneu-
monia in 31%, and influenza in 20%. Median SOFA score at 
the start of an episode was 2 (2–4). Septic shock was present 
in 1% of episodes and bacteraemia in 53.9%. Median LOS 
was 7 (4–13) days, and there was an ICU admission rate 
after suspected sepsis of 17.7% with a median ICU LOS of 
4 (2–9) days. In-hospital mortality was 10.8%. Therefore, 96 
(23.6%) episodes were classified in the worse outcome group 
and 310 (76.4%) episodes in the less severe outcome group.

Supervised differential expression analyses
Figure 1 shows a Venn diagram of all proteins that were 
significantly differentially expressed for three different 
groupings. In total, 28/92 proteins were significantly dif-
ferently expressed when comparing patients with influ-
enza (with or without pneumonia) with patients with 
bacterial infections. All but six of these proteins (CCL11, 
CXCL11, IFNγ, MCP-2, SCF, and TRAIL) were signifi-
cantly less expressed in patients with influenza. Thirty-
eight proteins were significantly differently expressed 
comparing patients with high SOFA score (> 4) and 
patients with low SOFA score (< 2). All but two proteins 
(AXIN1 and CXCL5) were significantly more expressed 
in patients with high SOFA score (> 4). In addition, 21/92 
proteins were significantly different in patients with 
worse outcome compared to patients with less severe 
outcome. All proteins, except SCF, were significantly 

more expressed in patients with worse outcome. Nine-
teen of these proteins were also differentially expressed 
comparing patients with high and low SOFA score. Mean 

Table 1  Patient demographics and characteristics, diagnosis of 
infection, disease severity and patient outcomes

a Demographics, except department of inclusion, and comorbidities are shown 
on patient level, not on episode level. *Disease severity based on SOFA score at 
the start of a new episode. #Patients who were admitted to the ICU or who died 
during hospitalization were classified in the worse outcome group. All variables 
are presented as number (%) unless otherwise specified

Total n=406 
episodes, 397 
patients

Number of episodesa

 One episode 388 (97.7)

 Two episodes 8 (2.0)

 Three episodes 1 (0.3)

Demographicsa

 Age (years, median (IQR)) 74 (64–74)

 Sex (male) 236 (59.4)

 Department of inclusion

  Emergency department 381 (93.8)

  Infectious diseases 16 (3.9)

  Haemodialysis 9 (2.2)

Comorbiditiesa

 CCI (median (IQR) 2 (0–2)

 Cardiac 90 (22.7)

 Hypertension 108 (27.2)

 Cerebrovascular disease 48 (12.1)

 Chronic pulmonary disease 64 (16.1)

 Chronic kidney disease 108 (27.2)

 Liver disease 17 (4.3)

 Dementia 28 (7.1)

 Diabetes 76 (19.1)

 Solid malignancies 83 (20.9)

 Haematological malignancies 15 (3.8)

Diagnosis of infection

 Primary bacteraemia 72 (17.7)

 Secondary bacteraemia 127 (31.3)

 Bacterial pneumonia 126 (31.0)

 Influenza 81 (20.0)

Disease severity*

 SOFA (median, IQR)) 2 (2–4)

  SOFA (1) 73 (18.0)

  SOFA (≧2) 333 (82.0)

 Septic Shock 4 (1.0)

 Bacteraemia 217 (53.4)

Outcome

 Length of stay (days, median (IQR)) 7 (4–13)

 ICU admission 72 (17.7)

 ICU length of stay (days, median (IQR)) 4 (2–9)

 Mortality 44 (10.8)

 Worse outcome# 96 (23.6)
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expression and p values for the 3 groupings are shown in 
Additional file 1: Tables S2, S3, and S4, respectively.

Unsupervised clustering
Principal component analysis
The first four main principal components explained 42% 
of the variance in the data set (Additional file 1: Table S1, 
Fig.S2 and Fig. S3). Therefore, the following analyses were 
performed based on plotting these four components with 
each other. Gender, age, or batch confounding did not 
seem to be present in the normalized data set (Additional 
file 1: Fig. S1).

Figure  2 shows the results of the principal compo-
nent analyses. To look for distinct diagnosis-based clus-
ters, inflammatory protein related profiles were initially 
checked by classifying patients in three diagnosis groups: 
influenza, bacterial pneumonia and other bacterial infec-
tion (Fig.  2A). Bacterial pneumonia and influenza sepa-
rated most strongly from each other as well as from other 
bacterial infections based on the PC2 axis. This indicates 
that the infection site or aetiology of infection can at least 
to some extent determine the inflammation associated 
protein expression in response to an infection. However, 
separation clearly experienced some overlap between the 
different diagnosis groups and was not absolutely distinct.

Interestingly, SOFA score seemed to grasp and identify 
the differences in protein expression accurately (Fig. 2B). 
Patients with high SOFA scores clearly clustered together 
and differed from patients with low SOFA scores.

Hierarchical clustering
Results are shown in Fig. 3. Hierarchical clustering con-
firmed that no confounding was induced by sex, age, or 
batch in the normalized data set. Two distinct ‘Influ-
enza’ groups could be distinguished at the extreme left 
and right of the cluster. The group on the left consisted 
mostly of patients with influenza without chest X-ray 
abnormalities, while the group on the right were mostly 
patients with influenza and chest X-ray abnormalities. 
Although at first it seemed that influenza clustered dif-
ferently from bacterial pneumonia and other bacterial 
infections, thorough comparison of patients in different 
clusters revealed a pattern of severity that was consid-
ered as the underlying basis upon which the hierarchical 
clustering provided the presented dendrogram. In that 
same light, most patients with pneumonia and patients 
with other infections that clustered at the left of the 
dendrogram had lower SOFA scores than their variants 
situated at the right of the dendrogram. Furthermore, 
highest SOFA scores, and most BSIs (considered inva-
sive disease) were seen in patients that clustered in the 

Fig. 1  Venn diagram showing all differentially expressed proteins between three different groupings, together with overlapping findings. Three 
different groupings are: aetiology (influenza versus bacterial), severity (SOFA score < 2 versus > 4), and outcome (less severe outcome versus worse 
outcome)
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centre of the dendrogram. In addition, when comparing 
outcomes, those patients with worse outcome mostly 
clustered in the middle, while the left and right clusters 
on the dendrogram mostly contained patients with less 
severe outcome. Therefore, hierarchical clustering could 

confirm supervised differential expression, i.e., that some 
differences between viral (influenza) and bacterial infec-
tions were found, but that inflammatory proteins more 
strongly indicated disease severity.

Fig. 2  A principal component analysis to detect clustering between patients with influenza (pink), bacterial pneumonia (blue) and other bacterial 
infections (green). B principal component analysis to detect clustering based on SOFA score
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Fig. 3  Hierarchical clustering plot
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Pathway enrichment analysis
Pathway enrichment analysis was done to illustrate the 
molecular mechanisms involved in this population with 
sepsis as the inflammatory panel used has been com-
piled based on knowledge from a range of inflammatory 
diseases [23]. The most important pathway involving 
proteins differentially expressed between patients with 
influenza and patients with bacterial infections was 
HMGB1/TLR signalling pathway. In proteins differen-
tially expressed between patients with worse and less 
severe outcome, ERBB family/HGF signalling and chem-
otaxis/CCR1 signalling were considered as the two most 
important pathways involved. These pathways show 
shared entities and provide a clear link with IL-10 sig-
nalling, IL-1 signalling, and HSP60 and HSP70/TLR sig-
nalling pathways, known to be involved in sepsis. In the 
latter three pathways, proteins were downregulated in 
patients with influenza and upregulated in patients with 
worse outcome, illustrating differences in disease sever-
ity. Figure 4 shows up- and downregulated proteins in the 
HSP60 and HSP70/TLR signalling pathway.

Prediction biomarkers
The accuracy (area under the receiver-operating curve 
(AUROC) of all elastic net models was tracked from the 
maximum number of biomarkers using a stepwise back-
ward selection. Due to the imbalance classes (minor-
ity and majority) in our data in aetiology and outcome 
models (79 viral vs. 322 bacterial episodes in the aetiol-
ogy model and 94 episodes with worse outcome vs. 307 
episodes with less severe outcome), Synthetic Minority 
Oversampling Technique (SMOTE) was implemented 
to produce a more balanced data set. This technique 
works by selecting the nearest neighbours of minority 
data points and generating new synthetic samples along 
the line between the minority sample and its neigh-
bours [24]. After applying this technique, 188 and 237 
new synthetic samples were generated in the worse out-
come class of the outcome model and in the viral (influ-
enza) category of the aetiology model, respectively. 
Model performances before and after SMOTE are 
shown in Fig. 5,  and 5% decline in AUROC or sensitiv-
ity has been chosen to indicate a cutoff point. Proteins 
in the most optimal model are shown in Fig. 6. Six pro-
teins could predict viral vs. bacterial infection with an 
AUROC of 94%, and a sensitivity and specificity of 86% 
and 87%, respectively. Six proteins could predict SOFA 
score > 4 vs. SOFA score < 2 with an AUROC of 80%, a 
sensitivity of 83% and a specificity of 65%. Ten proteins 
could predict less severe outcomes from worse out-
come with an accuracy of 76%, a sensitivity of 68% and 
a specificity of 72%. In addition, the precision–recall 
AUC (PR-AUC), which is less prone to imbalanced 

data, was 91, 66, and 72% for the aetiology, severity, and 
outcome models, respectively. Comparatively, AUROC 
and specificity of these models was higher, while sen-
sitivity was lower, than AUROC of routine biomarkers 
CRP, WBC and serum lactate separately in this cohort. 
Additional file 1: Fig. S4 shows ROC to predict aetiol-
ogy (AUROC: 75.5, 73.4 and 66.5%, respectively), out-
come (AUROC: 67.7, 58.5 and 69.7%, respectively) and 
severity (AUROC: 61.8, 52.0 and 69.1%, respectively) 
together with sensitivity and specificity.

Discussion
In this study, we identified plasma proteins as potential 
biomarkers for early aetiologic diagnosis and progno-
sis of patients with suspected sepsis. One-third of a set 
92 plasma proteins of inflammation were differentially 
expressed in viral infections (influenza) compared to 
infections of bacterial origin. Moreover, patients with 
severe disease (high SOFA score) and worse outcome 
(mortality or ICU admission) had significantly higher 
protein concentrations compared to patients with less 
severe disease and less severe outcome.

Not surprisingly, most identified proteins of the worse 
outcome group overlapped with those in patients with 
severe disease (high SOFA score), providing further proof 
that disease severity and patient outcome are related and 
associated with the inflammatory response to sepsis. 
Differences in protein expression related to inflamma-
tory (IL-1), anti-inflammatory (IL10) and HSP pathways 
are associated with worse outcome and a model using 
combinations of quantitative protein expression levels 
could moderately discriminate worse from less severe 
outcome, as measured by ICU admission or mortality, 
among a non-severely ill cohort of patients with sepsis 
from selected sources. Three models consisting of several 
protein biomarkers were built. The aetiology model is 
particularly helpful for decisions whether to start empiri-
cal antibiotics in patients with suspected sepsis, the other 
two can point to the need for more intensive monitoring. 
Furthermore, SOFA score correlates well with this com-
prehensive analysis in the severity model and shows the 
usefulness of a cost-free scoring system.

Extensive research has previously been performed to 
search for accurate and sensitive biomarkers for sepsis 
[25–27]. Most biomarkers have their limitations, espe-
cially in differentiating between sepsis and other inflam-
matory syndromes [25, 28]. Similar to our findings, 
plasma biomarkers are often shown to be more strongly 
related to disease severity rather than to the microbial 
aetiology of infection, and the majority of biomark-
ers have been evaluated for their use in the prognosis 
of patients with sepsis [25–27]. When comparing these 
inflammatory markers to routine clinical and laboratory 
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Fig. 4  HSP60 and HSP70/TLR signalling pathway involved in the activation of the inflammatory response

2: Differentially expressed protein upregulated in influenza patients, 
3: Differentially expressed protein upregulated in patients with worse outcome

2: Differentially expressed protein downregulated in influenza patients, 
3: Differentially expressed protein downregulated in patients with worse outcome

1: present in inflammation panel but no significantly different expression

Fold change in expression indicated by the ‘thermometer’, with the level of expression 
indicated by the height of the thermometer.
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Fig. 5  Model optimization for aetiology, disease severity and outcome, starting from the maximum number of parameters resulting from the 
elastic net regression models. The most optimal model was chosen based on the minimum decline of 5% in area under the ROC curve (AUROC) and 
sensitivity with the lowest number of proteins in the model. Aetiology: viral vs. bacterial sepsis, the most optimal model had an AUROC of 94% and 
sensitivity of 86% with six proteins in the model. Disease severity: SOFA score > 4 vs. SOFA score < 2, the most optimal model had an AUROC of 80% 
and a sensitivity of 83% with six proteins in the model. Outcome: worse vs. less severe outcome, the most optimal model had an AUROC of 76% 
and a sensitivity of 68% with ten proteins in the model. The most optimal models for aetiology and outcome were chosen after SMOTE procedure. 
AUROC, PR-AUC, sensitivity and specificity are shown
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markers, that are already widely used by clinicians, these 
biomarkers show a similar accuracy of approximately 
80% for the prognosis [15]. Moreover, when combining 
routine parameters with inflammatory biomarkers, simi-
lar performances were found (data not shown).

The availability of a commercial 92-plex panel for the 
detection of inflammation proteins allowed us to iden-
tify up to 38 differentially expressed proteins in this sus-
pected sepsis population. Our results are in line with 
previous studies showing that a combination of several 
proteins more accurately differentiate between various 
disease severity profiles in sepsis and other infections, 
compared to single biomarkers [25, 29, 30]. However, 
our research, combining multiple biomarkers led to opti-
mal models with as few biomarkers as possible for future 
applications in clinical practice. Furthermore, a prot-
eomics approach has been used in other studies show-
ing beneficial results as well [31]. In addition, combining 
proteomics with metabolomics, could provide an even 
clearer picture of host response in sepsis and provide 
answers to the current diagnostic and prognostic chal-
lenges [32].

Pathway enrichment analysis illustrated involvement 
of several pathways of early inflammatory response with 
several links to other pathways known to be involved 
in sepsis. In differentially expressed proteins, pathway 
enrichment analysis confirmed the involvement of ERBB 
family/HGF signalling and chemotaxis/CCR1 signalling 
pathways for less severe or worse outcome and HMGB1/
TLR signalling pathway for aetiology. The ERBB family 

is a family of tyrosine kinases known to be involved in 
cancers, because they stimulate cell proliferation but are 
also known to play a role in activation and recruitment 
of inflammatory cells. The chemotaxis/CCR1 signalling 
pathway is involved in chemokine production and neu-
trophil recruitment, and the HMGB1/TLR signalling 
pathway is a well-known pathway of Toll-like receptors 
that induce inflammation and the early immune response 
[33]. Not surprisingly, these pathways have similarities 
and shared entities with other pathways known to be 
involved in sepsis. For example, the IL-10 signalling path-
way is involved in the inhibition of the immune response, 
and the IL-1 and HSP60 and HSP70/TLR signalling path-
ways are involved in activation of the innate and adap-
tive immune response. The observation was made that 
proteins in both inflammatory activation and inhibition 
are upregulated in patients with worse outcome, which is 
proof of the dysregulated immune response. An increase 
in early proteins and especially chemokines is also 
reported by others [34–37], suggesting that higher levels 
of chemokines are necessary because of reduced neutro-
phil migration velocity, eventually leading to an impaired 
immune response which is associated with disease 
severity and lower survival rates [35–37]. The identified 
pathways have also been shown to be related to disease 
severity in COVID-19 patients [34].

Indeed, the observation that inflammatory protein 
expression profile is related to sepsis severity, has recently 
been described in patients with COVID-19, using the 
same targeted proteomic approach [38]. Differentially 

Fig. 6  Proteins in the most optimal models, accurately predicting differences in aetiology, disease severity and outcome
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expressed proteins in COVID-19 patients were involved 
in the same pathways found in the present study [29, 
34, 38]. This strengthens our finding that these proteins 
could be more useful for the prognosis of patients with 
severe infections, rather than for the aetiologic diagnosis.

One major strength of this study is the use of a large 
cohort of patients who were prospectively included and 
uniformly defined. The results of this study show the 
importance of the host response in predicting patient 
outcome. The unicentric nature of this study and the 
lack of comparison to physician judgement and stand-
ard laboratory studies is a limitation resulting in a dif-
ficult extrapolation to other centres. Furthermore, we 
did not compare our findings with a non-sepsis control 
population and, therefore, lack information on basic 
expression levels. In addition, all patients included in 
this study were selected based on the presence of hav-
ing a type of infection. Of course, this creates some 
selection bias, and leaves out many other diagnoses that 
make up a significant proportion of patients with sep-
sis, such as intra-abdominal infection without bacte-
raemia, skin/soft tissue infection without bacteraemia, 
CNS infection, other viral infections. Together with not 
including a large number of patients with suspected 
sepsis at the ED that end up having negative cultures or 
a non-infectious diagnosis, this creates a selection bias 
when attempting to generalize these results to clini-
cal care, where undifferentiated patients are tested in 
the ED setting. Last, there were no follow-up plasma 
samples during patients’ hospitalization, and we were 
not able to assess the impact of later events on patient 
outcome.

In conclusion, the inflammatory response of patients 
with viral infection differed from the response of those 
with bacterial infection. However, the inflammatory 
response correlated more strongly with disease sever-
ity and worse patient outcome. An increase in these 
proteins was seen for patients with worse outcome. 
Several proteins could accurately predict influenza, 
disease severity, or worse outcome. Although the diag-
nostic potential of these biomarkers for distinguishing 
bacterial from viral infections is limited, their value for 
prognosis can be high. This study confirms that sepsis 
is a complex syndrome with diverse backgrounds. Vari-
ous cytokine networks are activated which can lead to 
the uncontrollable inflammatory response that results 
in a uniform sepsis condition. Therefore, the search for 
accurate biomarkers remains difficult. Comprehensive 
cytokine analyses such as these can help in gaining fur-
ther insight but are presently not suitable for direct use 
in the clinic. However, in the future, the differentially 
expressed proteins identified in this study could be 
incorporated in a scoring algorithm or low-cost point 

of care test. Routine use of such an algorithm or test at 
the ED could help in early outcome prediction, guide 
close monitoring, and direct diagnostics, to help diag-
nose fatal disease in an early stage, ultimately leading to 
better management of patients with suspected sepsis.
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