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Abstract— Specific patterns of lung ultrasound (LUS)
images are used to assess the severity of coronavirus dis-
ease 2019 (COVID-19) pneumonia, while such assessment
is mainly based on clinicians’ qualitative and subjective
observations. In this study, we quantitatively analyze the
LUS images to assess the severity of COVID-19 pneumonia
by characterizing the patterns related to the pleural line (PL)
and B-lines (BLs). Twenty-seven patients with COVID-19
pneumonia, including 13 moderate cases, seven severe
cases, and seven critical cases, are enrolled. Features
related to the PL, including the thickness (TPL) and rough-
ness of the PL (RPL), and the mean (MPLI) and standard
deviation (SDPLI) of the PL intensities are extracted from
the LUS images. Features related to the BLs, including
the number (NBL), accumulated width (AWBL), attenuation
coefficient (ACBL), and accumulated intensity (AIBL) of BLs,
are also extracted. The correlations of these features with
the disease severity are evaluated. The performances of
the binary severe/non-severeclassificationare assessed for
each feature and support vector machine (SVM) classifiers
with various combinations of features as input. Several
features, including the RPL, NBL, AWBL, and AIBL, show
significant correlations with disease severity (all p < 0.05).
The classification performance is optimal using the SVM
classifier using all the features as input (area under the
receiver operating characteristic (ROC) curve = 0.96, sen-
sitivity = 0.93, and specificity = 1). These findings demon-
strate that the proposed method may be a promising tool for
automatic grading diagnosis and follow-up of patients with
COVID-19 pneumonia.
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I. INTRODUCTION

S INCE the outbreak of the coronavirus disease 2019
(COVID-19) caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) in December 2019, it has spread
rapidly around the world, and the number of infections and
deaths has increased dramatically [1]. COVID-19 pneumonia
can progress into a very severe condition rapidly, and thus fast
and accurate evaluation of the morbid lesions and lung condi-
tions is significant for timely and proper treatment of patients.
Reverse transcription polymerase chain reaction (PT-PCR) is
currently used as the gold standard for confirming the infection
of SARS-CoV-2. However, it suffers from long testing time
and low sensitivity, and it is not applicable to assess the
disease’s severity [2], [3]. Chest computed tomography (CT)
is considered to be a reliable imaging modality in clinic for the
diagnosis of COVID-19 pneumonia, but it is highly irradiative
and expensive and has the risk of cross infection, and thus it
is not suitable as a bedside tool for follow-up of critically ill
patients [4]–[8].

As an alternative, lung ultrasound (LUS) imaging (i.e., lung
ultrasonography) has the advantages of being noninvasive,
ionizing radiation-free, real-time, cost-effective, and portable
and can serve as a helpful and reliable bedside tool to evaluate
and monitor the lung conditions of critically ill patients in the
intensive care unit (ICU) [9]–[15]. LUS imaging reveals the
pathological conditions of the lung based on different patterns
of imaging artifacts in the B-mode images. Under the normal
condition of the lung, the soft-tissue/air interface, i.e., the
pleural line (PL), causes multiple reflections of ultrasound
pulses between the transducer and the PL, which behave as
multiple equidistant artifacts parallel to the PL. These artifacts
are known as A-lines [16]. Under the ill condition of the lung,
hyper-echoic vertical lines which originate from PL and stretch
to the bottom of the imaging field of view can be observed and
are known as B-lines (BLs). Their distribution characteristics
are found to be correlated with the pathological conditions of
the lung in several studies [17]–[19].

In the diagnosis and treatment of COVID-19 pneumonia,
specific LUS patterns are used to assess the severity of the lung
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conditions, which include the thickening of the PL, the conflu-
ence of BLs, and the presence of lung consolidations [8], [10],
[20]–[31]. However, such assessment is based on qualitative
and subjective observations made by the clinicians. Some
semiquantitative methods, i.e., the scoring systems based on
visual observations of the line artifacts, and quantitative meth-
ods based on automatic detection of PL and BLs have been
proposed for diagnosis, evaluation, and follow-up of patients
with COVID-19 pneumonia. Nevertheless, these approaches
mainly focus on the features related to the characteristics of
PL and BLs separately [20], [32], [33]. The characteristics
associated with PL and BLs are not combined to evaluate the
lung conditions. Besides, automatic diagnostic systems based
on deep learning have shown promises for fast and accurate
diagnosis of COVID-19 pneumonia using the quantitative
indices extracted from BLs, the frame-level or video-level
ultrasound images, or the combination of the images and
clinical information as input [34]–[37], but these methods
require a large number of annotated samples from patients
with COVID-19 pneumonia, which are difficult to obtain.

Based on the aforementioned imaging patterns related to
disease severity, we propose a novel method to assess the
severity of COVID-19 pneumonia in this study. Specifically,
we extract a series of quantitative features related to PL and
BLs by analyzing the LUS images from patients diagnosed
with various degrees of COVID-19 pneumonia. The disease
severity of these patients is clinically classified into three
categories, namely, moderate cases, severe cases, and critical
cases. To evaluate the performance of the proposed features
in evaluating the disease severity, we compare the features
corresponding to different cases and study the correlations
between the features and the disease severity. Fast and reli-
able identification of severe patients, including severe cases
and critical cases, arises more concerns of the clinicians
in terms of timely treatment and reduction in the overall
mortality of COVID-19 pneumonia. To this end, we analyze
the performance of each feature in binary classification of
severe and non-severe patients and further use a support
vector machine (SVM) classifier to improve the classification
performance.

II. METHODS

A. Study Protocol

This study was approved by the local ethics commit-
tee of Beijing Ditan Hospital, and the need for written
informed consent was waived due to the retrospective nature
of the study. Twenty-seven patients confirmed as affected by
COVID-19 virus using RT-PCR test, who were hospitalized
from March 2 to March 30, 2020, were included in this
study. According to Chinese diagnosis and treatment pro-
tocol for COVID-19 pneumonia (seventh edition) [38], the
patients can be categorized into four cases, namely, mild cases,
moderate cases, severe cases, and critical cases. Mild cases
have only mild clinical symptoms and have no chest imaging
manifestations of pneumonia, and thus were not enrolled
in this study. Moderate cases have symptoms of fever and
respiratory as well as imaging findings of pneumonia. Severe

cases have symptoms of respiratory distress or arterial partial
pressure of oxygen/fraction of inspired oxygen lower than
300 mmHg, or oxygen saturation less than 93% at rest. Critical
cases have symptoms of respiratory failure, or shock, or other
organ failure requiring ICU care. According to these classifi-
cation criteria, the enrolled patients (n = 27) were classified
into three cases, namely, moderate cases (n = 13), severe cases
(n = 7), and critical cases (n = 7). In the investigation of
binary classification (severe/non-severe), severe cases and crit-
ical cases were defined as severe patients, and moderate cases
were defined as non-severe patients. The characteristics we
collected for each patient included gender, age, clinical symp-
toms, concomitant diseases, and laboratory tests. Each patient
underwent an LUS examination performed by an experienced
clinician using a Hi Vision Preirus system (Hitachi Healthcare,
Tokyo, Japan) equipped with an EUP-C715 convex probe
(5–1 MHz). The dynamic range was kept constant at 65 dB
for all the patients. The imaging parameters, including the
imaging depth, overall gain, time gain compensation (TGC),
and focal depth, were slightly tuned during the examination
to obtain the best possible imaging field of view and image
quality for different patients. During the examination, each
patient was in the supine position, and six regions of each
half-chest were determined, including the anterior, lateral, and
posterior parts of the upper and lower halves [39]–[41]. All the
intercostal spaces of these regions provide acoustic windows
for lung assessment and were carefully examined. For each
region, the image with the most serious image pattern in
one or several intercostal spaces was recorded and considered
as a representative image. Therefore, 12 ultrasound images
were acquired in a complete lung ultrasound examination for
each patient.

B. Quantitative Analysis of LUS Images

1) Image Preparation: Imaging patterns related to the sever-
ity of COVID-19 pneumonia include thickening and disruption
of PL, confluence of BLs (including white lung), and lung
consolidations. In this study, we focus on analyzing the charac-
teristics of PL and BLs. Before analysis, the LUS images were
first normalized in terms of pixel intensity and size by dividing
by their respective maximum pixel value and interpolating to
the same physical size (i.e., 0.256 × 0.256 mm2) to minimize
the effects of varying overall gains and imaging depths,
respectively.

2) Analysis of the PL: The schematic overview of the PL
analysis procedure is presented in Fig. 1. The PL was semi-
automatically segmented from each normalized image by
manually selecting a region of interest (ROI) around the PL
[indicated by red lines in Fig. 1(b)]. The center of the PL was
subsequently identified automatically by finding the location
with peak intensity within the ROI for each column [indicated
by blue points in Fig. 1(c)]. Thickening and disruption of the
PL can influence the thickness, intensity, intensity variation,
and morphological continuity of the PL. Therefore, these
features were extracted from LUS images and defined as
follows, respectively.
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Fig. 1. Schematic of PL analysis procedure. (a) Normalized LUS image. (b) Manual selection of PL. (c) Automatic detection of the anterior location,
the center, and the posterior location of PL. (d) Depth profile corresponding to the center of PL. (e) High-pass filtered signal of (d). (f) Intensity profile
corresponding to the center of PL. TPL = thickness of PL, RPL = roughness of PL, MPLI = mean of PL intensities, and SDPLI = SD of PL intensities.

a) Thickness of the PL (TPL): For each column, an axial
profile within the selected ROI is extracted from the B-mode
image, and the intersections of the axial profile and the
line with 75% of the maximum intensity are detected. The
intersections upper and lower than the PL are defined as
the anterior and posterior locations of the PL, which are
indicated by green and red points in Fig. 1(c), respectively.
TPL is obtained by calculating the average distance between
the anterior and posterior locations of the PL as follows:

TPL =
ke∑

k=ks

dp(k) − da(k)

(ke − ks + 1)
(1)

where k is the index of column in the image, ks and ke repre-
sent the starting and ending columns of the PL, respectively,
and dp and da denote the depths of the posterior and anterior
locations of the PL, respectively.

b) Roughness of the PL (RPL): The depth profile dc is
obtained after determining the center of the PL, as shown in
Fig. 1(d). The contour of the PL is eliminated by high-pass
filtering the depth profile with a first-order Butterworth filter,
as shown in Fig. 1(e), and RPL is calculated from the filtered
signal, dch, as follows:

RPL =
√

1

(ke − ks + 1)

∑ke

k=ks

(dch(k) − dch)
2

(2)

where dch is the mean amplitude of the filtered signal. Large
variation in the filtered signal is considered as a potential
indicator of the morphological irregularity of the PL.

c) Mean of the PL Intensities (MPLI): The PL appears
continuous and has high intensity in a healthy lung. In contrast,
in the pathological lung, the presence of vertical artifacts and
consolidations may impact the intensity and continuity of the
PL. Thus, the mean and standard deviation (SD) of the PL peak
intensities, as shown in Fig. 1(f), are computed as potential
indicators of disease severity as follows:

MPLI =
ke∑

k=ks

I (dc(k), k)

(ke − ks + 1)
(3)

where I is the normalized image data and dc(k) is the depth
of the central PL for the kth column.

d) SD of the PL Intensities (SDPLI):

SDPLI =
√

1

(ke − ks + 1)

∑ke

k=ks
(I (dc(k), k) − MPLI)2 (4)

3) Analysis of BLs: The schematic representation of the BL
analysis procedure is illustrated in Fig. 2. Before quantita-
tive analysis, the LUS image acquired by a convex probe
[Fig. 2(a)] is mapped into a linear grid converted from a polar
to a Cartesian coordinate system. Because the distribution pat-
tern and acoustic reflection characteristics of BLs are potential
indicators of the pathological conditions of the lung, in this
study, several features are extracted from the LUS images to
quantify these characteristics.

a) Number of BL (NBL): NBL is counted based on the trans-
formed images, as shown in Fig. 2(b). The counting protocol is
the same as that recommended in [42]. Specifically, for each
scanned region, the NBL is 1 if a separate BL is detected.
If a white lung pattern is observed, the NBL is regarded as ten.
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Fig. 2. Schematic of BL analysis procedure. (a) Normalized LUS image. (b) Transformed image obtained by mapping (a) into a linear grid converted
from a polar to a Cartesian system. (c) Manual selection of the BL region. (d) Automatic detection of the left boundary, the center, and right
boundary of BL. (e) Linear regression between peak intensities on BL and the corresponding axial positions provides the estimation of attenuation
coefficient. (f) Intensities of the pixels inside the selected rectangle and between the left and right boundaries of BL are used to calculate BL intensity.
NBL = number of BLs, AWBL = accumulated width of BLs, ACBL = attenuation coefficient of BLs, and AIBL = accumulated intensity of BLs.

For confluent BLs that do not cover the entire space, the NBL
is calculated as the percentage of the space filled with the
confluence BLs multiplied by ten. NBL for each region is
calculated by summing all the NBLs in space. The final NBL
for each patient is obtained as the summations of NBLs from
all the 12 scanned regions (ranging from 0 to 120).

b) Accumulated Width of B-Lines (AWBL): On the trans-
formed image, a rectangle ROI [indicated by red lines in
Fig. 2(c)] is manually selected around each BL for the calcu-
lation of BL width and attenuation coefficient. For each row
inside the ROI, a lateral profile is extracted, and the location
with the maximum intensity is defined as the center of BL
[indicated by blue points in Fig. 2(d)]. The intersections of
the lateral profile and the line with 75% of the maximum
intensity are detected and the ones located on the left and
right sides of BL center are identified as the left and right
boundaries of BL, which are indicated by green and red points
in Fig. 2(d), respectively. For each BL, the distances between
the boundaries at different rows inside the ROI are averaged
and normalized by the length of the PL as the normalized
BL width. For each LUS image, the AWBL is calculated by
summing the normalized widths of different BLs as follows:

AWBL =
N∑

n=1

re∑
r=rs

kr (n, r) − kl(n, r)

(kr − kl + 1)
(5)

where n and N are the index and NBL in the LUS image,
respectively. r is the index of the row in the image. rs and re

are the starting and ending rows of the selected ROI,
respectively. kr and kl are the column indices of the right
and left boundaries of each BL, respectively.

c) Attenuation Coefficient of B-Lines (ACBL): The center
positions of each BL [indicated by blue points in Fig. 2(d)]
can be identified from the transformed image by finding the

locations with peak intensities for different axial positions.
Afterward, linear regression is performed between the peak
intensities and the corresponding axial positions, and the
attenuation coefficient of each BL is calculated as the slope of
the fitting line [Fig. 2(e)]. For each LUS image, the ultimate
ACBL (in dB/cm) is calculated as the absolute value of the
average attenuation coefficient (in 1 cm) of different BLs,
multiplied by the dynamic range, i.e., 65 dB.

d) Accumulated Intensity of B-Lines (AIBL): For each BL,
a rectangle ROI with a depth of 2 cm, starting from 1.5 cm
blow the PL, is selected for the calculation of BLs’ intensity
[indicated by dashed black lines in Fig. 2(f)]. The intensity
of each BL is calculated by summing the intensities of pixels
inside the ROI and between the left [indicated by green points
in Fig. 2(f)] and right boundaries [indicated by red points in
Fig. 2(f)] of the BL. The ultimate intensity of BLs for each
LUS image is obtained by accumulating the intensities of
different BLs.

4) Statistical Analysis: For each patient, the PL-related fea-
tures and ACBL calculated from different images are averaged
by the number of analyzed images for statistics analysis.
In addition, the number, AWBL, and AIBL corresponding to
different images are summed for statistics analysis. To eval-
uate the performance of these features in grading the sever-
ity of COVID-19 pneumonia, one-way analysis of variance
(ANOVA) and least significance difference (LSD) tests are
used to compare the features among moderate cases, severe
cases, and critical cases. The correlations between features
and disease severity are determined by calculating Spearman’s
correlation coefficient (r ). A p value less than 0.05 is indica-
tive of statistically significant difference. Performance of each
feature in binary classification is assessed by obtaining the
receiver operating characteristics (ROC) curve and computing
the area under the ROC curve (AUC). Sensitivity (SEN) and
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TABLE I
CLINICAL CHARACTERISTICS OF PATIENTS WITH COVID-19 PNEUMONIA

Fig. 3. Examples of LUS images from (a) moderate case, (b) severe case, and (c) critical case. Green thick arrow and thin arrow in (a) indicate
a normal PL and a single BL, respectively. Red thick arrow and thin arrow in (b) indicate the thickened and irregular PL and the confluent BLs,
respectively. Yellow thick arrow and thin arrow in (c) indicate the interrupted PL and the confluent BLs, respectively.

specificity (SPC) corresponding to the optimal cut-off value
on the ROC curve, which is determined by finding the cutoff
value with the maximum Youden’s index (YI = SEN +
SPC − 1), are also presented.

C. SVM Classifiers

Three SVM classifiers are implemented based on the leave-
one-out cross-validation method to improve the discrimination
performance, using four features related to the PL, four
features related to BLs, and their combination as the input of
SVMs, respectively. The leave-one-out cross-validation uses
a single patient as the validation set and the other patients
as the training set. This procedure is repeated until each
patient is used once as the validation set. A Gaussian kernel
function is used to map the distance of each sample to the
decision boundary of each SVM classifier. The classification
efficiency of various combinations of the features is assessed
by estimating the AUC under the ROC curve. The SEN and

SPC corresponding to the optimal cut-off value on the ROC
curve are determined as well.

III. RESULTS

A. Clinical and LUS Characteristics

Table I shows the clinical characteristics of patients with
COVID-19 pneumonia. Compared with moderate cases, severe
cases and critical cases have larger proportions of clinical
symptoms such as fever, cough, shortness of breath, larger
proportion of concomitant diseases, and larger proportions of
hematological manifestations such as decrease in leukocytes
and increase in C-reactive protein. The LUS characteristics are
illustrated in Fig. 3. As shown, thickening, irregularity, and
interruption of PL, and the confluence of BLs are observed
with the aggravation of the disease.

B. Severity Assessment of COVID-19 Pneumonia

Figs. 4 and 5 present the comparison results of the features
related to PL and BLs among patients of different cases and the
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Fig. 4. Comparisons of the PL-related features among moderate cases
(n = 13), severe cases (n = 7), and critical cases (n = 7) patients. TPL =
thickness of PL, RPL = roughness of PL, MPLI = mean of PL intensities,
and SDPLI = SD of PL intensities.

Fig. 5. Comparisons of the BL-related features among moderate cases
(n = 13), severe cases (n = 7), and critical cases (n = 7) patients.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. NBL = number of BLs, AWBL =
accumulated width of BLs, ACBL = attenuation coefficient of BLs, and
AIBL = accumulated intensity of BLs.

corresponding results of ANOVA with LSD test, respectively.
As shown in Fig. 4, for the PL-related features, no significant
difference is found between any two groups according to
the ANOVA results. Nevertheless, as the disease severity
increases, several features, including the TPL, SDPLI, and
RPL, show increasing trends, while MPLI shows a decreasing
trend. For the BL-related features shown in Fig. 5, significant
differences are observed between moderate cases and severe
cases for NBL ( p < 0.001), AWBL (p < 0.01), and ACBL
(p < 0.05). Besides, significant differences between moderate
cases and critical cases are found for NBL ( p < 0.001) and
AWBL (p < 0.001). No significant differences are found
between any two groups for AIBL, as well as between severe
cases and critical cases for any of the BL-related features.

Table II shows Spearman’s correlation results of the pro-
posed features with severity of COVID-19 pneumonia. For
PL-related features, RPL shows significant correlation with
disease severity ( p < 0.05, r = 0.39). For BL-related features,

TABLE II
CORRELATIONS OF THE PROPOSED FEATURES WITH

SEVERITY OF COVID-19 PNEUMONIA

significant correlations with disease severity are found for
NBL (p < 0.001, r = 0.66), AWBL (p < 0.001, r = 0.70),
and AIBL (p < 0.05, r = 0.39).

C. Binary Classification of Non-Severe and
Severe Patients

Table III presents the classification results of each feature,
as well as the results of SVM classifiers using features
related to PL, BLs, and their combination as input features,
respectively. For each method, the AUC under the ROC curve,
SEN, and SPC corresponding to the optimal cut-off value on
the ROC curve are presented. As shown, among the features
related to PL, RPL achieves the best classification performance
(AUC = 0.81, SEN = 0.86, SPC = 0.77). The performance is
improved using SVM classifier with all PL-related features as
input (AUC = 0.87, SEN = 0.86, SPC = 0.93). For BL-related
features, NBL and AWBL achieve the same classification
performance (AUC = 0.91, SEN = 0.86, SPC = 0.92),
and both of them outperform the other two features with
larger AUC. Improved classification performance is obtained
using SVM classifier with all BL-related features as input
(AUC = 0.94, SEN = 0.93, SPC = 0.86). When using all the
proposed features as input of SVM classifier, the best clas-
sification performance is achieved with largest AUC (0.96),
SEN (0.93), and SPC (1.00) among all the compared methods.
The ROC curves obtained from SVM classifiers using various
combinations of features as input are provided in Fig. 6.

IV. DISCUSSIONS

Specific image patterns in LUS images such as thickening,
irregularity, disruption of PL, and confluence of BLs are
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TABLE III
CLASSIFICATION RESULTS OF EACH FEATURE AND SVM CLASSIFIERS USING VARIOUS COMBINATIONS OF FEATURES AS INPUT FEATURES

Fig. 6. ROC curves obtained from SVM classifiers using features related
to PL, BL, and their combination (PL + BL) as input features, respectively.

found to be associated with the aggravation of COVID-19
pneumonia [8], [22]. However, LUS-based assessment of lung
conditions and disease severity depends on the qualitative

and subjective observations of clinicians. Therefore, in this
study, features related to PL and BLs are extracted from
LUS images to quantitatively characterize the image patterns
in patients with COVID-19 pneumonia. The performances of
these features in assessing the disease severity and classifying
non-severe and severe patients are evaluated.

In previous studies, various semiquantitative methods, i.e.,
scoring systems, based on LUS image patterns were proposed
to evaluate the severity of COVID-19 pneumonia and achieved
high consistency with chest CT [32], [43]–[45]. However,
such scoring systems still rely on the experiences of clini-
cians. Quantitative methods based on automatic detection of
PL [20] or BLs [32] have also been proposed to aid the
diagnosis of COVID-19 pneumonia. But these studies mainly
focused on intensity-related properties of PL or distribution of
BLs and did not consider PL- and BL-related characteristics
simultaneously. Some deep-learning-based techniques have
shown promises in automatic detection of B lines and pleural
effusion, binary classification, and four-level scoring system
using artificially extracted quantitative parameters, frame-level
and video-level ultrasound images or combination of images,
and clinical information as input [33], [34], [36], [46], [47],
but they need a large number of annotated samples and have
poor interpretability. As a contrast, the quantitative method we
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propose aims at characterizing the image patterns of clinical
findings and digging out more features from PL and BLs,
which are further combined to provide more comprehensive
information for severity assessment.

In this study, the classification standard of patients is
designed according to the Chinese diagnosis and treatment
protocol for novel coronavirus pneumonia (seventh edition)
released by the National Health Commission of China and
National Administration of Traditional Chinese Medicine,
instead of the image scores based on visual judgments of
ultrasound images or CT images. Compared with the imaging
score-based methods, the classification standard based on
comprehensive clinical manifestations (including CT images)
according to the clinical diagnosis and treatment protocol
provides an overall condition of the patient, which might
have highlighted reference value for clinical diagnosis and
treatment.

For analysis of PL, four features are extracted, namely, TPL,
RPL, MPLI, and SDPLI. TPL is defined with a 75% threshold
after parameter optimization, which provides the boundaries of
PL closest to those determined by clinicians through visual
inspection. A larger TPL indicates the thickening of PL.
A larger RPL means a larger variance of depth profile obtained
from the center of PL, which may be an indicator of irregular-
ity and disruption of PL. When the lung is in pathological state,
the porosity in the sub-pleural tissue may be changed, and
thus acoustic impedance difference between the chest wall and
the pulmonary containing air may be subsequently changed,
which will ultimately affect the PL intensity. For patients with
COVID-19 pneumonia, the PL intensity is hypothesized to
decrease as the degree of disease severity increases because of
pulmonary effusion, consolidation, and confluent BLs, while
the SD of the pleural intensity increases because of irregularity
and disruption of PL [20]. As shown in Fig. 4 and Table II,
increasing trends of TPL, RPL, and SDPLI are observed as the
disease becomes severer, and a decreasing trend of the MPLI
is observed in contrast. These trends are consistent with the
expectations, but the correlations between features and disease
severity, and the differences between any two cases are not
statistically significant.

For the analysis of BLs, four features are extracted, namely,
NBL, AWBL, ACBL, and AIBL. A larger NBL and AWBL
(normalized by the length of PL) are hypothesized to be
indicators of the confluence of BLs, even in a white lung
[39], [48], [49]. BL width is defined with a 75% threshold after
parameter optimization, which provides the closest width to
that determined by clinicians through visual inspection. Under
ill condition of the lung, the porosity in the sub-pleural tissue
may be changed due to diffuse alveolar damage or pulmonary
inflammation and is characterized by irregular and hypere-
choic BLs [50]. ACBL is thus extracted to characterize the
attenuation degree of BLs. AIBL may be changed as well due
to the combined impacts of AWBL and ACBL. As shown
in Fig. 5 and Table II, using NBL, the differences between
moderate cases and severe cases and between moderate cases
and critical cases are statistically significant, which are in
accordance with the hypothesis. ACBLs obtained from severe

cases are significantly lower than those from moderate cases.
However, the difference between moderate cases and critical
cases is not statistically significant using this feature. Possible
explanations for this finding could be that the complex lung
environment in critical cases interferes the calculation of
ACBL and the sample size is too small. Significant differences
between any two cases are not found in AIBL, but an increase
trend of AIBL is observed with the increase in disease severity
degree. The difference between severe cases and critical cases
is not found in any features. A possible explanation of this
observation may be that patients are identified as critical cases
because they are older and have severe concomitant diseases,
and thus show more obvious clinical symptoms than severe
cases. However, the lung conditions of these patients may be
similar and difficult to differentiate based on LUS images.

Among PL-related features, RPL achieves the best per-
formance in differentiating between severe and non-severe
patients. Its performance is improved using SVM classifier
using all the PL-related features as input. Similarly, NBL and
AWBL achieve the best distinguishing performance among
all the single features, and SVM classifier using all the
BL-related features as input achieves improved performance.
The SVM classifier using all the proposed features as input
achieves the largest AUC and highest SEN and SPC among
all the compared methods because the most comprehensive
characteristics are used. It should be noted that SPC reaches
100% and this may be due to the small sample size.

The imaging parameters, including imaging depth, overall
gain, TGC, and focal depth, were slightly tuned by clini-
cians to obtain the best possible imaging field of view and
image quality for diagnosis. In the pre-processing step, all
the images were normalized in terms of pixel intensity and
pixel size to minimize the effects of varying overall gains
and imaging depths, respectively. However, such processing
cannot eliminate the intensity variances among the acquired
images introduced by the differences in TGC, focal depth, and
thickness of intercostal layers, which is a limitation of this
retrospective study and may be responsible for unsatisfying
severity assessment and binary classification performances of
intensity-related features, such as MPLI, SDPLI, AWBL, and
AIBL (Tables II and III). It should be noted that this is a
common limitation of most retrospective studies in current
literature [20], [32], [36], [54]. Fortunately, ACBL is mainly
affected by TGC, which is slightly tuned during examina-
tion, and thus the changes in gains as a function of depth
among different patients may be small, and significant differ-
ences between moderate and severe cases can still be found
using ACBL (Fig. 5). It should be noted that although the
dynamic range was kept constant in this study, the influence
of dynamic range has been minimized in the calculation of
ACBL by multiplying normalized attenuation coefficient with
dynamic range, making the results with different dynamic
ranges comparable. For a well-designed experiment where
the imaging parameters are maintained, the variances of
image intensities can be minimized, and thus the proposed
intensity-related features may achieve improved diagnosis
performance.
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NBL is counted by an experienced clinician, which is a
limitation of this study. In clinical practice, counting the NBL
is an important pathological routine for ultrasound diagnosis
of lung diseases and its determination is associated with both
defining criteria and counting protocol. A typical BL can
be easily identified as a hyperechoic reverberation artifact
originating from PL, extending to the bottom of the imaging
field of view and moving synchronously with pleural sliding.
However, there is a lack of criteria about how to quantify
BLs in each intercostal space. In [42], three commonly used
counting methods are compared, and the method using per-
centages of rib spaces covered by fused BLs and counting BLs
at the instant of highest incidence shows the highest reliability
among all the methods, which is thus used in our study as the
counting protocol.

Another limitation of this study is that the locations of
PL and BLs are semi-automatically detected. In the semi-
automatic detection steps, a rough region is manually selected
around the PL or BL for determination of their center posi-
tions. The delineated region should be large enough to include
the entire PL or BL visible in the field of view, which is
helpful to ensure consistency between different patients. Many
automatic methods for detection of PL and localization of
BLs have been proposed based on various image processing
algorithms and deep learning networks [20], [32], [33], [35],
[48], [51]–[55]. In the future, PL and BLs will be full
automatically detected to develop a more intelligent diagnos-
tic system for COVID-19 pneumonia. Other features, such
as statistic distribution parameters of BL speckles, will be
extracted for quantitative analysis. Besides, lung consolidation
is not considered in this study because it only exists in some
patients. It is thus challenging to fairly compare the severity
of patients with and without lung consolidations using the
related indices. For an assessment method based on deep
learning, a determination of the absence or presence of lung
consolidation or the related quantitative indices may be used
to facilitate the diagnosis performance. For each scanned
region, only a representative ultrasound image was recorded
for quantitative analysis to reflect the severest lung condition
of the patient. If the PL or BL is invisible in the recorded
image, NBL and AWBL are calculated as zero for this region,
and the PL-related parameters, including TPL, RPL, MPLI,
and SDPLI, and other BL-related parameters, including the
ACBL and AIBL, are calculated as the average values from
other image regions. If a video-level ultrasound images can be
recorded, a more comprehensive information concerning the
entire respiratory cycle may be obtained using the proposed
method. In such case, the parameter for each image region
can be calculated from the representative image selected from
the video, or calculated as the average of the parameters from
different images in the video. Moreover, more patients should
be enrolled to evaluate the reliability and repeatability of the
proposed method.

The presence of multiple diffuse BLs indicates the presence
of interstitial syndrome, which can be caused by pulmonary
edema of various causes, interstitial pneumonia, pneumonitis,
and pulmonary fibrosis [56]–[58]. Therefore, the BL-related
parameters proposed in this study, especially NBL and AWBL,

can be used for severity assessment and prognostic evalua-
tion of acute and chronic conditions with diffuse interstitial
involvement, including COVID-19 pneumonia. In contrast,
irregular, thickened, and interrupted PL mainly appear under
the condition of pulmonary fibrosis and acute respiratory
distress syndrome (ARDS), including COVID-19 pneumonia,
and rarely appear under the condition of acute cardiogenic
pulmonary edema (ACPE) [58], [59]. Therefore, PL patterns,
which can be characterized by PL-related parameters in this
study, may be used to effectively differentiate ACPE from
ARDS and pulmonary fibrosis.

V. CONCLUSION

In this study, we analyze the LUS images by extracting
various features related to PL and BLs to assess the severity
of COVID-19 pneumonia. These features can quantitatively
characterize the specific image patterns associated with disease
severity. Features such as RPL, NBL, AWBL, and AIBL show
significant correlations with disease severity. SVM classifier
using all the features as input achieves optimal performance
in binary classification of non-severe and severe patients
(AUC = 0.96, SEN = 0.93, SPC = 1.00). The proposed
method has potential application in automatic grading diag-
nosis and follow-up of patients with COVID-19 pneumonia.
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