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Abstract

Recent times have experienced more than ever the impact of viral infections in humans. Viral 

infections are known to cause diseases not only in humans, but also in plants and animals. 

Here, we have compiled the literature review of aptamers selected and used for detection 

and inhibition of viral infections in all three categories: humans, animals, and plants. This 

review gives an indepth introduction to aptamers, different types of aptamer selection (SELEX) 
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methodologies, the benefits of using aptamers over commonly used antibody-based strategies, 

and the structural and functional mechanism of aptasensors for viral detection and therapy. The 

review is organized based on the different characterization and read-out tools used to detect 

virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along 

with addressing recent developments, we also discuss a way forward with aptamers for DNA 

nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as 

a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.

Graphical Abstract

Viral infections are a major cause of disease in humans, plants, and animals. Aptamers (shown 

in an assembly line on a conveyor belt) are being developed as molecular tools for creating 

diagnostics and therapeutics for viral infections.
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INTRODUCTION

Detection and treatment of viral infections is an ever-necessary aspect of biomedical 

science with viruses such as human immunodeficiency virus-1 (HIV-1) and hepatitis C 

virus (HCV) killing millions of people every year1-3. While several diagnostic methods 

have been developed for viral infections, global pandemics such as the current COVID-19 

scenario demonstrates the need for multiple alternate strategies for rapid detection of 

viral infections. There is also a need for more efficient diagnostic tools with focus on 

aspects such as rapid detection, accuracy, affordability, and portability of the assay so that 

detection strategies are useful in low-resource settings. For treating viral infections, new 

methods that address molecular mechanisms of viral infection could be potent in creating 

therapeutics for a range of viral diseases with similar infection routes. Recently, several 

materials have been developed toward more effective viral diagnostics and treatment4-6. For 

example, graphene-based materials have been used for detection of viruses7 and nanoporous 

carbon-based materials and thin film based coatings have been used in developing protective 
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equipment against viruses8. Nucleic acid engineering has also been a rapidly developing 

area in biosensing and drug delivery. Among these, aptamer-based methods have attracted 

more attention due to their applicability in a wide range of disciplines such as pathogen and 

toxin diagnostics9, therapeutics10,11, water quality control12, and imaging13.

Aptamers are single stranded oligonucleotide (ssDNA or ssRNA) ligands comprised of 10 

to 100 nucleotides that can exhibit high affinity and specificity to their selected target. 

Originally discovered by Gold and Szostak14,15, they have now been developed by several 

research groups and considered as the nucleic acid equivalent of the antibody. Their 

low immunogenicity, small size, batch to batch reproducibility, ability to be chemically 

modified, and low cost of production have positioned aptamers to replace antibodies in 

many circumstances16-19. More specifically, aptamers are structurally more flexible and 

are magnitudes smaller than antibodies, facilitating their ability to recognize regions of 

the antigen that are otherwise inaccessible to antibodies. Their smaller size also aids in 

higher cell entry for in situ diagnostics, imaging, and disease treatment. Aptamers can be 

synthesized in large scale using phosphoramidite chemistry at a low cost. Further, aptamers 

can recognize a wide range of targets, tolerate various storage and usage conditions at 

different temperatures and can return to their original conformation after denaturation and 

annealing, allowing repeated use20,21. The in vitro selection process of specific aptamers is 

less time consuming and cheaper compared to antibody production where generation and 

screening of monoclonal antibodies is laborious and requires highly specialized facilities. To 

date, aptamers have been selected with nM to μM KD, targeting ions, small molecules as 

well as biological molecules and cells in both buffer and physiological conditions, including 

blood plasma and serum, and employed in environmental sensing, bioimaging, disease 

diagnosis and treatment. Despite these advantages of aptamers over antibodies, it has to be 

pointed out that compared to antibodies, aptamers are easier to degrade in vivo and thus 

need to be modified either chemically or enzymatically for enhanced biostability. Also, 

aptamers are quickly excreted by renal filtration from the bloodstream and thus need to 

be attached to other higher-molecular-weight molecules such as cholesterol or polyethylene 

glycol for prolonged bioavailability when used as diagnosis/imaging reagents or as part of 

drug complexes. In Table 1 we briefly summarize the pros and cons of using aptamers for 

virus detection and inhibition when compared with antibody-based methods22-24.

Aptamer structures consists of a diverse set of secondary motifs such as stem-loop, 

hairpin, pseudoknot, kissing loop, three-way junction, G-quadruplex, and internal bulge 

structures25. Aptamer-target binding occurs through a variety of non-covalent interactions 

such as hydrogen bonding, electrostatic, Van der Waals and hydrophobic interaction. The 

binding affinity of aptamers to their targets is also mediated by the environment, including 

buffer and ion composition and concentration, pH, and temperature26. The overall three-

dimensional shape and conformation of the target molecule defines the strength of the 

binding affinity of the selected aptamer27 (Figure 1). For example, aptamers can differentiate 

between closely associated molecules and even between different chirality and recognize 

a specific epitope of a target molecule28. Previous studies have established that aptamers 

can bind to a variety of targets such as bacteria and viruses29, proteins30, prions31, and 

other small molecules15. Specifically, various aptamers have been developed to recognize 

key structural or metabolic determinants associated with bacterial and viral pathogens23. 
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This specificity towards clinically-relevant biomarkers makes aptamers useful in biosensing. 

Recent studies have developed a range of aptamers for different viruses including vaccinia 

virus, dengue virus, severe acute respiratory syndrome (SARS), hepatitis C virus (HCV), 

human immunodeficiency virus (HIV), apple stem pitting virus, norovirus, rabies virus, 

bovine viral diarrhoea virus, hepatitis B, Ebola and influenza32,33. For these interactions 

to be used in sensing, aptamers are coupled with a variety of detection formats such as 

fluorescence, radioisotope, electrochemical, optical, colorimetric, and enzyme-linked assays. 

In addition to detection capabilities, aptamers can block proteins or molecules from binding 

their target and inhibit viral infection by stopping further replication, thus preventing the 

infection from spreading. This aptamer recognition can also act as a targeting tool for drug 

delivery (for example, using an aptamer that is specific to a tumor cell receptor). In this 

review, we discuss the structure, function, and development of aptamers, as well as their 

use in viral detection, inhibition, and therapy. We also discuss an outlook into promising 

developments in DNA nanotechnology that has the potential to use aptamers for sensing and 

therapeutic applications.

APTAMER SELECTION BY SELEX

Aptamers can be selected specifically for single atoms/ions, molecules, viruses, bacteria, 

eukaryotic cells, and tissues by using different types of systematic evolution of ligands by 

exponential enrichment (SELEX) strategies and modifications to the incubation conditions 

(e.g., pH, temperature, buffer, etc.) (Figure 2)34,35. Aptamer selection relies on the 

distinctive secondary and tertiary structures that assist in target binding. The SELEX method 

starts with a combinatorial library that consists of two constant primer regions flanking a 

randomized segment of 20-50 nucleotides. Iterative rounds of incubation, separation and 

amplification enrich oligonucleotides that bind the intended target from the initial library. 

Incubation of the libraries with the target can be carried out in several ways. Usually, the 

target of interest is immobilized on a surface that can be washed or separated from the 

bulk liquid (centrifugation or magnetic separation of particles)36. The bound sequences 

that remain after binding and washing are then released chemically and/or thermally. This 

provides a phenotype-genotype linkage, where the desired binding sequences can then be 

amplified using polymerase chain reaction (PCR) (for DNA-based libraries) or reverse 

transcription PCR (for RNA-based libraries). This process is repeatedly performed for 8 to 

15 rounds to get a desired pool of target-specific aptamers. Increasingly stringent conditions 

during library binding are utilized to obtain high-affinity aptamers, and negative (against the 

solid support) and counter (against unintended targets) selections are performed to increase 

the specificity of the evolved pool. At the end of the SELEX procedure, the identity of the 

enriched aptamer pool is determined by cloning and sequencing37,38. The SELEX technique 

is a potential method for assessing aptamers against a variety of target molecules and is 

crucial for developing novel aptamer-based detection procedures.

Cell SELEX.

Since its inception in 1990, there have been many advancements to the SELEX technology. 

Cell-SELEX is a modified form of SELEX used to develop aptamers against a whole cell39. 

Cell-SELEX provides a wide flexibility to target unknown cell particles and detection of 
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various cell types (bacteria, viruses, and tumor cells), primarily targeting the extracellular 

proteins present on the outer membrane of the cells or the characteristic structures specific 

to the cells. Cell-based SELEX processes have an additional step such as centrifugation or 

washing depending on the nature of the cells (adhesive or suspension). The bound sequences 

are collected and incubated with a negative control cell where the unbound nucleotides are 

then collected and used for negative selection round40. Once the aptamers are developed, 

they can be used for diverse applications such as drug delivery, cell- specific therapy, 

and cell surface diagnostics41,42. Since the aptamers developed by Cell-SELEX may target 

molecules that have not been characterized as cell-specific surface molecules, they might 

be novel biomarkers. As a result, Cell-SELEX may be used to explore new biomarkers 

for a specific cell. Further, Cell-SELEX may be used to manufacture aptamers against a 

particular target protein present on living cells such as transmembrane proteins (receptor 

kinases, G protein-coupled receptors, and ion channels)43,44. For example, Tang et al. used 

Cell-SELEX to produce aptamers by against adenocarcinoma epithelial cells infected with 

the vaccina virus (A549)45.

Complex-target SELEX.

This process involves the use of genetically modified cells. The whole cell is used as a target 

and these cells include genetically modified cells which over-express a target recombinant 

protein on the cell surface. Using a parallel selection process, multiple aptamers are selected 

for multiple targets in a single experiment and sequential target selection (X-SELEX) 

selects aptamers that bind to the multiple forms of a single target. The main advantage 

of this methodology is the ability to target and specifically differentiate microbial strains 

without knowing the details of the membrane structure or molecules present in any 

particular microorganism46. Pan et al. isolated aptamers for Rous sarcoma viruses (RSV), 

an enveloped avian retrovirus using this method47. Aptamers were specific to RSV surface 

glycoproteins that are necessary for binding and entry into host cells. Inhibition of viral 

infection was identified after 12 rounds of selection by chosen pools.

Genomic SELEX.

The conventional DNA library uses a chemically synthesized library whereas the genomic 

library uses the genomic DNA library48. Genomic SELEX is prepared via random priming, 

PCR amplification and in vitro transcription which creates an initial library49. This library 

is then transcribed into RNA and used for the selection process. At first, a counter 

selection method is performed at the immobilization matrix level. Due to the reversal of 

the transcription in several rounds, it can cause severe effects on highly structured RNA 

and is more acute in the case of genomic SELEX. Nucleic acid-binding proteins with 

diverse specificities and affinities are the most prevalent baits used in Genomic SELEX. 

Some examples of such nucleic acid binding proteins (associated to regulatory non-coding 

RNAs) are those involved in transcriptional and post-transcriptional silencing, chromatin 

remodeling, and components of machinery that participate in transport, RNA processing, 

and translation50-53. The utility of such proteins as targets enhances the potency of Genomic 

SELEX for analyzing RNA-protein interactions.
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Microfluidic SELEX (M-SELEX).

This process generates DNA aptamers by employing conventional SELEX within a 

microfluidic system54. M-SELEX increases the stringency of the selection by utilizing a 

minimum amount of target molecules. It is a cost-effective method that consumes a small 

number of reagents, can be automated and multiplexed, and reduces the time required 

for the selection of new aptamers. For example, M-SELEX was used to isolate aptamers 

against hepatitis C virus (HCV) RNA polymerase55. A wide variety of M-SELEX methods 

have now emerged from employing microfluidic incubation, amplification, and separation 

techniques.

Magnetic bead-based microfluidic SELEX.

As one of the most widely used methods, this process uses a micro or nanosized magnetic 

bead as solid support for target binding. Here, a magnetically activated chip-based separation 

takes place in a continuous flow56-58. The screening of aptamers in magnetic bead-based 

M-SELEX takes place by incubating target-immobilized magnetic bead with a random 

nucleic acid library. Afterward, unbound nucleic acids are separated from target-bound 

aptamers by performing a stringent washing in the microfluidic channel. After separation, 

the external magnet is removed, and the attached, selected aptamers are collected for further 

PCR amplification. Small molecules, proteins, and cell surfaces have been used as effective 

targets for magnetic bead-based selection approaches56. For example, Soh's team designed a 

high-efficiency continuous-flow magnetic activated chip-based separation (CMACS) system 

that combines microfluidics technology with magnetic bead-assisted SELEX. The highly 

localized magnetophoretic forces and magnetic field gradients present in this system allows 

separation of the target protein with high purity. In addition, nonspecific binding was 

reduced by using carboxylic acid-coated beads on negatively charged oligonucleotides, 

further increasing the efficiency of the selection process59.

Capillary electrophoretic (CE) SELEX.

This method was the first microfluidic technique to yield a highly rapid SELEX 

process60-63. The difference in the electrophoretic mobility of the components in a mixture 

is used as the separation tool in capillary electrophoresis. The change in the size and 

charge of the target-aptamer complex decreases their mobility compared to unbound DNA 

or RNA sequences with high negative charge density. Several aptamers targeting HIV-1 

reverse transcriptase, Lactobacillus acidophilus, and adenosine have been isolated by CE 

SELEX64-66.

Sol-gel method.

This is another prominent microfluidic-based SELEX that overcomes the uncertainty behind 

the effects of target immobilization on its conformation as well as blockage of binding 

sites67. Here, the sol consists of silica derivatives and the addition of chemical additives 

solidifies the sol into a nanoporous framework which enables the trapping of the target 

molecule within the gel. The nanoporous gel provides an aqueous domain to conserve 

the biological activity and stability of the entrapped target. Park et al. developed the first 

nanoporous sol-gel protein microfluidic array for entrapping target molecules and enabled 
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the selection of RNA aptamers against multiple target molecules68. Jiyoung et al. used a 

sol-gel M-SELEX for high throughput characterization and selection of RNA aptamers. This 

microchip used a sol-gel network to immobilize the targeted protein and a localized heat 

source to selectively extract the RNA aptamers from the targeted protein69.

AFM-SELEX.

In this method, the aptamer is immobilized on a cantilever via biotin-streptavidin and target 

molecules are immobilized on a gold chip70. If the target-aptamer affinity is very strong, the 

biotin-streptavidin interaction of the aptamer to cantilever breaks and the aptamer remains 

on the gold surface. The DNA is then recovered by heat elution followed by PCR for 

amplification70. Such a method has been used to select a DNA aptamer against thrombin 

with very strong affinity (KD = 200 pM)71.

Toggle-SELEX.

Toggle-SELEX is a selection method for aptamers that can bind to a particular target 

present in different organisms. For instance, RNA aptamers that can bind to both porcine 

and human thrombin are selected by “toggling” the target between the human and porcine 

thrombin during alternate rounds of selection. In the first round, the library is incubated 

with both porcine and human thrombin. Aptamers that are bound to the protein are then 

recovered and amplified72. Using this process, Derbyshire et al isolated aptamers capable 

of targeting several aminoglycosides73. While toggle-SELEX is useful to develop cross-

reactive aptamers, sometimes affinity may be compromised during selection process74.

APTASENSOR BASED DETECTION OF VIRAL PATHOGENS

As evidenced by the ongoing COVID-19 pandemic, diagnosis of viral pathogens at early 

stages of infection is crucial for the prevention and early treatment of viral infections. 

Current gold standard methods for detecting viral infections include nucleic acid testing 

(NAT)76 and antigen-antibody based ELISA tests77, and other common methods include 

viral plaque assay78, flow cytometry79, and hemagglutination assay80. NAT methods are 

amplification-based enzymatic assays that detect viral genetic material (DNA or RNA) 

typically using PCR. Although NAT is sensitive, it requires labor-intensive, laboratory-based 

sample preparation protocols for viral lysis, extraction of genetic materials, purification of 

the isolated materials, thermal cycling for enzymatic amplification of viral nucleic acid 

sequences, and interpretation of complex results by skilled personnel. Immune assays test 

for viral antigens or antibodies and are in general rapid, but less sensitive. There have 

been tremendous efforts in the development of alternate methods for faster and low-cost 

methods for detecting cellular and disease biomarkers81,82. In this section, we discuss 

aptamer-based sensors, (called aptasensors) that are surface-based assays (where the aptamer 

is immobilized on a surface) or solution-based assays (where they are mixed with analytes in 

solution). In such assays, aptamer-analyte binding transduces a detectable signal which can 

be readout by electrochemical, optical, or enzyme-linked methods.
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Electrochemical aptasensors

Electrochemical aptasensors rely on the immobilization of an aptamer ligand on a 

conductive surface. Gold or carbon-based electrodes are commonly used for this purpose, as 

their surfaces are hydrophobic, inert, and easily functionalized to provide robust attachment 

of many aptamer ligands. Different chemical strategies have been developed to immobilize 

aptamers on electrode surfaces. These include chemisorption (attachment of the aptamer 

to the surface by noncovalent interactions such as electrostatic, hydrogen bonding and 

π-π stacking), biotinylation of aptamers to bind avidin-modified surfaces, covalent linkage 

mechanisms such as click chemistry (azide-modified aptamer to the alkyne-modified 

surfaces) and chemical crosslinking (coupling of the amine-modified aptamers to carboxyl-

modified surface)83. Electrochemical aptasensors use electrochemically active species to 

provide a readout, where an electrode-immobilized aptamer serves as a transducer. Some 

examples of electrochemically active species include organic molecules such as ferrocene, 

methylene blue (MB) and thionine, which are redox-active molecules that interact with 

DNA via intercalation and electrostatic interactions. Their presence facilitates the transfer 

of electrons from the aptamer-target binding site to the electrode surface and provides a 

more sensitive electrochemical output83,84. Electrochemical changes that result from the 

formation of aptamer-analyte complex can be detected in the form of current, potential 

and impedance, typically measured by amperometric, potentiometric, and conductometric 

techniques. These include electrochemical impedance spectroscopy, cyclic voltammetry, 

differential pulse voltammetry, square wave voltammetry, field effect transistor, linear sweep 

voltammetry, and potentiometry85. Electrochemical aptasensors present advantages such as 

repeatability, accuracy, high sensitivity, low cost, easy miniaturization and robustness86. 

These detection methods can also be transformed into a chip-based platform for use as 

portable devices at point-of-care28.

Voltammetry and electrical impedance aptasensor—Giamberardino et al. 

developed an ultrasensitive electrochemical norovirus detection system using aptamers 

evolved to bind both murine norovirus (MNV) and human norovirus (HuNoV) with 

picomolar affinity87 (Figure 3a). Aptamer AG3 that selectively binds MNV and the HuNoV 

strain GII.3 was modified with a thiol-group at the 5’ end and subsequently immobilized 

on gold nanoparticle-modified carbon electrodes. Using square wave voltammetry readout 

technique and a ferricyanide/ruthenium hexamine redox reporter system, the norovirus 

aptasensor exhibited a limit of detection (LoD) of 10 aM, or 180 virus particles for MNV. 

Lum et al. developed an impedimetric aptasensor for the detection of the avian influenza 

virus (AIV) H5N1. A biotin-labelled, H5N1-specific DNA aptamer was immobilized 

on streptavidin-modified gold interdigitated microelectrodes that were embedded in a 

microfluidics chip88. The virus was allowed to interact with the aptamer-coated electrodes 

for 30 mins before measuring impedance. The difference in the impedance of the 

virus:aptamer-electrode complex and the aptamer-electrode alone indicates presence of 

the virus, with an LoD of 0.0128 hemagglutinating units (HAU). Detection methods for 

influenza A89 and vaccinia virus86 were also constructed using such an electrochemical 

aptasensor approach. A similar technique was used in detecting HCV90 using an aptamer 

evolved to bind the HCV core antigen that was chemisorbed on graphene quantum dot 

(GQD)-coated electrodes (Figure 3b). Electrochemical impedance spectroscopy was used 
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to monitor changes in electrical signals upon aptamer interaction with HCV antigen. The 

purported mechanism is that the aptamer: HCV antigen complex increases the ability of the 

redox species in solution to reach the electrode. This “signal-on” mechanism provided an 

LoD of 3.3 pg/ml.

Field-effect transistor-based aptasensors—A field-effect transistor (FET) is a 

voltage-controlled three-electrode (source, gate and drain) system that acts as a transducer 

and converts signals generated by the detected target to an electrical readout. Aptamers 

are immobilized on a FET electrode surface that measures the charge distribution when 

the target binds to the aptamer. Various biomolecules such as proteins91, viruses92 

and nucleic acids93 have been detected by FET-integrated aptasensors. Ruslinda et al. 

demonstrated diamond FET for the detection of HIV-1 using RNA aptamers as the sensor 

element92 (Figure 3c). The group used the RNATAT aptamer to detect HIV1 trans-activator 

transcription (Tat) protein that contributes to several pathological symptoms of HIV-1 

infection and plays a critical role in virus replication.

Piezoelectric aptasensors—Certain materials possess the ability to generate electric 

charge in response to applied mechanical stress, known as the piezoelectric effect. Quartz 

crystal microbalance (QCM) is the most common piezoelectric sensor used for the detection 

of biomarkers94. QCM-based strategies have also used aptamers immobilized on gold-

coated quartz as sensing elements. Binding of the target to the aptamers increases the mass 

on the surface of the crystals which generates a detectable signal due to the decrease in the 

resonance frequency of the crystal. Wang et.al. developed a ssDNA-crosslinked polymeric 

hydrogel to form a network of water-insoluble polymer chains in a QCM aptasensor for 

the rapid detection of AIV H5N195. An aptamer specific to AIV H5N1 surface protein was 

hybridized to the ssDNA, thus crosslinking the hydrogel in a shrunken state. The aptamer-

hydrogel complex was fixed on the gold surface of the QCM sensor using a self-assembled 

monolayer method. When the surface protein binds to the aptamer, the aptamer is released 

from the hydrogel complex, causing the hydrogel to swell, with the changes transduced to a 

detectable decreased frequency. The assay time for this method was 30 min with a detection 

limit of 0.0128 HAU95.

Enzyme-linked electrochemical aptasensors—Enzyme-based biosensors have also 

been used in combination with aptamers to detect viral pathogens. For example, an 

electrochemical aptasensor was coupled to a glucose oxidase (GO) enzyme-based readout 

for the detection of H5N1 (Figure 4a)96. They used a complex consisting of gold 

nanoparticles, glucose oxidase, concanavalin A (AuNPs-GOx-ConA) and the capturing 

aptamers were embedded on magnetic beads. The complex triggered an enzymatic catalysis 

that in turn increased the ion concentration and decreased the impedance, with the changes 

measured by electrical impedance spectroscopy. The LoD for the technique was 8x10−4 

HAU in a 200 μl reaction. Another study involving enzymatic electrochemical detection of 

H5N1 utilized AuNP-modified electrodes which were coated with the capturing aptamers 

(Figure 4b)97. The functionalization of the electrodes with 3-mercaptopropionic acid and 

the presence of the anti-H5N1 antibodies modified with alkaline phosphatase generates an 

electrochemical signal with an LoD of 100 fM.
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Nanozymes, artificial nanomaterials that imitate properties of natural enzymes, have also 

been used in aptasensors. The chemical makeup of nanozymes include simple metal and 

metal oxide nanoparticles, metal nanoclusters, quantum dots, nanotubes, nanowires, or metal 

organic framework98. Compared to conventional enzymes, nanozymes exhibit improved 

catalytic activity, lower cost of production, greater robustness and modification capabilities, 

and long-term storage and shelf-life99. Such a nanozyme based aptasensor was used to 

detect Norovirus (HuNoV)100. This aptasensor employs the murine norovirus (MNV) 

specific aptamer (AG3) as the molecular recognition element, with a detection limit of 200 

virus particles/ml in 10 min (Figure 4c).

Optical detection-based aptasensors

The aptasensor field is replete with optical sensors that rely on fluorescence, luminescence, 

colorimetry and plasmon or refractive index-related changes for analyte detection. Optical 

biosensing is divided into two modes: label-free, where target binding is analyzed by a 

coupled material that transduces an optical signal, and label-based, where colorimetric, 

luminescent, or fluorescent labels on either the aptamer or the target or both generate an 

optical signal. Optical biosensors use various molecular recognition elements such as nucleic 

acids, enzymes, antibodies, whole cells, and tissues42,101.

Surface plasmon resonance aptasensors—Surface plasmon resonance (SPR) 

aptasensors are based on the change in the refractive index of a metal, typically gold, surface 

due to the resonant oscillation of free electrons. In the SPR technique102, polarized light of 

a specific wavelength and incident angle passes through a prism and is reflected off the gold 

surface. SPR aptasensors are label-free and have recently been developed to be miniaturized, 

portable, and automated103. For example, Tombelli et al. developed an SPR aptasensor for 

HIV-1 detection with an LoD of 0.25 ppm (ref.104). Here, a biotinylated RNA aptamer that 

recognizes the Tat protein was immobilized on an avidin-modified gold surface. Bai et al. 

developed a portable and fast SPR-based aptasensor for AIV H5N1 (Figure 5a).105 Using 

streptavidin-biotin interaction, a DNA aptamer that targets the glycosylated hemagglutinin 

(HA) viral protein was immobilized on gold surface. The resulting sensor was shown to 

detect in vitro isolated AIV H5N1 as well as AIV H5N1 from poultry swabs with an LoD 

of 0.128 HAU. This sensor allowed rapid detection within minutes, and with poultry swab 

preparation takes a total time of only 1.5 h.

Localized SPR (LSPR) is an optical phenomenon that occurs in metallic nanostructures 

(nanospheres, nanodiscs, and nanorods). Normally these localized metal nanostructures are 

designed within microfluidic channels to detect ssDNA in low ng/mL range giving cheaper 

alternative for biomolecule sensing. Incident light at the specific plasmonic wavelength 

irradiates the metallic structure, which induces collective electron charge oscillations. 

This ultimately leads to a shift in absorbance in the ultraviolet-visible region, which 

can be used to detect target binding106. Klinghammer et al. developed an aptasensor 

based on this mechanism using arrays of gold nanorods (Figure 5b)107. They used 

different complementary DNA (cDNA) strand hybridization kinetics to monitor the optical 

nanostructure resonance of densely packed gold nanorods upon binding of biomolecules. 

Red shift of 2 nm and 5 nm were detected upon binding of 25 and 100 bp respectively.
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Another process of metal-enhanced fluorescence (MEF) occurs when there is an increased 

emission around specific metallic materials. When fluorophores are close to the surface 

of metal nanoparticles, the LSPR of the metal nanoparticles coupled with the excited 

fluorophores improves the detection sensitivity significantly. The signals can be detected 

by surface plasmon field-enhanced fluorescence. Pang et al. developed an aptasensor using 

this principle for detecting H5N1 virus (Figure 5c)108. A guanine-rich DNA aptamer 

that recognizes recombinant hemagglutinin (rHA) was immobilized on core-shell AgSiO2 

nanoparticles and thiazole orange was added as a fluorescence amplification reporter. Target 

binding causes the aptamer to fold into a G-quadruplex structure. The thiazole orange 

previously in solution then binds to the G-quadruplex and its interaction with the core-shell 

nanoparticle causes an increase in fluorescence. Using this assay, H5N1 rHA could be 

detected in 30 mins in both buffer and when spiked in serum. Another study used aptamer-

based fluorescent nanoparticles for the detection of the respiratory syncytial virus (RSV) 

(Figure 5d)109. This method could detect viral particles that are 80-100 nm.

Surface-enhanced Raman scattering (SERS) aptasensors—Raman spectroscopy 

is a promising optical technique due to its simple and cheap instrumentation and requires 

minimal sample preparation110. The SERS enhancement is due to (i) an enhanced 

electromagnetic field on a rough metallic surface which amplifies the incident light and 

therefore the Raman modes being detected, and (ii) direct enhancement of the Raman 

signal by the resonant surface. Together, these mechanisms can provide signal enhancements 

of 1010 to 1011 potentially allowing for single-molecule detection111,112. SERS-based 

biosensing can be categorized as direct or indirect. In the direct technique, detection is 

based on the Raman spectrum of the analyte itself without any reporter molecules (label-

free techniques). This technique has been used for detecting hepatitis B virus (HBV)113, 

adenovirus, rhinovirus and HIV114. The indirect SERS-based technique involves the use 

of molecular recognition elements such as antibodies, aptamers or other specific binding 

molecules placed close to the “hot spots” (interparticle gap in a nanocluster) on the 

surface. These methods rely on the change in Raman signals from the recognition element 

(e.g., aptamers) or reporter molecules and not the analyte itself. The reporter molecules 

used in SERS-based methods are water-soluble, and easily conjugated or intercalated to 

oligonucleotides110,115,116. For example, Chen et al. a developed a SERS-based aptasensor 

using a Cy3-labelled DNA aptamer for the detection of influenza A (H1N1) virus with 

high sensitivity (Figure 5e)117. The biosensor consisted of a three-dimensional (3D) 

nano-popcorn plasmonic substrate fabricated by depositing gold layers on a polyethylene 

naphthalate (PEN) polymer substrate. On binding the virus, the Cy3-labelled DNA aptamer 

is released from the nano-popcorn substrate surface, causing a decrease in the Raman peak 

intensity. In another example, Kukushkin et al developed an aptasensor for the detection of 

influenza virus including H1, H3, H5 haemaglutinin subtypes (Figure 5f)118. The aptamer 

RHA0385 showed strain specificity to both recombinant hemagglutinins and whole cell 

viruses. The aptasensor consisted of a primary aptamer attached to the metal particles of 

the SERS substrate, and secondary aptamer labelled with Raman-active molecules. The 

influenza virus was captured and bound to the labelled secondary aptamer. The LoD for this 

aptasensor was 104 virus particles per sample or 10−4 HAU per sample.
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Chemiluminescent aptasensors—The energy transition between the molecular orbitals 

emits light which is termed as luminescence. When this phenomenon occurs in the presence 

of a chemical reaction, it is termed as chemiluminescence119,120. Chemiluminescent 

methods have often been implemented as signal amplifiers to provide detection limits of 

10−12 to 10−21 mol24,121,122. Ahn et al. developed an aptasensor to detect the nucleocapsid 

protein of SARS coronavirus (SARS-CoV)123. This aptasensor utilizes an aptamer-target-

antibody sandwich method, where the nucleocapsid proteins are recognized by surface-

immobilized aptamers. This assay provided detection at a limit of 2 pg/ml. Xi et al. 

developed a chemiluminescent aptasensor for the detection of the hepatitis B surface 

antigen (Figure 5g)124. This aptasensor used aptamers immobilized on Fe3O4-SiO2 magnetic 

nanoparticles that allowed for detection of the target biomarker with a linear range of 1-200 

ng/ml. The detection limit for the aptasensor was 100 pg/ml and worked well even in the 

presence of interfering substances present in blood.

Fluorescent aptasensors—Fluorescent biosensors rely on changes in fluorescence 

polarization, wavelength, or intensity as a means of detection. These changes are produced 

upon the interaction of the target analyte and fluorescently-labelled aptamers125. Percze et 

al. developed a fluorescence polarization assay for the detection of respiratory syncytial 

virus (RSV), a viral pathogen affecting young infants126. Wang et al. constructed an 

integrated microfluidic device for fluorescence-based multi-virus detection of influenza A 

H1N1, H3N2 and influenza B virus (Figure 5h)127. This aptasensor consisted of aptamer-

modified magnetic beads to detect RSV and another fluorescent-labelled aptamer was used 

for counter selection against human rhinovirus (HRV).

Some fluorescence-based methods use Förster resonance energy transfer (FRET). FRET 

involves two fluorophores of particular electromagnetic properties, where the emission 

spectrum of a donor molecule overlaps with the excitation spectrum of an acceptor 

molecule. Distance changes between the fluorophore pairs can therefore be monitored based 

on the wavelength and intensity of the emitted light, providing a detectable output for target 

recognition128,129. FRET-based systems can be incorporated into aptasensors in a variety of 

ways. Frequently, an aptamer is modified with both a donor and acceptor molecule such 

that when there is no target present, the donor and acceptor are too far for FRET to occur. 

Then, upon target binding, there is a conformational change in the aptamer that brings the 

FRET pair closer together, causing a change in FRET signal. In another method, the target 

molecule and the aptamer are both modified with either part of the donor/acceptor pair. 

The binding of the aptamer to the target brings the pair in proximity to undergo FRET110. 

Yamamoto and Kumar developed a quencher based method to detect HIV-1 Tat protein 

(Figure 5i)130. For this aptasensor, an RNA aptamer specific to Tat contained a hairpin 

structure with fluorophore and quencher modifications at 5’-end and 3’-end respectively. 

Upon Tat protein binding, the hairpin structure is opened, moving the fluorophore/quencher 

pair away from each other and causing fluorescence.

Quantum dots (QD) are spherical, inorganic, fluorescent nanocrystals which are extensively 

used as fluorescent probes. Compared to traditional organic dyes, QDs exhibit greater 

stability, reduced susceptibility to photobleaching, and greater and more precise spectral 

properties for multi-signal detection131. Ghanbari et al. used RNA aptamers conjugated 
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to QDs to detect HCV NS3 protein88. HCV NS3 was produced in vitro, immobilized on 

a glass slide, then probed with the aptamer-QD complex to detect HCV at a limit of 5 

ng/ml. Another study involved aptamers modified with QDs for detecting H1N1 with a 

detection level of 3.45 nM (Figure 5j)132. This study involved a protein-binding bifunctional 

aptamer and DNA-functionalized QD probe. The aptamer is complementary to part of the 

target DNA sequence of H1N1 Influenza virus and the rest of the sequence is a recognition 

sequence for streptavidin. In the absence of the target molecule, the QDs and the aptamer-

DNA-streptavidin complex are free in solution and do not hybridize. In the presence of the 

target, the target hybridizes with aptamer-DNA and the aptamer-DNA binds to the DNA-QD 

forming a complex and providing a readout.

Colorimetric aptasensor—Colorimetric detection measures changes in color shifts that 

can be inspected either by the naked eye or a spectrophotometer24. While several traditional 

methods are available for analyzing DNA and RNA biomarkers, they still face a number 

of drawbacks133. For instance, radioactive and fluorescence probe based Southern blots are 

criticized for their toxicity and massive cost134,135 while PCR-based methods require precise 

instruments that can be large and expensive, and require skilled personnel136. Colorimetric 

detection has various advantages such as eliminating the use of radioisotopes, reduced costs 

related to required equipment and on-site and real-time quantification and detection137. 

The traditional colorimetric aptasensor works by first incubating the aptamer with virus, 

then adding catalytic-active substances that attach to the trapped virus. To change the color 

of the sample, appropriate chromogenic reagents are introduced24. For example, Chen et 

al. employed magnetic bead-modified aptamers specific to H3N2 to detect influenza A 

virus138. The sensor consisted of AuNPs modified with concanavalin A and glucose oxidase 

(ConA-GOx-AuNP). The complex attached to the virus through concanavalin A-glycan 

interaction, with glucose oxidase transforming a chemical signal into a color change, with 

an LoD of 11.16 g/ml138. Liu et al139 developed a colorimetric assay using graphene/AuNP 

hybrids to detect hepatitis C virus140. The ssDNA aptamer reduces the catalytic activity 

of graphene/AuNPs by preventing the contact between active interface and peroxidase 

substrates. Interaction of the virus with the aptamer restores the catalytic activity, with color 

change produced by the substrate 3,3′,5,5′-tetramethylbenzidine (TMB).

Non-electrochemical surface immobilized antibody-coupled aptasensors—
Aptasensors can be coupled with antibodies to be used as direct or sandwich type 

immunoassays. Enzyme-linked immunosorbent assay (ELISA) is one of the most used 

diagnostic methods for the detection of proteins and antigens. When aptamers are used in 

substitution for the antibodies, the method is termed as enzyme-linked oligosorbent assay 

(ELOSA), enzyme-linked oligonucleotide assay (ELONA) or enzyme-linked aptasorbent 

assay (ELASA)141. The direct method of ELONA constitutes a plate coated with the 

target and a biotinylated aptamer that binds to the target (Figure 6a, top). Horseradish 

peroxidase (HRP)-conjugated streptavidin then binds to the biotinylated aptamers causing 

chemiluminescnce in the presence of the enzyme substrate TMB. In the sandwich based 

ELONA, the primary aptamer is immobilized on the surface of the plate and recognizes the 

target molecule142 (Figure 6a, bottom).
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An enzyme linked aptamer assay (ELAA) based study was conducted for detecting the 

influenza A strain H5N1 using an aptamer that targets the HA protein142. This sandwich-

based aptasensor comprises of amino groups conjugated at the 3’ terminus of aptamers that 

were immobilized in the wells. The target HA protein or semi-purified influenza virus was 

then added to the wells followed by addition of streptavidin-horseradish peroxidase. The 

LoD was 0.1 μg/well and the assay also discriminated between H1N1 and H3N2 subtypes of 

the virus. Other analogous ELAAs methods have been used for the detection of the human 

norovirus143, Zika virus144, and HCV145.

Lateral flow assays (LFA) are a type of immunochromatographic assay commonly used 

for the detection and quantification of an analyte146. These assays employ layered pads 

that generate a series of capillary beds to allow for directional fluid movement. They are 

frequently used to detect a wide range of targets, including viral targets for HIV and 

HBV147,148. LFA strips consist of different overlapped layers of sample pads, conjugate 

pad, nitrocellulose analytical membrane and absorbance pad mounted on a sticking backing 

sheet. The two most common LFAs are the competitive and the sandwich or complementary 

oligonucleotide assay. In sandwich assay, aptamers tagged with enzymes/AuNP/fluorescent 

dyes form a complex with the analyte at the conjugate pad. The complex flows to the 

test zone via the capillary pull of the strip and is captured by the antibody or another 

aptamer which forms a sandwich between the two aptamers or antibody (Figure 6b). 

This complex results in a visible color change in the test zone, typically a red line. 

The excess labelled aptamer moves to the control zone which is captured by another 

oligonucleotide complementary to the aptamer or protein that binds the antibody and 

causes another color change (the red line) to validate the assay (as a positive control). 

Le et al. developed a dual recognition element lateral flow assay (DRELFA) method 

to detect strain-specific influenza viruses in a multiplexed fashion149. Compared to the 

current antibody based conventional LFA, this aptasensor can discriminate between different 

strains of influenza virus. Further, by combining nucleic acid aptamers with antibodies, 

this device can overcome limitations such as antibody cross reactivity and slow aptamer 

kinetics. The aptasensor comprises a sample pad conjugated with biotinylated aptamer and 

an AuNP-labelled monoclonal antibody to form the dual-recognition complex; specifically, 

this sensor was constructed using a strain-specific biotinylated RNA aptamer and an AuNP-

labelled monoclonal antibody that can detect specific strains of H3N2 influenza virus. In 

the presence of the virus, the test line shows a color change due to the formation of the 

biotin-streptavidin-aptamer and AuNP-conjugated antibody complex. With an LoD of 2x106 

virus particles, this assay was able to differentiate between subtypes of the three different 

strains of influenza virus and showed no cross reactivity when compared to conventional 

LFA.

APTAMERS IN THERAPEUTICS

Several viral infections now have vaccinations and post-infection treatments that inhibit viral 

infection150-152. In some cases, viruses have still been shown to invade the immune system 

post treatment. Therefore, to inhibit the infection, there is an immediate need of antiviral 

biological molecules that can interrupt the viral life cycle and thus inhibit further infection. 

There are several ways by which viral infection can be inhibited, such as by interrupting 
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the viral entry into the host cell and interfering with the viral replication machinery and 

thus preventing release of viruses to infect other cells153. However, the emergence of viral 

drug-resistant strains and the cytotoxicity of present inhibitory methods to host cells have 

affected treatment using anti-viral therapeutics154. Thus, searching for new and effective 

therapeutic tools is a prime need.

Aptamers have shown promising progress in the field of therapeutics and several aptamers 

are in pre-clinical stages155-157. Therapeutic aptamers bind directly to the viral targets and 

inhibit the downstream signaling of the replication cycle. Aptamers work in one of the 

following ways: they prevent structural changes in the target molecule, inhibit dimerization 

through associated molecules or can phosphorylate the proteins involved in downstream 

signaling158. There are other advantages of using aptamers as antiviral therapeutics. First, 

aptamers bind to the target tightly via surface-contact and disrupt protein-protein or 

protein-nucleic acid interactions159. Second, aptamers can form thermodynamically stable 

secondary structures by folding itself, regulated by Watson and Crick base pairing23,75. 

Third, aptamers for a particular target can be identified within a month by SELEX process 

and can be adaptable for several chemical modifications160. These advantages have brought 

aptamers into focus and has been extensively studied in the field of drug delivery.

One example of aptamer developed for treatment against viral infections is B40, an RNA 

aptamer that inhibits the HIV-1 envelope glycoprotein (gp120) from binding the C─C 

chemokine receptor-5, a T cell co-receptor 161-164. In another example, Cell surface SELEX 

was used to construct a ssDNA aptamer ZE2 that interacts exclusively with E2, a surface 

glycoprotein of HCV to impede the initial attachment of HCV with the host cells165. In 

vitro studies show that HCV particles are trapped by aptamer ZE2, making the aptamer 

potentially useful for anti-HCV therapy165. The antigen hemagglutinin (HA), expressed 

on surface of influenza viruses is a prime target molecule for aptamers. As compared to 

the conventional anti-HA monoclonal antibody, the aptamer P30-10-16 interacts with HA 

with a greater affinity (15-fold)166. Kwon et al. synthesized an RNA aptamer that binds 

to glycosylated receptor of the HA and neutralizes the receptor binding site of HA, thus 

restricting the attachment of the virus to the host cell167. Yuan et al. generated ssDNA 

aptamers against amino acid residues present in PA subunit of N-terminus of the polymerase 

of the influenza A virus. The PAN-2 aptamer they synthesized has an IC50 value of 10 nM 

and offered cross protection against influenza viruses (H1N1, H5N1, H7N7, and H7N9)168. 

There are only a few studies on aptamers against viruses such as human papillomavirus 

(HPV)169-172, hepatitis B virus (HBV)173-175, dengue viruses (DENVs)176, severe acute 

respiratory syndrome coronavirus (SARS-CoV)177, and rabies178,179. Some of these include 

the HBs-A22 RNA aptamer that targets the HBV surface, S15 tar ssDNA aptamer that 

targets the envelope protein of DENV-2, and GE54 tar ssDNA aptamer that targets the 

glycoprotein expressed by rabies virus (RABV)178,179. Valencia-Resendiz et al. reported that 

RNA aptamers for HPV16 L1 virus inhibits infection at early stages by interacting with the 

viral particles180. Yadavalli et al. isolated a DNA aptamer specific to gD protein of HSV-1 

and demonstrated superior binding affinity and inhibition of viral reproduction and entry in 

in vitro, in vivo and ex vivo studies181. The different mechanisms through which aptamers 

inhibit viral infection are discussed in this section.
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Aptamer suppression of viral attachment to host cells

Aptamers can obstruct the entry of viral particles into host cells by binding to viral surface 

proteins, thus affecting the ability of the virus to interact with related receptors on the 

host cell. Nucleolin, a eukaryotic cellular protein, is one such protein that aids in the 

attachment and entry of different viruses182. Balinsky et al. showed that the interaction 

of nucleolin with DENV capsid protein aids the formation of infectious virus particles183. 

The nucleolin-DENV interaction was hindered by the addition of RNA aptamer AS1411 

that binds nucleolin. Similarly, HCV entry into the host requires the interaction of viral 

surface E2 proteins with host membrane cell receptors. An aptamer developed against the 

HCV E2 glycoprotein showed inhibition of viral entry into host cells184. The selected 

aptamer could significantly block the binding of HCV (90%) to CD81 host receptor, thereby 

inhibiting the infection of human hepatocytes. The first identified anti-HIV aptamer forms 

a tetramolecular parallel G-quadruplex (d(TTGGGGTT)) structure185,186. This aptamer is 

anionic and strongly interacts with the cationic V3 loop of the HIV envelope glycoprotein, 

gp120. This interaction inhibits host/virus surface adsorption and cell fusion, inhibiting HIV 

entry into the host cell185,186. However, HIV entry can still occur through other means, such 

as by interacting with other cellular receptors including heparan sulfate proteoglycans and 

nucleolin present on cell surfaces187. Application of AS1411, the nucleolin-binding RNA 

aptamer, at low nanomolar concentrations also showed antiviral activity by interfering with 

HIV attachment via nucleolin-based pathway24,188. Jeon et al. designed a DNA aptamer A22 

against HA regions of influenza virus that blocked the binding of the virus to target cell 

receptors. Animal studies showed that A22-treated mice lose weight at a slower rate than the 

control group and infiltration of mononuclear cells in the alveoli was also decreased in the 

A22-treated group189. Choi et al. selected an aptamer C7-35M against H9N2 avian influenza 

virus that blocks viral infection in a dose-dependent manner 190. Similarly, Gopinath et al. 

constructed an aptamer against HSV-1 which impedes viral entry.191 The IC50 value was 

measured to be 0.8 μM and it can specifically distinguish HSV-1 from HSV-2.

Aptamers inhibiting virus replication cycle

Aptamers have been employed for viral inhibition and show promise as therapeutic agents 

by inhibiting the replication of the viral genome24. For example, the RNA aptamer B.2 was 

developed as a therapeutic against HCV192,193. Specifically, the aptamer forms a stem-loop 

structure and can bind and inhibit the HCV 5B polymerase, a non-structural RNA-dependent 

RNA polymerase that catalyzes RNA replication. The aptamer and the template RNA have 

different binding domains; B.2 non-competitively binds the RNA polymerase and therefore 

weakens the polymerase ability to bind the RNA template194. In vitro studies by Bellecave 

et al found two aptamers, 27v and 127v, which could inhibit the same polymerase but 

through competition for the polymerase binding site on the template RNA195. The aptamers 

function at different stages of the replication cycle of viral RNA: 27v blocks both initiation 

and elongation whereas 127v blocks initiation and post-initiation events of the viral RNA 

replication. Similarly, an RNA aptamer developed against the HIV nucleocapsid protein 

(critical for replication, encapsidation of viral genomes and assembly of viral particles196) 

hindered viral packaging by competing for psi RNA binding to the nucleocapsid protein197. 

Another truncated RNA ligand, RNA tat, was developed using SELEX and reduced HIV-1 

replication by 70% (ref.198).
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Aptamers have also been developed against human cytomegalovirus (HCMV), a member of 

the betaherpesvirinae subfamily and affects immunocompromised individuals. It is a major 

cause of many birth defects, and its impact is increased due to the rise in HIV-infected 

patients and immunosuppressive treatment. Similarly, RNA aptamers were generated to 

target the gp120 glycoprotein involved in viral replication and were able to suppress HIV-1 

replication by preventing viral-mediated T-cell reduction199,200.

Inhibition of viral enzymes by activity of polymerase—The nonstructural 

protein-5B (NS5B), an RNA-polymerase in HCV replication, is a promising target for 

aptamer therapy to suppress HCV infection. Biroccio et al. selected an RNA aptamer B.2 

to target the functional part of NS5B, a GTP binding site. In vitro studies for polymerase 

activity demonstrated aptamer concentration-dependent inhibition of polymerase activity201. 

Bellecave et al. developed a DNA aptamer 27v that inhibits the activity of NS5B by 

competing with the viral RNA template for the polymerase-binding site. 27v aptamer-treated 

hepatoma cell line (human) infected with the HCV JFH1 strain showed reduced amount 

of viral RNA195. The interaction between pregenomic RNA with viral protein R is an 

essential part of HBV replication. Feng et al. discovered an RNA aptamer S9 with a strong 

affinity for viral polymerases of HBV, showing 80-85% suppression of HBV replication in 

a human cell line infected with HBV174. Similarly, DeStefano and Nair showed that a DNA 

aptamer targeted towards the reverse transcriptase of HXB2 strain of HIV suppressed viral 

replication in vitro202. The aptamer prevents the viral replication by competing with natural 

template for the enzyme’s binding site.

Inhibition of other enzyme activity associated with viral replication—In addition 

to polymerases, other enzymes are also involved in viral replication in an indirect manner 

such as nonstructural protein 3 (NS3) which has two domains, one with protease activity and 

one with helicase activity. For HCV replication, both these domains are essential. A strong 

affinity is found in the helicase domain for the poly(U) motif present in 3’ UTR of viral 

genome. Umehara et al. developed bivalent aptamers with sequences linked by a poly(U) 

linker. G925-S50 and NEO-35-s41 aptamers developed by the group was shown to reduce 

NS3 activity by inhibiting both helicase activity (IC50 0.2 μM/15 nM) and protease activity 

(IC50 0.2 μM/20 nM). Fukuda et al. used RNA aptamer ΔNEO-III-14U which has a poly(U) 

sequence and impedes helicase and polymerase activity of NS3, evaluated by in vivo and in 

vitro tests203.

Nonstructural protein 5A (NS5A) is another protein required for HCV virion assembly and 

replication. Yu et al., isolated aptamers NS5A-4 and NS5A-5 which showed inhibition of 

viral infection in Huh7.5 cells. The treated group showed one-fold reduction in viral RNA 

level compared to the control group as evaluated by RT-PCR. Gao et al. developed aptamers 

NS2-1, NS2-2, and NS2-3 to target the nonstructural protein 2 (NS2) of HCV and showed 

successful inhibition of viral replication204. Jang et al. designed an RNA aptamer ES15 

to bind nonstructural protein 10 (nsP10) which has NTPase/helicase activity. The aptamer 

repressed viral enzyme activity by up to 85% in in vitro studies with an IC50 of 1.2 nM 

(ref205).
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Blocking of nucleic acid sequences associated with viral replication

Certain genomic sequences interact with proteins associated with viral replication, 

translation, transcription initiation and assembly. Designing aptamers that can target these 

genomic sequences are promising for antiviral treatment strategies. The mRNA of HCV 

has an internal ribosome entry site (IRES) which is associated with viral replication and is 

a potential target for antiviral therapy. IRES which has four domains (I-IV) in its 5’UTR, 

plays a role in viral replication initiation and mRNA translation. Konno et al designed an 

RNA aptamer AP30 consisting of sequences 5’-GAGUAC-3’ and 5’-UGGAUC-3’, to target 

the first domain (SL-D1 and SL-E1 loops) of IRES and showed in vitro suppression of 

viral replication.206,207 An RNA aptamer (2-02) with sequence 5’-UAUGGCU-3’ targeting 

the domain II of IRES has been synthesized by Kikuchi et al208. In a separate study, the 

same group developed aptamer 3-07, which targets the third domain of the IRES. This 

mechanism was substantially more potent at suppressing viral infection by blocking in 

vitro IRES-dependent translation compared to the aptamer against the second domain of 

IRES. Combined blocking of II and III-IV domains of IRES has also received considerable 

attention as the IIIe and IIId regions are essential for translation in HCV209. Two aptamers 

(0207 and 0702) which are the combined form of 3-07 and 2-02 reported to have 10-fold 

higher binding affinity and the IC50 value lower the translational activity by 10-fold. 

Romero-Lopez et al developed a construct (HH363-24) that targets the IIId domain and 

cleaves the 3’ end of HCV genome sequence210. The HH363-24 construct impedes both 

the replication and translation of virus. Other research has focused on aptamers that interact 

with the long terminal repeats of HIV-1 (ref.211).

Aptamers for delivering therapeutics to viral infected cells

Aptamers can also be used to target drugs to specific diseased regions. For example, Liu et 

al. constructed an RNA aptamer conjugated with fluorescein isothiocyanate (HBs-A22) to 

target HbsAg surface antigen present in cells infected with HBV,173. In another example, 

Zhou et al created a chimeric construct which contains a siRNA molecule and anti-gp120 

aptamer and targeted the mRNA for the tat/rev protein in HIV-1 in the Chinese Hamster 

Ovary (CHO) cell line241. Neff et al. performed a similar study using HIV-1 NL4-3 infected 

humanized mice (RAG-Hu). 2’-fluoro modifications further improved the biostability of this 

siRNA-aptamer chimera in mouse serum212. The aptamer-based treatment showed inhibition 

of viral activity as confirmed by 75-90% decrease in mRNA transcript level for tat/rev 

protein in T lymphocytes of mice. Zhu et al. used a different strategy by converting anti-CD4 

RNA aptamer to a DNA aptamer and conjugating an siRNA molecule for targeting mRNA 

of HIV-1 protease213. The therapeutic activity was evaluated by qRT-PCR which quantified 

the reduction in expression for the mRNA protease in pcDNA-HIV-PR plasmid transfected 

CD4+ T cells.

Other approaches and aptamer-based therapeutics in clinical trials

Different aptamer-siRNA chimeras have been developed against HIV-1 infection such as 

anti-CD4 aptamer/anti-gag-siRNA and anti-CD4 aptamer/anti-CCR5-siRNA214. Bruno et 

al developed aptamers against Dengue fever and west Nile virus infections215. An RNA 

aptamer (CL9) containing the cytosolic receptor RIG-I was generated by Hwang et al. and 
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was shown to activate innate antiviral immune response216. The increased antiviral response 

and production of IFNβ is the effect of cytosolic receptor RIG-I which helps in recognizing 

the pattern for foreign molecular agent in the cells infected with the virus. In vitro studies 

showed that CL9 inhibits cells from invasion. Table 2 lists the aptamer candidates that are 

currently evaluated in clinical trials for viral therapeutics.

DNA APTAMERS FOR SARS-COV-2 DETECTION AND INHIBITION

Since the outbreak of the COVID-19 pandemic, DNA aptamers targeting either SARS-

CoV-2 nucleocapsid (N)222 or spike (S)223-229 protein have been selected and employed 

in the development of viral sensors or inhibitors. Yang and colleagues obtained three 

effective aptamers, named as CoV2-RBD-1C223, CoV-2-RBD-4C223, and CoV2-6C3224, 

which bind to spike receptor binding domain (RBD) region with nM KD. Among them, 

circular CoV2-6C3 dimer shows increased stability in human plasma than linear monovalent 

aptamer. In addition, it displays a high antiviral potency with an IC50 of 0.42 nM and 

reduces the amount of viral genome in the infected cells by 87.1% compared to the viral 

culture that was not treated with the aptamer224. The same group recently constructed 

a spherical cocktail of neutralizing aptamer-gold nanoparticle (SNAP) decorated by all 

three aptamers (Figure 7a). Exploiting the synergetic blocking strategy from the multivalent 

aptamer and steric hindrance effect of the gold scaffold, the cocktail SNAP neutralizes both 

wildtype strain and three variants (commonly called D614G, Alpha, and Beta) with a further 

improved IC50 at fM level230. Potency of the cocktail SNAP is about 2 to 3-fold better than 

the performance of other reported neutralizing aptamers in a monovalent225 or a circular 

divalent form224. In a separate study by Pun and colleagues, a DNA aptamer, named SNAP1, 

was selected showing <80 nM KD, and binding to the spike N-terminal domain as revealed 

by high-resolution cryo-EM imaging228. The aptamer detects UV-inactivated SARS-CoV-2 

with an LoD of 5x105 copies/mL when used in lateral flow assay or ELISA, suggesting 

SNAP1 is a valuable ligand capable of COVID-19 diagnostics in point of care settings. 

Additionally, a dimeric DNA aptamer form, denoted as DSA1N5 by Li and colleagues, was 

derived from two previously obtained aptamers, MSA1 and MSA5, in the same group227. 

DSA1N5 recognizes the spike protein of wildtype, alpha, or delta SARS-CoV-2 strains with 

a KD of 120, 290, or 480 pM (ref.229). After being immobilized onto gold electrodes to 

produce a sensor rapidly generating electrochemical signals, the aptamer can detect 1x103 

virus particles per mL in 1:1 diluted saliva of both wildtype and alpha/delta variants within 

10 mins. The study provides the first aptamer for rapid test of SARS-CoV-2 delta variant.

In addition to aforementioned aptamers that were selected by targeting specific SARS-

CoV-2 surface antigens (N or S protein), Lu and colleagues have evolved an aptamer, called 

SARS2-AR10, that was selected against intact virions by performing a counterselection 

using UV-inactivated virus particles231. As a result, the aptamer can distinguish active/

infectious SARS-CoV-2 virus from the noninfectious form. SARS2-AR10 aptamer was 

integrated with a solid-state nanopore system, which renders strong confinement to virus, to 

selectively detect intact SARS-CoV-2 containing samples with an LoD of 1x104 copies/mL 

(Figure 7b). The same aptamer was recently immobilized onto a customized photonic crystal 

surface for digital detection of intact SARS-CoV-2 virions with an LoD of 1x104 copies/mL 

(ref.232), using a label-free imaging technique, called photonic resonator interferometric 
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scattering microscopy (PRISM233) (Figure 7c). These sensors offer a tool to minimize 

or eliminate the chance of false positive results resulting from PCR based detection of 

SARS-CoV-2 RNA genome residue rather than the infectious virions.

DNA APTAMERS IN PLANT VIRAL INFECTION CONTROL

Viral plant infections pose a growing concern in the agricultural field which can 

result in low quality grains, fruits, vegetables and flowers and lead to huge economic 

loss. The most common viruses include Tobacco mosaic virus (TMV causes infection 

in Tobaco and Solanaceae plant), Tomato spotted wilt virus (TSWV causes infection 

Nicotiana, groundnut), African cassava mosaic virus (ACMV infects genus Begomovirus 

such as Datura, Cassava, and Nicotiana), Tomato yellow leaf curl virus (TYLCV infects 

Solanaceae plant family such as tomato), Cucumber mosaic virus (CMV causes infection 

in Cucumberaceae family of plant such as carrot, pepper, bean, spinach), Potato virus Y 

(PVY infects weed plants, pepper, Solanaum eseculentum, Solanaum tuberosum,Nicotiana), 

Plum pox virus (PPV infects peaches, almonds, plums, apricots, nectarines), Potexvirus like 

Potato virus X (PVX infects Potato), Cauliflower mosaic virus (CaMV infects species of 

Resedaceae and Brassicaceae ), and Brome mosaic virus (BMV infects species of poaceae 

family like barley). The pathogen's information has crucial role in the proper diagnosis and 

therapy of any disease and it is essential for protecting the crops from infection and saving 

the farmers from commercial loss234.

Approaches to prevent or inhibit viral infection in plants are based on gene silencing, 

metabolic regulation, hormones, proteolysis and immunological receptor signaling235,236. 

The few modern methods that can control viral infection in plants are rotation of 

crop, pathogen-free plant production through tissue culture and through integrated vector 

management. Traditional breeding techniques can take a long time and genetic modification 

with naturally occurring resistance genes (R genes) can produce virus resistant strains. 

Alternatively, the use of symbiotic fungal interaction with arbuscular mycorrhizae can 

improve the natural defense mechanism plants have against plant viruses237,238. Recent 

studies have demonstrated the use of peptide and DNA aptamers to control viral plant 

infection. These aptamers bind specifically to virus coat proteins such as capsid protein, 

nucleoprotein and movement proteins which thereby prevents infection. Specifically, peptide 

aptamers are highly target-specific and can function in both intracellular and extracellular 

environments and interfere with viral gene expression or replication238,239.

Lopez-Ochoa et al. reported a set of peptide aptamers that bind the N terminus of the 

Rep protein from the Tomato golden mosaic virus (TGMV)240. Peptide aptamers A22 

and A64 expressed in transgenic tomato lines have been used for treating viral diseases, 

specifically by interacting with viral Rep proteins that are involved in the replication, 

transcription, and infection241. The two aptamers bind to different regions in the N-terminus 

of Rep proteins of geminiviruses such as tomato yellow leaf curl or tomato mottle virus 

and interfere with the replication activity of the virus. A22 recognizes the first 35 amino 

acids of Rep whereas A64 primarily interacts with residues 64 through 97 including 

a highly conserved motif geminivirus Rep sequence (GRS). Another study detected the 

apple stem pitting virus (ASPV) using a label-free SPR approach242. DNA aptamers were 

Chakraborty et al. Page 20

ACS Infect Dis. Author manuscript; available in PMC 2023 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developed against two viral coat proteins HS-MT32 and HS-PSA-H. Here, thiol-modified 

aptamers were immobilized on the gold surface of the SPR chip. To avoid non-specific 

adsorption, the surface was modified with random oligonucleotides of same length as 

that of aptamers. The sensitivity of SPR to the viral fragments was verified using SEM 

imaging showing aptamer-modified chips binding to the viral fragments. 2.2 × 107 virus 

fragments per cm2 were visible on the aptamer modified surface. Using cell-SELEX, Ye et 

al. produced three DNA aptamers targeting GCRV-infected cells, that could be utilized for 

developing quick detection technologies and antiviral therapeutics for GCRV infection243. 

Application of aptamers technology offers broad-spectrum in viral infection resistance. 

Integrating conventional breeding techniques with peptide aptamers might be a potential 

route to tackle new variants and virus species. RNA interference (RNAi), which is a 

homology-dependent, plays a role in preventing infections that results transgenic resistance 

towards plant infections244.

ROLE OF DNA NANOTECHNOLOGY IN VIRAL DIAGNOSTICS AND 

THERAPY

Synthetic scaffolds such as polymers, nanofibers, nanoparticles, and liposomes have 

emerged as advanced platforms for infectious disease detection and treatment245-248. 

However, these materials do not allow control over surface probe or ligand density 

for biosensing applications249. To address these drawbacks, aptamer-labelled DNA 

nanostructures have been explored as biosensing and diagnostic platforms250-254. DNA is 

a spatially controllable and versatile material that can be used for the bottom-up construction 

of nanostructures255. These DNA nanostructures have been robustly self-assembled into 

2D and 3D geometries of specific shapes and sizes. Moreover, the chemical nature and 

predictability of DNA base-pairing allow for the precise decoration of DNA nanostructures 

with ligands at sub-nanometer resolution. Potential ligands include proteins, nanoparticles, 

oligonucleotides, fluorophores, and other biomolecules256-260. Further, the biocompatibility, 

biostability and nontoxicity of DNA nanostructures have made them useful in biosensing 

and drug delivery applications.

On a separate note, flexibility of nucleic acid backbone may prevent aptamers from reaching 

to optimal folding poses for better binding affinities. DNA nanostructures can provide 

an ideal platform with excellent addressability to fix flexible aptamers into a specific 

configuration. Tan and colleagues recently stabilized an anti-lysozyme aptamer by fixing 

the termini of the aptamer with a length-optimized triplex structure on a DNA tetrahedron 

nanostructure261. As a result, the target binding affinity of the aptamer increased by ~10 

fold. Additionally, the aptasensor built on the DNA tetrahedron nanostructure achieved a 

180-fold better LoD. We expect this emerging aptamer-DNA nanostructure hybridization 

strategy to have the potential to greatly improve the performance of existing aptasensors.

DNA nanostructures for viral detection

Recently, DNA nanostructures have garnered tremendous interest in biosensing due to 

their high surface-to-volume ratio, which provides greater space for responsive elements 

and therefore greater changes in signal generation251. This biosensing ability has been 
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explored for the early detection of pathogens in human samples262 with enhanced target 

specificity and avidity263. In this section, aptasensors utilizing a DNA nanostructure scaffold 

are discussed, categorizing the techniques based on the same output methods discussed 

previously.

DNA-antibody nanostructure as electrochemical immunosensors—DNA 

nanostructures can be employed as electrochemical sensors in which an antibody-labelled 

DNA nanostructure is attached to a gold electrode (examples in Ref.264). For instance, 

a DNA-antibody nanostructure has been used as an electrochemical immunosensor for 

the rapid detection of Streptococcus pneumoniae265. In this study, a hollow structured 

DNA tetrahedron was assembled and functionalized on the surface of gold electrodes and 

the surface was further passivated with bovine serum albumin (BSA) (Figure 8a). Later, 

pneumococcal surface protein A (PspA) antibody was tagged on to the top vertex of the 

DNA tetrahedron via carboxyl group conjugation. Electrochemical detection occurred by the 

introduction of ferrocene carboxylic acid-conjugated antibodies (FeC-Ab) onto the electrode 

surface. This electro-active tag reacts with PspA and produces a peak current corresponding 

to the target concentration, measured using square wave voltammetry technique. This 

method allowed detection of PspA peptide and S. pneumoniae lysate from synthetic and 

real human samples from the axilla, nasal cavity, and mouth.

Fluorescent DNA nanostructures—DNA nanostructure-based biosensors may also 

utilize FRET as its detectable output, hybridizing specific nanostructure strands with 

aptamers that are labelled with fluorophore or fluorophore-quencher pairs266. Similar 

to the mechanism employed for regular FRET-based aptasensing, the placement of the 

FRET pair is rationally designed so that the fluorescence changes when the target is 

present. Kwon et. al developed a star-shaped DNA nanoarchitecture for the detection and 

inhibition of dengue virus (DENV)267,268. This two-dimensional nanoarchitecture contains 

five fluorophore-quencher pairs which act as molecular beacons as well as ten DENV 

envelope protein domain-III (ED3)-binding aptamers (Figure 8b). The resulting structure 

precisely matches the pentagonal arrangement of ED3 clusters on the DENV surface. The 

molecular beacons are placed such that each edge of the inner pentagonal scaffold consists 

of a fluorescein (FAM, fluorophore)-modified ssDNA and a BHQ-1 (quencher)-modified 

ssDNA hybridized to a hairpin structure that allows for FRET-based sensing capabilities. In 

the absence of DENV, the hairpin structure is maintained, and fluorescence is quenched due 

to the closed proximity of FAM and BHQ-1. In the presence of DENV, the ED3 aptamers 

bind the protein targets on the DENV surface and cause a structural expansion of the entire 

DNA star architecture. To accommodate for this change, the hairpin structure dehybridizes 

and the FAM and BHQ-1 molecules move apart and allow fluorescence to occur. This 

platform detected DENV in human blood serum and plasma with high sensitivity of 1 × 102 

p.f.u./ml and 1 × 103 p.f.u./ml respectively.

In another study, DNA dendrimer-based fluorescently-labelled barcodes were used for 

the multiplexed detection of pathogen DNA269. This structure contains two kinds 

of fluorescence dyes (Alexa Fluor 488 and BODIPY 630/650) and a probe that is 

complementary to the target pathogen DNA used for the specific detection (Figure 8c). The 
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dendrimer DNA structure is formed from a Y-shaped DNA attached to a detection probe and 

a fluorescent dye. Multiplexed detection is carried out by introducing different nanobarcodes 

containing specific target probes into a sample containing DNA from four targets Bacillus 
anthracis, Francisella tularensis, Ebola virus and SARS coronavirus. Binding of the target 

with the probe yields a particular pseudocolour corresponding to the specific target, 

generated from the merged images of 4 possible combinations. The detected pathogen is 

then identified by decoding with a preassigned barcode library.

Zheng and co-workers used a DNA nanomachine on gold nanoparticles (AuNPs) for the 

selective and ultrasensitive detection of HIV nucleic acids270. This strategy combines rolling 

circle amplification (RCA) and catalytic recycling for a DNA-walker cascade amplification 

on AuNP surface (Figure 8d). For the RCA reaction, HIV specific nucleic acid was taken as 

a primer DNA which has hybridization sequence to the 3’ and 5’ ends of a DNA padlock, 

which can synthesize long ssDNA from short circular padlock DNA using DNA/RNA 

primer via RCA. Here, addition of phi29 DNA polymerase helped in driving the RCA 

reaction. The by-product of RCA reaction consists of catalysts created by the extended 

strand containing a recognition sequence that is nicked by the nicking enzyme Nb. BtsI 

and can be used as triggers for initiating the DNA nanomachine. This catalyst initiates the 

opening of hairpins to yield signals via duplex formation on the AuNP surface and causes 

DNA walker cascade amplification. This results in the liberation of FAM-labelled DNA 

payload and induces fluorescence signals in the presence of HIV targets. The specificity of 

the DNA nanomachine was confirmed with four different DNA sequences, with an LoD of 

1.46 fM.

Atomic force microscopy-based readout—Atomic force microscopy (AFM) has 

also been utilized in DNA nanostructure-based sensors. This scanning-probe microscopy 

technique relies on mechanical interactions with a molecular surface to provide a visual 

image. Biological targets are identified through visual identification of induced structural 

changes. In one such example, a self-assembled rectangular DNA origami nanochip was 

constructed through a bottom-up process for the rapid detection of Human Papillomavirus 

(HPV), an important target for gynaecologic diagnosis271. Two staples of the DNA origami 

nanochip were modified to contain single stranded extensions that act as DNA probes 

complementary to the HPV target. Binding of the viral DNA to the single stranded probes 

causes the formation of a doubled stranded DNA helix on the origami surface that was 

visualized using AFM.

Gel-based viral detection using DNA devices—Dynamic DNA devices that 

reconfigure on recognizing biomarkers have also been used in viral detection. Halvorsen 

and colleagues developed DNA nanoswitches to detect biomarkers such as DNA272, 

microRNAs273 and ribonucleases (Figure 8e)274. The DNA nanoswitch is a long duplex 

constructed using the single stranded M13 scaffold and short complementary backbone 

oligonucleotides. Two of the backbone oligonucleotides were modified to contain single 

stranded extensions that are partly complementary to a target nucleic acid. On binding the 

target, the nanoswitch reconfigures from the linear “off” state to a looped “on” state, and 

the two states were resolved on an agarose gel. The “on” state of the DNA nanoswitch 
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is universal for any type of target. Recently, the group used this strategy to detect Zika 

virus275, showing a detection sensitivity of ~105 copies/μl without any amplification, and an 

LoD of ~ 100 copies/μl when the strategy was coupled with an enzyme based isothermal 

amplification step. The assay was able to discriminate Zika and Dengue viruses, as well as 

different strains of the Zika virus. They also demonstrated the utility of the assay to detect 

SARS-CoV-2 virus responsible for the current COVID19 pandemic. This DNA nanoswitch 

based assay also offers multiplexed detection of several RNA targets, as well as multiplexed 

barcoded detection of different types of biomarkers such as proteins, DNA, RNA, and 

antibodies in a single reaction276.

DNA nanostructures for viral therapy

DNA nanostructures also offers advantageous properties for drug delivery such as high 

solubility, non-toxicity, and biodegradability. Moreover, DNA nanostructures possess high 

cellular uptake properties without the utilization of transfection agents, which make them a 

suitable tool for health care applications277. Many studies have therefore employed aptamer-

labelled, drug-conjugated DNA nanostructures as targeted drug delivery vehicles. Mela et 

al. constructed an aptamer-functionalized DNA origami rectangular frame structure loaded 

with the antibacterial peptide lysozyme to destroy gram-positive (Bacillus subtilis) and 

gram-negative (Escherichia coli) bacteria278. This DNA origami structure contained fourteen 

bacteria-selective aptamers on the origami’s four edges, and five wells where the lysozyme 

is immobilized through a biotin/streptavidin interaction (Figure 9a). The delivery system 

was efficient against both types of bacteria.

In another study, an antibacterial DNA nanostructure-based hydrogel was developed for 

the treatment of a cutaneous wound279. Hydrogel formation occurs based on electrostatic 

interactions between polyanionic DNA nanostructures and cationic antimicrobial peptides 

(AMPs) (Figure 9b). Antimicrobial peptide L12 was released from the hydrogel in response 

to pathogenic S. aureus infections. This strategy showed controlled L12 release and superior 

antimicrobial activity towards methicillin-resistant S. aureus infections. Moreover, ex vivo 

antimicrobial assay of L12 loaded DNA hydrogels against S. aureus infected porcine skin 

showed bio-responsive delivery systems, nuclease sensitive degradation, and significant 

potency against S. aureus and MRSA infections with 24 hours of application. Further, 

the anti-inflammatory effect of the hydrogel was demonstrated in vivo in mice, revealing 

faster wound healing rates within 10 days of treatment, an approach that can potentially 

be translated for treating viral infections in humans. In addition to 2D DNA platforms, 

Dietz and colleagues recently created a programmable icosahedral canvas platform for 

constructing unique DNA origami icosahedral/cage structures whose cavities are large 

enough to wrap entire virions for effective virus inhibition259. Antibodies against adeno-

associated virus serotype 2 (AAV2) were attached to the inside of the shells to pilot the in 

vitro test of antiviral efficacy, which shows that the cages not only decreased the number of 

infected host cells, but also substantially lowered their viral loads when compared to free 

antibodies (Figure 9c). Decorated with viral antigens on the outer surface of the same shells, 

the authors created DNA nanodevices that were used for the detection of viral infections as 

well as the antigen-triggered release of molecular payload280. DNA origami platform can 

provide excellent spatial addressability to enable precise display of multiple virus antigen-
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targeting aptamers to mirror the spatial arrangement of the target viral surface antigens. Such 

pattern-matching interactions should be able to further improve viral detection and inhibition 

performance compared to monovalent aptamers267.

SUMMARY AND OUTLOOK

In this review, we have summarized the selection, characterization and use of existing 

nucleic acid aptamers for diagnosis and treatment of viral infections. Aptamers can be 

selected against whole cell virus or for viral components such as surface proteins or against 

blood markers that are upregulated upon viral infection. In response to emerging viruses like 

SARS-CoV-2, new aptamers can be readily and economically produced using SELEX to 

target whole virions or epitopes of novel viruses and the mutants. They can then be quickly 

plugged into existing virus detection platforms that use electrochemistry, fluorescence, 

optical, or AFM imaging for detection signal readouts. Compared to antibodies, aptamers 

in general have lower target binding affinities that may compromise the sensitivity of an 

aptamer-based sensor. However, as nucleic acids, aptamers can be easily docked within 

designer DNA nanostructures via DNA base pairing to achieve optimal binding poses, 

multivalency, and/or pattern-matching interactions with targeted viral antigens for greatly 

enhanced binding affinity and avidity259,261,267. The resulting higher binding affinity can 

facilitate the development of rapid, inexpensive, and sensitive strategies for virus sensing 

early after infection, which is critical for curbing the spread of highly contagious infectious 

diseases like COVID-19281-283. Additionally, aptamers can be strategically evolved to 

distinguish infectious virus particles from noninfectious forms231, which provides a unique 

and novel solution to address the problem for people being able to know when they are 

no longer infectious and can come out of quarantine, as nucleic acid tests are known 

to generate false positive results from the presence of nucleic acid molecules from 

degraded viruses284,285. These emerging platforms and technologies are well worth further 

investigations for the development of better viral sensors to mitigate future epidemics and 

pandemics.

For applications in therapeutics, aptamers have unique advantages such as their higher 

penetration in tissues, easy chemical synthesis, high specificity, and ease of conjugation to 

therapeutic RNAs, proteins, peptides, small drug molecules and nanoparticles. Yet aptamer-

based structures are still underdeveloped in the context of viral therapeutics with many 

areas for improvement and development. For example, due to the small size, aptamers 

have a shorter duration of renal filtration. Biostability and bioavailability of an aptamer can 

also be challenged by nuclease action. Recently developed approaches such as backbone 

or nucleotide modification are promising strategies for reducing aptamer degradation in 

physiological conditions20,286. Furthermore, aptamers can be easily conjugated with bulk 

molecules or with DNA nanostructures, which can not only encapsulate the aptamers, 

but trigger the delivery of drugs upon locking/unlocking mechanism using aptamer-target 

binding287. Thus, molecular platforms built using designer DNA nanostructures have the 

potential to create the next generation of aptamer-based therapeutics. In terms of using 

DNA nanostructures for such biological applications, stability against nucleases, robust 

functionality in a variety of biofluids such as serum and whole blood, and easy readout are 

some of the aspects that could be addressed in future research. Some of these challenges 
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are already being addressed, including the development of a variety of strategies to enhance 

nuclease resistance of DNA nanostructures288. However, DNA nanostructures also have 

several advantages. The methods have been shown to be scalable both in terms of the size289 

and amount290 of DNA nanostructures that can be produced, with minimal cost associated 

with DNA synthesis and assembly291, and new reports have shown clinical utility of DNA 

nanostructure based sensors292. Developments in aptamers combined with advances in DNA 

nanotechnology can serve as potential alternatives to traditional methods in viral detection 

and treatment.
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Figure 1. 
Aptamer configurations and targeting. (a) Secondary structures of the aptamers. Mechanism 

of aptamer binding through molecular recognition and folding for (b) biosensing and (c) 

drug delivery.
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Figure 2. Outline of SELEX.
(a) A degenerate nucleic-acid sequence library is incubated with the target molecule 

under defined solution conditions. (b) Target-bound nucleic acids are partitioned. (c–e) 

Species with lower binding affinity are removed and the bound species are eluted, allowing 

preferential amplification of higher affinity species. This enriched pool is then used as 

the starting point in subsequent cycles. Typically, 10 to 20 cycles are carried out before 

aptamer characterization. In early rounds, species with no affinity are competed out of 

the pool. In later rounds, molecules with affinity compete for binding sites on the target. 

Such competition results in enhancement of the pool binding-affinity in a manner similar 

to Darwinian evolution. Recent technical developments described in the text are listed 

alongside each step in brackets. CE, capillary electrophoresis; SELEX, systematic evolution 

of ligands by exponential enrichment; SPR, surface plasmon resonance. Image reproduced 

with permission from ref. 75. Copyright 2006 Springer Nature.
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Figure 3. Electrochemical aptasensors.
(a) A thiolated norovirus-specific DNA aptamer self-assembled onto a gold nanoparticle-

modified screen-printed carbon electrode. Binding of the virus to the immobilized aptamer 

causes a decrease in the redox current, measured via square wave voltammetry. Reproduced 

from ref.87. (b) Use of glassy carbon electrode (GCE) with graphene quantum dots for 

HCV core antigen detection. Reproduced with permission from ref. 90. Copyright 2017 

Elsevier. (c) Schematic structure of diamond-FET-based RNA aptamer for HIV-1 Tat protein 

detection based on changes in the surface charge. Reproduced with permission from ref. 92. 

Copyright 2013 Elsevier.
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Figure 4. Enzyme-linked electrochemical aptasensors.
(a) Enzyme catalysis in ultra-low ion strength media to develop an ion strength increase-

based impedance biosensor for H5N1 virus. Reproduced from ref.96. (b) Schematic diagram 

of H5N1 viral protein detection using the enzymatic reaction of the substrate 4-amino 

phenyl phosphate with the surface formed aptamer/H5N1/antiH5N1-alkaline phosphatase 

on gold nanoparticle-modified screen-printed carbon electrode. Reproduced with permission 

from ref. 97. Copyright 2015 Elsevier. (c) Working principle of the norovirus nanozyme 

aptasensor. Reproduced with permission from ref. 100. Copyright 2019 American Chemical 

Society.
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Figure 5. Optical aptasensors.
(a) SPR based aptasensor: upon binding the target (virus) the surface plasmon angle of 

the reflected light changes resulting in a difference in plasmon resonance. (b) LSPR based 

biosensor for real-time detection: a large array of nanoantennas is incorporated into a 

microfluidic chamber system that guides analyte solutions precisely over the sensitive area. 

Optical readout is realized with a spectrometer and spectra are continuously recorded 

upon chemical reactions; the inset illustrates the investigated biochemical reaction, which 

is immobilization, backfilling, and hybridization of short DNA sequences. Reproduced 

from ref.107. (c) Schematic illustration of the preparation of aptamer-Ag@SiO2 sensor 

and the determination of rHA protein of H5N1. Reproduced with permission from ref. 

108. Copyright 2015 Elsevier. (d) Schematic of selective virus sizing and counting by 

fluorescent nanoparticle tracking. Reproduced from ref.109. (e) SERS imaging-based assay 

using a 3D nano-popcorn plasmonic aptasensor: (i) Detection of DNA using Cy3-labeled 

aptamer probes (left) or recognition of A/H1N1 virus (right), (ii) resulting in increased 

Raman signal (left) or decreased Raman signal intensity (right), respectively. Reproduced 

with permission from ref. 117. Copyright 2020 Elsevier. (f) A sandwich-like aptasensor for 
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influenza virus detection: 1) primary aptamer is immobilized onto Ag nanoparticles, 2) virus 

is captured with primary aptamers, 3) secondary aptamers interact with virus, providing the 

SERS signal. Reproduced from ref.118, (g) Schematic representation of the construction of a 

chemiluminescence aptasensor based on magnetic separation and immunoassay. Reproduced 

from ref.124, (h) Working principle for the single universal aptamer detection of different 

kinds of influenza viruses under two different reaction conditions. Reproduced with 

permission from ref. 127. Copyright 2016 Elsevier. (i) Molecular beacon aptamer strategy 

for analyzing the viral protein (Tat). (j) Protein-binding aptamer assisted detection of the 

H1N1 influenza A virus based on fluorescence polarization. Reproduced with permission 

from ref. 132. Copyright 2013 Royal Society of Chemistry.
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Figure 6. Non-electrochemical aptasensors.
(a) Mechanism for direct and indirect ELONA where the virus is immobilized on the surface 

or the aptamer is immobilized on surface, respectively. (b) Mechanism for aptamer based 

lateral flow assay: LFA strip includes positive control line with antibody binding to the 

target virus and a test line with streptavidin immobilized aptamer. Upon binding of the target 

virus, the AuNP-Ab complex shows the right signal; in absence of virus no line is visible in 

test region.
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Figure 7. DNA aptamers selected for SARS-CoV-2 viral detection and inhibition.
(a) Schematic of SNAP to block the interaction between the RBD of SARS-CoV-2 

and host ACE2 with synergetic strategy of multivalent multisite binding and steric 

hindrance. Reproduced from ref.230. (b) Scheme of Infectious virus detection using aptamer-

functionalized nanopore sensors. Reproduced from ref.231 (c).Working principle of label-

free optical detection for intact SARS-CoV-2 using surface immobilized DNA aptamers 

and PRISM system. Reproduced with permission from ref. 232. Copyright 2022 American 

Chemical Society.

Chakraborty et al. Page 49

ACS Infect Dis. Author manuscript; available in PMC 2023 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. DNA nanostructure based viral detection.
(a) Schematic illustration of construction of DNA-tetrahedra-based electrochemical 

immunosensor, which senses the pathogen using redox-labelled antibody attached to the top 

vertex of the tetrahedron. (b) Star-shaped DNA architecture, carrying five molecular beacon-

like motifs and five FRET pairs. Binding of DENV reconfigures the structure, resulting 

in a FRET signal due to the change in distance between the dye pairs. (c) Fluorescently 

labelled DNA nanobarcodes for detecting a mixture of viral pathogens. (d) Detection of 

HIV DNA by fluorescent labelled DNA sensors combined with enzyme-based rolling cycle 

amplification. (e) DNA nanoswitches reconfigure from a linear “off” state to a looped “on” 

state on detecting viral RNA.
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Figure 9. DNA nanostructures for viral therapy.
(a) Scheme of aptamer-functionalized DNA origami nanostructure loaded with antibacterial 

peptide. The aptamers are decorated around the origami to target four bacteria in parallel 

and treat the disease. (b) Schematic representation of synthesis of peptide-loaded DNA 

hydrogel via electrostatic crosslinking process for controlled drug delivery. (c) Left: scheme 

of inhibiting AAV2 infection by DNA origami half shells; Middle: TEM images of AAV2 

virus particles captured by DNA origami half shells; Right: Quantification of infected cells 

for conditions with AAV2 virus only, AAV2 plus antibody at 1 nM (IC50 concentration), and 

AAV2 plus DNA origami half shells decorated with antibodies inside shells. Reproduced 

with permission from ref. 259. Copyright 2021 Springer Nature.
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Table 1.

Comparison of the properties of antibodies and aptamers in virus diagnostics and therapeutics.

Properties Aptamer Antibody

Material Oligonucleotides (DNA or RNA) Proteins

Target Wide range of targets such as elements, ions, peptides, 
proteins, cells, and viruses

Proteins and peptides

Size ~ 20 kDa ~ 150 kDa

Immunogenicity Low High

Development period 3-6 weeks Months

Manufacturing Chemical synthesis Biological manufacturing

Storage Room temperature Cold temperature

Shelf-life Unlimited Limited

Binding affinity Nanomolar to picomolar range Nanomolar to picomolar range

Stability Stable in various environmental conditions Special conditions are required for handling and 
storage

Clinical application Immature Mature

Specificity High High

Chemical modifications Easy and controllable Limited and uncontrollable
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Table 2.

Aptamers in clinical trials.

Target Oligonucleotide Functional activity Clinical trial

HIV-1 Tat RNA198 Reducing TAT-mediated HIV replication. Phase I

HIV-2 Tat RNA217 Reducing Tat-2 transactivation 20 and HIV-1 replication. Phase I

HIV-1 Rev response 
element

RNA218,219 HIV replication in vitro and in vivo. Phase I

Hepatitis C NS3 RNA220,221 Reduction in NS3 activity in vitro; Reduction in NS3 protease activity; 
Reduction in MBP-NS3 protease activity in vivo.

Phase I
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