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Abstract: Circular RNA (circRNA) is a non-coding molecule produced through alternative splic-
ing of one or more exons of a gene in the presence of an RNA-induced silencing complex (RISC).
Its formation depends on complementary intron sequences on both sides of the circularized se-
quence. CircRNA functions as a sponge for miRNA, playing the role of the transcriptional regula-
tor or potential biomarker. It has an impact on fetal growth and on synaptic facilitation in the brain.
In this review, we illustrate biogenesis mechanisms, characteristics, and functions of cirRNAs. We
also summarize methods using sequence feature and RNA next-generation sequencing data for cir-
cRNA prediction. Finally, we discuss the state of the research on circRNA in diseases, which will
bring new contributions to future disease treatments.
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1. INTRODUCTION
Circular  RNA  (circRNA)  is  a  non-coding  RNA  (ncR-

NA) molecule widely found in eukaryotes. CircRNA has no
5' cap and 3' end poly (A) tail and forms a ring structure by a
covalent  bond.  CircRNA expression is  stable because it  is
not easily degraded by RNA exonucleases [1]. CircRNA has
a wide range of origins and tissue specificities and plays a
variety  of  roles  in  the  growth  and  development  of  or-
ganisms. CircRNA molecules are rich in microRNA (miR-
NA) binding sites and thus act as miRNA sponges in cells.
Such binding hinders the inhibitory effects of miRNAs on
their target genes and increases the expression level of these
genes [2]. CircRNA was first discovered while studying the
potato  spindle  tuber  disease  (PSTD)  that  is  mediated  by
viruses  with  no  protein  coats,  made  of  a  single-stranded
genome that forms a closed ring RNA molecule [3]. Later,
using  electron  microscopy,  researchers  observed  the  exis-
tence of circRNA in the cytoplasm of eukaryotic cells, dur-
ing the gene transcription of SRY (Sry circRNA is another
highly expressed circRNA found in mouse testis) [4-6]. Th-
ese findings did not generate much attention at first until the
emergence of the next-generation sequencing technology in
2012. Salzman et al. discovered that non-linear circular tran-
scripts formed by exon rearrangements existed in normal hu-
man primary blood cells, leukemia cells, and HeLa cell lines
[7]. Since the first report on circRNA, a large number of cir-
cRNA molecules have been identified.  Although the pres-
ence  of  circRNAs in  human cells  has  been discovered for
more than two decades, it is only recently that their signifi-
cance in human cells has been appreciated [7-9].
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Studies have shown that the expression and role of circR-
NA are related to the occurrence and development of vari-
ous human diseases (cardiovascular diseases, diabetes melli-
tus, cancer), and also related to plant diseases, such as the po-
tato bacterial soft rot. CircRNAs are also related to biologi-
cal tissue development and cell aging. Expression of specific
circRNAs in different biological samples makes them ideal
biomarkers for disease diagnosis and to assess tissue devel-
opment. The elucidation of their mechanisms of action driv-
ing diseases could also designate circRNAs as therapeutic
targets [10].

2.  BIOGENESIS,  CHARACTERISTICS,  AND  FUNC-
TIONS OF CircRNA

2.1. Biogenesis
According  to  gene  structure  annotation  information,

there are five main origins of circRNAs. These origins are:
1) exon-only circular RNA: Exon circRNA [7]; 2) intron on-
ly source: Circular intronic RNA [11]; 3) back-splicing of
upstream  exons  and  intron  retention:  Exon-intron  circular
RNA [12]; 4) circular RNA from Fusion Gene: f-circRNA
[13, 14]; and 5) read-through circular RNA formed by poly-
merase II: rt-circRNA [15]. Although the origins of circR-
NAs are diverse, circRNAs are mainly produced by head-to-
tail back splicing. The formation of circular RNA is regulat-
ed by cis-acting elements and trans-acting elements, through
mechanisms that are not completely understood. There are
currently three known mechanisms driving the formation of
circular RNA Fig. (1).

In flanking intron reverse splicing pair drive Fig. (1A),
the intron sequences on both sides of the exon are comple-
mentary paired so that the 5′ splice donor site of the mRNA
precursor  directly  joins  with  the  3′  splice  acceptor  site  to
form a circular RNA. Intron pair drive is also called the di-
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rect  back-splicing model  [16].  Studies  have found that  in-
trons of less than 100 nt with reverse complementary repeat
sequences can promote exon circularization. Reverse com-
plementary  matches  (RCMs),  intronic  complementary  se-
quences (ICSs), and Alu elements are complementary pair-
ing sequences that are abundant on the flanking introns of
circularizable exons. They effectively promote the pairing of
flanking introns and circularization [17, 18].

In RNA binding protein drive Fig.  (1B),  RNA-binding
proteins  promote  the  formation  of  tissue-specific  circular
RNA. RNA binding proteins participate in the formation of
circular RNA by binding specific motifs in flanking intron
sequences  [19-21].  For  example,  in  Drosophila  melano-
gaster  and  human,  the  second  exon  of  the  MBL/MBNL1
gene can form circular RNA that depends on a specific bind-
ing  motif  on  flanking  introns  in  this  gene  [19].  Heteroge-
neous nuclear rib nucleoprotein L (HNRNPL) promotes the

formation  of  circular  RNA  by  binding  these  flanking  se-
quences [22].

In lasso driven cyclization Fig. (1C),  when the mRNA
precursor  undergoes  GU/AG  splicing,  exon  skipping  pro-
duces an intron-exon-containing lasso intermediate,  which
then undergoes back-splicing to form a circular RNA. Cur-
rent studies in Arabidopsis thaliana, Solanum lycopersicum,
and Zea mays have shown that circular RNAs driven by las-
so are widespread in plants [16, 23, 24].

2.2. Characteristics
CircRNAs  have  unique  characteristics  that  distinguish

them  from  linear  non-coding  RNAs.  They  are  widely  ex-
pressed in human cells, and their expression sometimes ex-
ceeds 10 times the level of their linear isomers [7, 8]. They
are more  stable in the  human body than  linear RNAs beca-

Fig. (1). RNA circularization mechanisms. (A) Introns complement. Complementary pairing elements such as RCMS/ICSS/AIU promote
flanking intron pairing and cyclization; (B) RNA binding protein drives cyclization. RNA binding proteins promote cyclization by binding to
flanking introns of circularized exons; (C) Lasso driven cyclization. The exon skipping event that occurs during the splicing of mRNA pre-
cursor results in the formation of intermediate containing intron and exon, thus forming circular RNA. (A higher resolution / colour version
of this figure is available in the electronic copy of the article).
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use they are not easily degraded by RNase R [9]. CircRNAs
have a tiny response element that can interact with miRNAs
to regulate the expression of target genes. Most circRNAs
are  formed  by  exons,  while  a  few  are  from  introns  only.
Most of them are non-coding, highly conserved, and located
in the cytoplasm; only a few are located in the nucleus [2].
Most  circRNAs can play a regulatory role  in transcription
and post transcription, only a few of them play a role in tran-
scription [11].

2.3. Functions
CircRNAs  have  multiple  binding  sites  for  miRNA,

which results in their sponge-like function for miRNA [25].
In  cancers,  accumulating  evidences  show  that  circRNAs,
such as circRNA-Ctfrc, for example, act as sponges for miR-
NA  and  participate  in  transcriptional  regulation  of  target
genes  [26].  Researchers  have  found  such  miRNA  sponge
function in Rice, Wheat, Tomato, Tangerine, and Arabidop-
sis. Some circRNAs also have one or more binding sites for
RNA binding proteins [27].

CircRNAs can regulate  the  alternative splicing of  host
genes. In Arabidopsis thaliana, circRNA can strongly bind
to the DNA locus of the host gene to form an R-loop struc-
ture of RNA: DNA heterozygote. The R-loop structure can
inhibit the transcription of this region. A cross exon alterna-
tive splicing event occurs, which promotes the production of
an alternative splicing transcript variant (SEP3.3), affecting
the flowering phenotype [28]. In addition, the data from bam-
boo showed that the frequency of alternative splicing events
in  genes  producing circular  RNA was  significantly  higher
than that of randomly selected genes, indicating that circular
RNA could regulate the selective splicing process of linear
genes [29].

CircRNAs can regulate the expression of host genes. Ear-
ly studies have shown that EIciRNA can interact with U1 sn-
RNA to form the complex EIciRNA-U1 snRNP. The com-
plex  interacts  with  the  PolIItranscription  complex  to  pro-
mote the expression of host genes [12]. In plants’ research,
Lu et al. also found that circRNAs and their linear isomers
can inhibit the post-transcriptional expression of host genes
by constructing a genetic transformation system of rice over-
expression [30].

CircRNAs have a potential translational function. There
are a large number of consistent m6A motifs on circRNAs
in human cells.  With the participation of various proteins,
one m6A site can activate the translational function of circR-
NA [31]. In Drosophila melanogaster, a particular class of
circRNA  was  found  to  use  the  promoter  of  host  genes  to
combine with ribosomes and promote translation [32]. Re-
cently, it has been found that a high concentration of RNA
cyclized  in  vitro  can  induce  the  expression  of  proteins  in
mice, which indicates that circRNA can be used as an effec-
tive protein expression tool [33].

CircRNAs  can  induce  the  formation  of  pseudogenes.
Pseudogenes are derived from linear mRNAs by reverse tran-
scription  and  integrated  into  the  genome.  Linear  mRNAs

can form pseudogenes that have the same sequences as the
exons.  Stable circRNAs can also be reverse transcribed to
produce pseudogenes that have reversed sequences then inte-
grated into the genome [34].

3. DETECTION OF CircRNAs

3.1. Methods Based on RNA Sequencing Data
Since the first report of 80 circRNAs found by Salzman

using RNA-Seq sequencing data in 2012, the next-genera-
tion  sequencing  technology  has  been  continuously  im-
proved,  and multiple ring RNA tools  have been generated
[7].  RNA next-generation sequencing technology not  only
generates high throughput and accurate information, but can
also  identify  new  circRNAs.  It  is  a  cost-effective  method
and its  rapid development in bioinformatics,  increased the
number of circRNAs that have been found in mammals, hu-
mans, and plants [35, 36].

CircRNA  is  different  from  linear  RNA,  which  has  a
closed-loop structure that is more stable than linear RNA, be-
cause in contrast to linear RNA, circRNA is not easily de-
graded by RNase R. Current studies have found that circR-
NA molecules are rich in miRNA binding sites, which can
quench miRNAs and decrease their inhibitory effects on tar-
get  genes.  Detection  and  sequencing  of  circRNAs  in  or-
ganisms can be improved by enrichment of low abundance
circRNA. This can be achieved by removing rRNAs and by
digesting linear RNAs. After  construction of the sequence
database of circRNAs, analyses of distribution, annotation,
expression, conservation, and interaction with miRNA can
be carried out to further explore the functions of these circR-
NAs.

At present, there are relatively few studies and compre-
hensive annotations on circRNAs. Because the traditional de-
tection technologies could only detect the known circRNAs,
information on large number of specifically expressed circR-
NAs are missing. Next-generation sequencing data is used to
identify circRNA, using software that can not only identify
known circRNAs but can also predict new circRNAs Table
1. The emergence of RNA next-generation sequencing data
makes it possible to sequence hundreds of millions of short
fragments,  of  which  single  base  pair  analysis  provides  a
method  for  accurate  and  effective  identification  of  circR-
NAs.

Various software packages can be used to detect circR-
NAs from RNA-Seq data. KNIFE, NCL Scan and PTES Fin-
der  rely on providing gene annotation information to con-
struct  circRNA  sequences  for  circRNA  detection  [39,  44,
45]. Find-circ and UROBORUS can be used in combination
to map unmapped reads to the genome, extract the first and
last 20 bp anchors from unmapped reads, and then obtain re-
verse splicing events from the location information of these
anchors [9, 41]]. NCL Scan and PTES Finder use the esti-
mated segmented anchor location information to create the
putative circRNA sequence [44, 45]. CircRNA-finder, CIRC
explorer, DCC, Map splice, and Segemehl detect and ana-
lyze alternative splicing events by splicing alignment algo-
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Table 1. Detection methods of circRNAs based on sequencing data.

Method Approach Dataset or
Database Language URL

Find-circ [9]

Find-circ takes two 20 bp of the reads that
are not mapped and map them to the

genome again. Next, the GU/AG cleavage
site is found by short sequence alignment

to infer the potential circular RNA se-
quence.

human hg19,
mouse mm9,

C. elegans ce6,
UCSC genome

browser

python https://www.nature.com/articles/nature11928/

CIRI [37]

The fasta sequence of the input genome is
compared with the same file generated by

the sequencing data to detect junction
reads: paired chiastic clipping signals at

the junction points of the covered circular
RNA. Compare junction reads. The conser-
vative splicing sites of PEM and GT-AG

are filtered, and the dynamic programming
algorithm performs the final circular RNA

prediction.

ENCODE RNA-seq
data perl https://doi.org/10.1186/s13059-014-0571-3

DCC [38]

DCC uses the output from the STAR read
mapper to systematically detect back-s-

plice junctions in next-generation sequenc-
ing data. DCC applies a series of filters

and integrates data across replicate sets to
arrive at a precise list of circRNA candi-

dates.

rRNA-depleted total
RNA-seq data python https://doi.org/10.1093/bioinformatics/btv656

KNIFE [39]

Detect and quantify circular and linear
RNA splicing events at the annotated and

unannotated exon boundaries, including in-
tergenic regions of the genome, thereby im-

proving the sensitivity and specificity of
circular RNA detection.

ENCODE po-
ly(A) + and poly(A)

- RNA-Seq data
Python/perl https://link.springer.com/article/10.1186/s13059-015-0690-5

CIRC explorer
[40]

Identify the linker reads from the reverse
splicing exons, realign the connected reads
with the existing gene annotations, deter-
mine the precise locations of the splicing

sites of the downstream donor and up-
stream acceptor, and use a custom algo-
rithm to adjust the mapping errors based

on RefSeq exon annotations

RNase R- treated
RNA-seq from H9
human embryonic
stem cells (hESCs)

python https://doi.org/10.1016/j.cell.2014.09.001

UROBORUS [41]

The artificial paired-end seed (20 bp) is
first extracted from two ends of reads in an
unmapped.sam file, and then aligned to the
reference genome. The UROBORUS pipe-
line designed algorithm to deal with BMJ
and UMJ reads, and detect more circRNA

supported reads.

RNA-seq data of
glioma samples in

Hg19
perl https://doi.org/10.1093/nar/gkw075

MAP splice [42]

In the ‘tag alignment’ phase, candidate
alignments of the

mRNA tags to the reference genome G are
determined. In the ‘splice inference

phase,’ splice junctions that appear in the
alignments of one or more tags are ana-
lyzed to determine a splice significance

score based on the quality and diversity of
alignments that include the splice.

a synthetic noise-
free RNA-seq data python https://doi.org/10.1093/nar/gkq622

Segemehl [43]

Segemehl is a single-end RNA-seq data
segmentation read mapping algorithm,

which combines seed mapping based on er-
ror ESA and fast bit vector comparison. It
can accommodate multiple splits in one
read and does not make a priori assump-

tions about the transcript structure. It is im-
plemented in the Segemehl mapping tool,

which can easily identify conventional
splice junctions, collinear and non-collin-
ear fusion transcripts, and trans-spliced

RNA

RefSeq database
Drosophila RNA-
seq dataset human

melanoma transcrip-
tome dataset

python https://link.springer.com/article/10.1186/gb-2014-15-2-r34

(Table 1) contd....

https://www.nature.com/articles/nature11928/
https://doi.org/10.1186/s13059-014-0571-3
https://doi.org/10.1093/bioinformatics/btv656
https://link.springer.com/article/10.1186/s13059-015-0690-5
https://doi.org/10.1016/j.cell.2014.09.001
https://doi.org/10.1093/nar/gkw075
https://doi.org/10.1093/nar/gkq622
https://link.springer.com/article/10.1186/gb-2014-15-2-r34
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Method Approach Dataset or
Database Language URL

NCL scan [44]

Map RNA sequence reads with
reference genomes and known

transcripts, eliminate collinearity matching
reads, and connect the two ends of each

unmapp-ed read to generate a continuo-us
sequence. Use BLAT to align
each linked sequence with the

reference genome. According to the corre-
sponding BLAT

comparison results and
GENCODE comments, use the

assumed NCL connection points to make a
“hypothetical NCL

reference”

hg19
/GRCh37 python https://doi.org/10.1093/nar/gkv1013

PTES Finder [45]

PTES Finder identifies putative
PTES structures by mapping RNAseq

reads to sequence models
generated using existing

transcript annotation. It then
applies a series of mapping and alignment

filters to
systematically remove known classes of

false positives.

sample SRR4497
5A in human fi-

broblast total RNA
perl http://link.springer.com/article/10.1186/s12859-016-0949-1

CircRNA-finder
[46]

STAR compares the reference genome and
runs circRNA-finder to get the circular
RNA file whose splicing site meets the

GT-AG splicing signal

Drosophila total
RNA-

sequencing data
perl https://doi.org/10.1016/j.celrep.2014.10.062

CircRNAFisher
[47]

CircRNAFisher is a systematic calculation
pipeline suitable for whole-genome circR-

NA identification and annotation from
scratch. CircRNAFisher combines BSJ

search with a series of statistical filters to
detect candidate circRNAs. It can also
combine BSJ overlapping reading frag-

ments with inconsistent BSJ Read the frag-
ment to estimate the P value of the identi-

fied circRNA

A549 and MCF7 in
RNA-Seq data from

the ENCODE
project;

human hg19
and UCSC database

perl https://www.nature.com/articles/s41401-018-0063-1

PcircRNA-finder
[48]

PcircRNA-finder collects all backsplice
sites by chiastic clipping mapping of PE

reads based on available main fusion detec-
tion methods.

rRNA-/RNAase R
RNA-Seq data python https://doi.org/10.1093/bioinformatics/btw496

rithm [38, 40, 42, 43, 46]. CircRNA-finder needs to pair the
end  sequencing  data  and  relies  on  the  RNA-Seq  splicing
alignment software STAR [49]. PcircRNA-Finder is the soft-
ware specially designed for the identification of plant circR-
NA, which accurately distinguishes and predicts the down-
stream donors and upstream receptors of potential circRNA
in plants with high sensitivity [50].

Although several software and algorithms are developed
for circRNA detection using RNA next-generation sequenc-
ing  data,  there  is  no  uniform  measurement  standard  and
there is still a large space for improvement of this software.

3.2. Machine Learning Methods Based on Sequence Fea-
ture

The  existing  circRNA  recognition  tools  that  rely  on
RNA next-generation  sequencing  data  usually  have  short-
comings of lack of accuracy, low repeatability between dif-
ferent methods, and high false positive or false negative rate
[51]. In order to solve this problem, a growing number of re-
searchers use machine learning methods to establish models

to distinguish circRNA according to the inherent characteris-
tics of sequences without relying on sequencing data Table
2. In recent years, the combination of sequence features and
machine learning has been successfully applied to the predic-
tion of gene regulatory sites and splicing sites [52].

The contextual regression model is trained to predict the
formation of circRNA from a random genomic locus on the
human genome, with potential biogenesis factors of circR-
NA as the features of the training data. The features are in-
putted  into  a  neural  network  that  generates  a  contextual
weight for each feature that represents the importance of the
features. Then, the features are weighted by the correspond-
ing weights to makes an easier separation of samples by sum-
ming the weighted features to get the prediction [53]. Liu et
al. uncovers a potential new link between circRNA biogene-
sis and flanking CpG islands, which suggests a potential cor-
relation between DNA methylation and circRNA biogenesis.
The HELM method is to learn a sparse encoder in an unsu-
pervised way and transform the original input into a high-
er-level representation. The random perturbation of the out-
put matrix is the input for supervised feature classification.

https://doi.org/10.1093/nar/gkv1013
http://link.springer.com/article/10.1186/s12859-016-0949-1
https://doi.org/10.1016/j.celrep.2014.10.062
https://www.nature.com/articles/s41401-018-0063-1
https://doi.org/10.1093/bioinformatics/btw496
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Table 2. Sequence feature approaches for circRNA classification

Method Approach Dataset or
Database Language URL

Context regression
Model [53]

The features are inputted into a neural network that generates a
contextual weight for each feature representing its importance.
Features are then organized by corresponding weights to make
an easier separation of samples. In classification or regression

tasks, the weighted features are then summed to yield the predic-
tion.

CircNet python https://doi.org/10.1093/bioinformatics/btz705

Helm [54]

The goal of HELM is to learn the sparse encoder in an unsuper-
vised way and transform the original input into a higher-level
representation. The random disturbance of the output matrix is
the input of the supervised feature classification. There is only
one hidden layer for supervised feature classification. The goal

is to minimize the norm of training error and output weight.

Circbase
and

GENCODE
python https://doi.org/10.1007/s00438-017-1372-7

Circdeep [55]

Constructing RCM descriptors that provide the possibility of cir-
cularization of flanking sequences and query sequences, integrat-
ing ACNN and BLSTM to process different input data types. In-
tegrate shared representations among different modes by fusion
of RCM descriptors, ACNN-BLSTM sequence descriptors, and
conservation descriptors into high-level abstract descriptorsAdd
feature fusion learning to heterogeneous descriptors, train a sin-

gle DNN, and finally predict circRNA.

GENCODE
and human cir-
cRNAs from

the database cir-
cRNADB

python https://doi.org/10.1093/bioinformatics/btz537

PredcircRNA [56]

PredcircRNA focuses on distinguishing circRNAs from other ln-
cRNAs through multiple kernel learning. First, by distinguish-

ing features from different sources extracted from the transcript,
and second, by a calculation method based on a multiple kernel
learning framework, used to fuse these heterogeneous features.

Finally, perform 5-fold cross-validation.

human circR-
NA data from

circbase
database

and
GENCODE

python https://doi.org/10.1039/c5mb00214a

WebCircRNA[57]

WebCircRNA is a user-friendly web
server that predicts if coding and noncoding RNAs have circR-

NA isoforms and whether circRNAs are expressed in stem cells.
The predictions are made by random forest models using se-

quence-derived features as input. The output scores are convert-
ed to fractiles, which are used to assess the circRNA and stem

cell potential.

CircBase
and

GENCODE
v19

python https://doi.org/10.3390/genes9110536

CircLGB[58]

CircLGB, a machine learning-based framework to discriminate
circRNA from other lncRNAs. CircLGB integrates commonly

used sequence-derived features and three new features
containing adenosine to inosine (A-to-I) deamination, A-to-I
density and the internal ribosome entry site. circLGB catego-

rizes circRNAs by utilizing a LightGBM classifier with feature
selection.

CircBase,
LNCipedia,
CircRNADb

and
GENCODE

python https://doi.org/10.3389/fgene.2020.00655

CirRNAPL[59]

First, the method extracts the features of
nucleic acid composition and structure of the circRNA se-

quence. Four features of the sequence data were extracted, in-
cluding Ribonucleic acid composition, Autocorrelation, Pseu-

do-ribonucleic acid composition, and Predicted structure compo-
sition. Then, the extreme learning machine based on particle

swarm optimization is used as the classification algorithm. The
classifier CirRNAPL is constructed by a tenfold cross-valida-

tion method to identify the RNA sequence to be labeled.

CircBase and
GENCODE

v19
Java https://doi.org/10.1016/j.csbj.2020.03.028

DeepciRGO[60]

DeepciRGO predicts the function of circRNA by integrating
multiple biological information related to circRNA.Firstly, con-
structing a global heterogeneous network according to circRNA
co-expressions, circRNA-protein associations, and protein-pro-

tein interactions. Then, the latent topo-logical features of the
global network are extracted through HIN2Vec and are further
fed into a deep neural network classifier. Finally, circRNAs are

annotated with GO terms through the trained classifier.

StarBase v2.0
and CSCD python https://doi.org/10.1186/s12859-020-03748-3

Only  one  hidden  layer  can  be  used  for  supervised  feature
classification. The goal is to minimize the training error and
output  weight  norm  [54].  Chaabane  et  al.  propose  a  new
method circDeep, to fuses an RCM descriptor, ACNN-BL-

STM sequence descriptor and a conservation descriptor into
high-level abstraction descriptors, where the shared represen-
tations across different modalities are integrated. The next
steps are to add feature fusion learning to heterogeneous de-

https://doi.org/10.1093/bioinformatics/btz705
https://doi.org/10.1007/s00438-017-1372-7
https://doi.org/10.1093/bioinformatics/btz537
https://doi.org/10.1039/c5mb00214a
https://doi.org/10.3390/genes9110536
https://doi.org/10.3389/fgene.2020.00655
https://doi.org/10.1016/j.csbj.2020.03.028
https://doi.org/10.1186/s12859-020-03748-3
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scriptors, train a single DNN, and finally predict circRNA
[55]. PredcircRNA focuses on distinguishing circRNA from
other lncRNAs through multiple kernel learning, the first is
to extract features from different sources of the transcript,
and then the calculation method based on the multiple kernel
learning  fuses  these  heterogeneous  features  together  [56].
For WebCircRNA,Pan et al. extracts different features such
as  sequence  composition  of  e.g.  RNA secondary  structure
and conservation to train random forest model, and five-fold
cross-validation to assess the performance [57].CircLGB is
a  machine-learning  framework  that  includes  a  Classifier
named LightGBM, which has 5 major procedures: (1) Col-
lecting  human  circRNAs  and  lncRNAs  transcripts,  which
are combined to construct the circlncRNA dataset; (2) Ex-
tracting four groups of sequence-derived features; (3) Sort-
ing the extracted features according to the importance score,
and using sequential forward search (SFS) to determine the
optimal feature subset; (4) Training the LightGBM classifier
for circRNA identification with the optimal feature subset;
and (5) Calculating the performance metrics for model evalu-
ation [58]. Niu et al. develop a new classifier, CirRNAPL,
which extracts the features of nucleic acid composition and
structure of the circRNA sequence to optimize the extreme
learning machine (ELM), based on the particle swarm opti-
mization algorithm; ELM algorithm randomly assigns input
weights and hidden layer thresholds and directly calculates
output layer weights by least squares, PSO is used to opti-
mize the input weight and hidden layer deviation of ELM,
which can improve the generalizability of the methods [59].
DeepciRGO is constructed using the dependencies between
GO classes as background information to predict circRNA
functions  by integrating multiple  interactions  and associa-
tions; the first step is to extract the topological information
of each node in the global network as its feature; and then
build a neural network for each GO, consider the functional
dependencies between the classes in GO [60].

Due to the relatively low expression of CircRNAs, the
specific  strategies  of  CircRNAs detection tools  also  differ
greatly in the results. In addition, the level of circular RNA
in all cell lines is very different, which indicates that the ex-
pression level of circRNA in different cell lines has different
regulatory modes. However, the machine learning methods
based on sequence feature only focus on modeling the ex-
pression status of circular RNA, and do not consider the ex-
pression level of circular RNA. Therefore, the machine learn-
ing  methods  still  have  more  room for  development  in  the
study of circular RNA. For example, chen et al. model circR-
NA expression patterns using RNA-seq data as well as inte-
grated sequence and epigenetic features to demonstrate the
potential involvement of H3K79me2 in circRNA expression
[61]. Integrating sequence features with RNA sequencing da-
ta may achieve a more comprehensive understanding of cir-
cular RNA in subsequent research.

4. INFLUENCE OF circRNAs ON DISEASES
The human genome can be widely transcribed to gener-

ate a large number of non-coding RNAs, such as miRNA, ln-
cRNA,  piRNA,  circRNA,  and  others.  Many  of  these  are

closely related to the occurrence and development of diseas-
es [62]. Recent studies have shown that circRNAs play an
important role in diseases, such as cardiovascular diseases,
diabetes mellitus, cancer, and plant-related diseases such as
potato bacterial soft rot [27].

4.1. Association Between CircRNAs and Diseases
Based on studies of the structure and function of circR-

NAs, researchers found that they play a very important role
in atherosclerosis, nervous system disorders, diabetes melli-
tus,  and  cancer  [2].  The  antisense  noncoding  RNA  in  the
ring INK4 locus is the antisense transcript of cyclin-depen-
dent kinase 4 inhibitor protein and its gene variable reading
frame fINK4A/ARF1 [63]. SNP can affect cANIL produc-
tion, thus affecting cANR IL splicing. In turn, cANR IL can
affect the inhibition of the INK4a/ARF gene that is mediated
by the multi comb family of proteins, therefore promoting
the risk of atherosclerosis [64]. Expression of the CircRNA
CDRlas was first identified in brain tissue 20 years ago, and
the CDRl gene was once considered as one of the two impor-
tant genes involved in autoimmune nervous system disorder
[65]. CDRlas ability to recruit and interact with miR-7 is the
most important basis for CDRlas involvement in the pathoge-
nesis of diseases. It can indirectly regulate the expression of
miR-7  targets,  thus  affecting  the  occurrence  and  develop-
ment  of  diseases.  In  an  Alzheimer's  disease  study,  it  was
found  that  there  was  maladjustment  of  the  miRNA  ring
RNA system in  the  hippocampal  CA1 region.  The  loss  of
CiRS-7 decreased the activity of “miRNA sponge” and in-
creased the miR-7 level around brain cells, which is one of
the  mechanisms  associated  with  AD  pathogenesis  [66].
MiR-7 can directly regulate the α-synuclein expression and
play a role in the pathogenesis of Parkinson's disease [67].
In pancreatic β cells, miR-7 inhibitors can induce the subse-
quent stimulation effect of the mammalian rapamycin target
protein  signaling  pathway  in  cell  proliferation,  indicating
that miR-7 may be a therapeutic target for diabetes mellitus
[68]. Other studies have shown that miR-7 acts as a tumor
suppressor, and that its dysfunction and low expression parti-
cipate in the occurrence and development of different malig-
nant  tumors,  including  breast,  liver,  and  cervical  cancers
[69]. In addition, it can inhibit the growth of the A549 hu-
man non-small cell lung cancer cells by regulating the ex-
pression of the apoptotic-related gene β-lymphoma 2 [70].
To reveal the relationship between circRNA and aging, we
studied the expression of the ring RNA in different tissues
and organs of mice at different growth stages. In the mam-
mary gland, only circUSP3 expression negatively correlated
with aging, while in the intestine, the three types of growth
related circRNAs, positively correlated. This suggests that
circRNAs may be involved in different senescence pathways
and play different biological roles [71].

CircRNAs affect plant growth. In kiwifruit, it was found
that circRNAs have a specific response to pathogen invasion
[72]. In potatoes, differentially expressed circRNAs respond-
ed to bacterial infections producing Botox [73]. Several spe-
cific  circRNAs were found in tomato leaves infected with
yellow leaf curl virus disease [74]. There was also a differen-
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tial expression of circRNAs in tomato fruits during their de-
velopment,  which  indicated  that  circRNAs  could  be  in-
volved  in  fruit  ripening  and  coloration  [75].

At present, we still do not have a complete understand-
ing of circRNA’s functions in health and diseases. Their bio-
logical functions and clinical values need to be further ex-
plored, and it is undeniable that the research on circRNAs
has a bright future for the prevention and treatment of diseas-
es.

4.2. Prediction Method of Diseases Associated circRNA
Benefiting  from  the  prediction  of  association  between

diseases and circRNAs, many diseases have now been con-
firmed to be related to circRNAs. Because circRNAs can ad-
sorb miRNAs in cells and act as sponges for miRNAs, it is
possible to construct a heterogeneous information network
between circRNAs, miRNAs, and diseases to explore their
relationships. For heterogeneous network construction, a cir-
cRNA co-expression network is  first  constructed by using
the scale-free characteristics of the ENCODE data set and bi-
ological network. In addition, miRNA functional similarity
network was constructed by using the data from miRNA tar-
get  gene  database.  The  miRNA  functional  similarity  net-
work was verified, and the disease-related miRNA and hu-
man disease network were obtained after cleaning and analy-
sis of the data, using existing databases and the literature. In
the second step, using the Meta path-based approach to get
the topological features from the circRNA to the disease and
using path count and random walk to measure the correla-
tion degree of different nodes, the different network topolo-
gy characteristics from circRNA to disease were obtained.
Finally, using the machine learning methods (Katz method,
single  class  support  vector  machine  method,  category
weighting  strategy,  and  bagging  ensemble  learning  strate-
gy), the association between circRNA and disease was veri-
fied [76].

Wang et  al.  used  a  deep convolutional  neural  network
method based on multi-source information to predict the rela-
tionship  between  circRNA  and  disease.  In  this  method,  it
was first assumed that similar circRNAs are usually associat-
ed with diseases with similar phenotypes. Based on this as-
sumption, a digital descriptor using circRNA similarity net-
work and disease semantic similarity network was construct-
ed. Then, using circRNA and disease’s biological informa-
tion, the Gaussian interaction contour kernel similarity net-
work was introduced into the descriptor. The multi-source in-
formation such as disease semantic similarity, disease Gaus-
sian interaction contour kernel similarity, and circular Gaus-
sian  interaction  contour  kernel  similarity  were  then fused.
Next, the deep learning convolutional neural network (CN-
N) algorithm was used to automatically and objectively ex-
tract the deep features of the circRNA disease descriptor. Fi-
nally, the Extreme Learning Machine classifier was used to
quickly and accurately predict the potential circRNA disease
association [77].

Another way to determine the correlation between circR-
NA and disease was based on matrix factorization. First, the

potential circRNA disease association was calculated from
the circRNA similarity and disease similarity extracted from
the disease semantic information. Known associations of cir-
cRNA, genetic disease, and diseases associated with circR-
NA were also extracted. Then, the circRNA disease interac-
tion spectrum was updated by the adjacent interaction spec-
trum to correct for false-negative association. Finally, the up-
dated  circRNA  disease  interaction  spectrum  was  decom-
posed by matrix factor to predict the correlation between cir-
cRNA and disease [78].

5. DISCUSSION AND PROSPECT
Based on the in-depth study of next-generation sequenc-

ing  data  and  the  utilization  of  machine  learning  methods,
our comprehension of circRNAs has gradually deepened. In
this review, we briefly describe the biogenesis and functions
of  circRNAs.  In  addition,  two important  strategies  for  the
identification of circRNAs are introduced: sequence feature
and RNA next-generation sequencing data. Next-generation
sequencing data technology has prompted a variety of identi-
fication  software,  and  DNA  sequence  features  have  been
rapidly  applied  to  the  identification  of  circRNAs,  which
have become a new hot spot in bioinformatics. With the de-
velopment  of  technologies  for  the  identification  of  circR-
NAs, the relationship between circRNAs and diseases gradu-
ally  became  apparent.  From  the  discovery  of  circRNA  in
plants’  viruses  in  1976,  to  human  tumors  and  cell  senes-
cence, and to plant soft rot disease and drought response, in-
creasing knowledge about circRNAs as disease factors has
been gathered. In addition, algorithms for the identification
of disease-related circRNAs will greatly benefit contempo-
rary medicine as correlations between circRNAs and diseas-
es are gradually discovered.

Although  significant  progress  has  been  made  in  the
study  of  circRNA,  there  are  still  many  problems  to  be
solved. There is no unified biogenic mechanism to explain
the biogenesis of all the discovered circRNAs [53, 79]. Algo-
rithms used for the prediction of circRNAs generate results
with  a  large  deviation,  and  there  is  no  unified  standard  to
evaluate the accuracy of these results.  Therefore,  it  is  still
difficult  to detect  circRNAs in the genome with sufficient
sensitivity and specificity [80]. The mechanism of degrada-
tion of circular RNA is even less understood than their bioge-
nesis mechanism. How are circRNAs degraded to maintain a
balance  in  organisms  [27]?  In  recent  years,  many  studies
have  been  conducted  on  human  circRNAs,  but  much  less
work has been done on the mechanisms of formation, local-
ization and degradation of plant circRNAs. In addition, spe-
cific identification tools for plant circRNAs are lacking.

CONCLUSION
In  recent  years,  studies  on  plant  growth  and  develop-

ment, abiotic stress, ncRNAs, and regulatory networks have
become  more  specific  and  documented.  Prediction  algo-
rithms based on experimental techniques and experimental
ideas will be developed and improved. Due to the stability,
tissue specificity, and high expression levels of circRNAs, a
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variety of known circRNAs have been associated with dis-
eases, making them more likely to become useful biomark-
ers and therapeutic targets  in human diseases.  In addition,
circRNAs are modulated by environmental stimuli, causing
a variety of diseases. Therefore, circRNAs could become im-
portant biomarkers to study the relationship between environ-
mental stimuli and induction of human diseases. Today, the
relationships between circRNAs and the pathogenesis of dis-
eases are still unclear, but we believe that in the near future,
their functions and relationships with diseases will be more
thoroughly understood [81].
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