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Abstract

Objectives—To assess the feasibility of a CNN-based liver registration algorithm to generate 

difference maps for visual display of spatiotemporal changes in liver PDFF, without needing 

manual annotations.

Methods—This retrospective exploratory study included 25 patients with suspected or confirmed 

NAFLD, who underwent PDFF-MRI at two time points at our institution. PDFF difference maps 

were generated by applying a CNN-based liver registration algorithm, then subtracting follow-up 

from baseline PDFF maps. The difference maps were post-processed by smoothing (5 cm2 round 

kernel) and applying a categorical color scale. Two fellowship-trained abdominal radiologists and 

one radiology resident independently reviewed difference maps to visually determine segmental 

PDFF change. Their visual assessment was compared with manual ROI-based measurements 
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of each Couinaud segment and whole liver PDFF using intraclass correlation (ICC) and Bland-

Altman analysis. Inter-reader agreement for visual assessment was calculated (ICC).

Results—The mean patient age was 49 years (12 males). Baseline and follow-up PDFF ranged 

from 2.0 to 35.3% and 3.5 to 32.0%, respectively. PDFF changes ranged from - 20.4 to 14.1%. 

ICCs against the manual reference exceeded 0.95 for each reader, except for segment 2 (2 readers 

ICC = 0.86—0.91) and segment 4a (reader 3 ICC = 0.94). Bland-Altman limits of agreement 

were within 5% across all three readers. Inter-reader agreement for visually assessed PDFF change 

(whole liver and segmental) was excellent (ICCs > 0.96), except for segment 2 (ICC = 0.93).

Conclusions—Visual assessment of liver segmental PDFF changes using a CNN-generated 

difference map strongly agreed with manual estimates performed by an expert reader and yielded 

high inter-reader agreement.
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Introduction

Quantitative MRI allows for the extraction of quantifiable features to assess disease severity 

and degree of change [1]. In nonalcoholic fatty liver disease (NAFLD), a spectrum of 

fat-associated liver pathology, fat accumulation is the triggering and offending mechanism, 

so many therapies are now targeted at reducing liver fat. Hence, the longitudinal evaluation 

of liver fat fraction for assessing disease progression or freatment response is of clinical 

and research interest [2–4]. Chemical shift—encoded MRI proton density fat fraction (MRI-

PDFF) is an accurate and reproducible biomarker commonly used to assess changes in liver 

steatosis during treatment and clinical trials [3, 5].

In NAFLD, the magnitude and rate of PDFF reduction after treatment interventions are 

nonuniform [6], and therefore, studies suggest that regions of interest (ROIs) should be 

drawn in each Couinaud segment to accurately capture the disease severity and change [7]. 

Drawing ROIS in all liver segments is neither feasible nor efficient in busy clinical practice. 

In one study, Campos et al showed that the ROI time per exam varied from 53 to 150 s 

depending on the number of ROIs, size, and location [8]. Considering these results, it could 

require up to 5 min of manual work per patient, if drawing multiple ROIS is needed on both 

baseline and follow-up studies. Furthermore, the interpretation and computation of manual 

measurements often require specialized readers and may be prone to inter-reader variability 

or errors if performed by less experienced readers.

Convolutional neural network (CNN)-based registration algorithms allow an automated 

approach to assess change between examination time points [9]. This study aims to show 

the feasibility of CNN-based liver registration algorithm-generated difference maps for 

visual display of spatiotemporal changes in liver disease, using PDFF as a case example. 

These automated maps allow a more practical approach than manual annotations in clinical 

practice, potentially improving workflow.
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Materials and methods

Design and population

This HIPAA-compliant retrospective exploratory study was approved by the institutional 

review board with a waived requirement for written informed consent. For this exploratory 

study, a convenience sample of 25 patients with at least two longitudinal liver PDFF-MRI 

examinations at least 3 months apart and who were undergoing weight loss interventions 

(weight loss surgery and/or very-low-calorie ketogenic diet [VLCKD]) at our institution 

were selected. Inclusion criteria were age ≥ 18 years, suspected or confirmed NAFLD based 

on clinical findings (e.g., obesity), abnormal laboratory tests and/or other imaging studies, 

and no contraindications for MRI. No exclusion criteria were applied.

MRI

Patients were imaged at 3.0 T with an 8-element torso phased-array coil (GE Signa, 

EXCITE HDxt, GE Healthcare). A multi-echo 2D spoiled gradient-recalled echo (SGRE) 

sequence was performed during a single breath-hold and PDFF parametric maps (PDFF 

images) generated using magnitude-based confounder corrected chemical shift- encoded 

data. Imaging parameters are described in Supplementary Materials Table A. 1.

CNN-based image registration and image series

Follow-up PDFF images were affine-registered to baseline PDFF images using a CNN-based 

liver registration algorithm. The registration algorithm combines a liver segmentation CNN 

and an affine transformation network. In brief, images to be registered are initially sent 

to an independently developed two-dimensional CNN with U-Net model architecture to 

segment the liver, producing a set of 2D binary liver masks. 2D liver masks are then 

concatenated to form a 3D liver mask. Subsequently, 3D liver masks are used as input to a 

3D affine transformation network to focus registration on the liver. The affine transformation 

network is a neural network with a single 12-neuron dense layer representing 3D affine 

transformation parameters for translation, rotation, scaling, and shearing. The high accuracy 

of this liver-focused registration method has been described recently and ensures accurate 

colocalization of liver anatomy between baseline and follow up images [9]. Registered 

follow-up PDFF images were stored as DICOM files, resulting in three DICOM series: 

baseline PDFF images, unregistered follow-up PDFF images, and CNN-registered follow-up 

PDFF images.

Difference maps

Following image registration, registered follow-up PDFF images were subtracted from 

baseline PDFF images to create difference maps displaying spatiotemporal PDFF changes, 

as shown in Fig. 1. The resulting difference map was then convolved with a 5.0 cm 

area round kernel to smooth the image, in reference to the round ROIs used in manual 

measurements. Smoothing was applied to the difference maps to ensure a fair comparison 

between manually and visually assessed estimates for PDFF change. PDFF change within 

the smoothed difference map was then categorized into the following groups: - 30 to - 5% in 

increments of 5%, - 2.5 to 2.5%, 5 to 30% in increments of 5%, as illustrated in Fig. 2. The 
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categorical difference map was then visualized using the “jet” color spectrum to facilitate the 

visual assessment of absolute change in PDFF by readers. PDFF changes between - 2.5 and 

2.5% were set to white to convey little or no PDFF change. Difference map categories were 

chosen to establish a balance between granularity of clinically significant PDFF changes and 

simplicity of visual assessment.

Image analysis

ROI-based measurements as a reference standard—All PDFF images were 

reviewed by a fellowship-trained abdominal radiologist (S.I.) with 8 years’ experience in 

liver imaging. For each patient, using a commercially available DICOM viewer software 

(OsiriX®), unregistered follow-up series were first manually aligned to their corresponding 

baseline series according to image similarity and table position, as performed in clinical 

practice. 5.0 cm2 area round ROIS were then manually drawn in each of the nine liver 

Couinaud segments on the baseline PDFF images and in a similar position on manually 

aligned follow-up PDFF images. ROI size and shape were determined so that ROIS could 

be placed in each liver segment while avoiding edges of the liver, segmental boundaries, 

vessels, or imaging artifacts. The 9-ROI approach was chosen to capture segmental PDFF 

variations in cases of nonuniform spatial distribution of liver fat.

The mean PDFF values in each of the nine ROIS were used for analysis. Whole liver 

PDFF was calculated by averaging the mean values of all nine ROIs. PDFF changes 

were computed by subtracting follow-up segmental and whole liver mean PDFF estimates 

from their corresponding baseline PDFF estimates. Manual ROI measurements using the 

unregistered series reflect common clinical practice and were used as a reference standard to 

validate visually assessed PDFF changes. Example manual ROI annotations and computed 

PDFF changes are shown in Fig. 3.

Visual assessment of PDFF change—Two fellowship-trained abdominal radiologists 

(M.H.L., S.J.K.) each with 10 years’ experience in liver imaging and 3rd year radiology 

resident (S.F.D.), all blinded to patient information and the original PDFF maps, 

independently reviewed the difference color maps to visually determine longitudinal changes 

in PDFF across each of the nine liver segments. Maps were reviewed on an offline 

workstation using a software application for medical image navigation (ITK-SNAP [10]) 

without access to any other image. Written instructions were provided to readers before 

beginning the reading session for visual assessment of PDFF change. Instructions included 

information on how to open each case on the software application and details regarding 

the reads. For the latter, readers were allowed to scroll images up and down as well as 

zoom in and out, if necessary, similar to how they would perform a clinical read. They 

were asked to estimate the percent change in PDFF per liver segment following the color 

scheme and the corresponding color bar on the right of the image, recording the change 

per liver segment in an offline spreadsheet. If liver segments were heterogenous in color in 

the difference maps, readers were instructed to record what they viewed as the predominant 

PDFF change following the categorical color scheme. They were also instructed to ignore 

information in the outer contours of the liver as these are prone to cancellation artifacts 

inherent to chemical shift imaging and to consider standard liver segmental anatomy as 
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anatomical structures were roughly displayed on the maps due to smoothing. Changes in 

each of the nine liver segments for each patient were recorded by each reader in accordance 

with PDFF changes represented by the categorical color scale. Whole liver PDFF changes 

were computed by averaging segmental PDFF changes. Example difference color maps used 

for visual assessment are shown in Fig. 4.

Validation of CNN-based liver registration—The CNN-based liver registration 

algorithm used in this study has been shown to provide accurate results [9]. However, to 

ensure quantitative accuracy of PDFF difference maps and to further identify sources of 

potential disagreement amongst reader-based visual assessments, we further validated the 

CNN-based liver registrations in an auxiliary study. Manually drawn ROIS on the baseline 

PDFF images from the initial reading session were propagated onto the corresponding 

registered follow-up PDFF images without adjustment. Whole liver and segmental 

longitudinal PDFF changes were then computed by subtracting CNN-registered follow-up 

mean PDFF estimates from baseline mean PDFF estimates. ROI-based measurements using 

CNN-registered follow-up images were then used to validate the accuracy of the CNNPDFF 

Change (%) based liver registration algorithm against the reference standard, which uses 

manual alignment.

Statistical analysis

Statistical analyses were performed by a biostatistician (KAH) using the R-v3.4.0 software. 

Cohort demographics and PDFF at baseline and follow-up were summarized descriptively 

and compared using paired t tests. Reader-based visual categorizations were converted 

to a continuous scale using the midpoint of each respective color-coded category for 

analysis (i.e., 5–10% converted to 7.5%). Agreement between manually and visually 

assessed segmental and whole liver PDFF changes was evaluated using intraclass correlation 

(ICC) and Bland-Altman analysis. Inter-reader agreement was assessed using ICC and 

interpreted as follows: poor (< 0.5), moderate (0.50–0.75), good (0.75–0.090), and excellent 

(> 0.90) [11]. Agreement between PDFF changes computed using manually registered or 

CNN-registered follow-up images was also assessed using ICC and Bland-Altman analysis. 

Confidence intervals were calculated using bootstrapping.

Results

Study cohort

The mean age was 48.7 (SD ± 10.8) years and 12 patients were male. The mean interval 

between baseline and follow-up MRI-PDFF exams was 254.3 days (range: 97–511 days). 

Table 1 shows the means and ranges of whole liver and segmental PDFF at baseline, 

follow-up, and their corresponding PDFF difference. Baseline and follow-up PDFF ranged 

from 2.0 to 35.3% and 3.5 to 32.0%, respectively. For baseline and follow-up, segment 2 

mean PDFF was significantly lower than mean PDFF for segments 3 to 8 (p values < 0.02); 

segment 8 mean PDFF was significantly greater than mean PDFF for segments 1 to 3 and 6 

(p values < 0.05). Follow-up PDFF differences from baseline ranged from - 20.4 to 14.1%. 

Visually assessed PDFF changes ranged from - 27.5 to 12.5%, - 17.5 to 12.5%, and - 27.5 to 

12.5% for readers 1, 2, and 3, respectively.
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Manual reference vs visually assessed PDFF change

ICCs between manually and visually assessed segmental and whole liver PDFF changes for 

each reader are shown in Table 2 and Fig. 5. Visually assessed PDFF changes achieved a 

strong agreement with manual ROIS (ICCs > 0.95), except for visual estimates by readers 

1 and 3 for segment 2 (ICCs = 0.86 and 0.91) and reader 3 for segment 4a (ICC = 0.94). 

Wider confidence intervals for segment 2 and segment 4a were observed due to outlier 

observations. Bland-Altman plots are shown in Fig. 6. There was no significant bias between 

manual and visual PDFF change assessment (p values >0.39) and limits of agreement were 

within 5% across all three readers.

Inter-reader agreement

Inter-reader ICCs for visually assessed PDFF changes are shown in Table 2 and Fig. 5. 

We observed excellent inter-reader agreement for segmental and whole liver PDFF change 

(ICCs > 0.96), although slightly lower for segment 2 (ICC = 0.93).

Manual reference vs CNN-registered PDFF change

ICCs comparing manually assessed PDFF changes computed using manually registered or 

CNN-registered follow-up images are shown in Supplementary Materials Figure A. 1 and 

Table A.2. Manual estimates using CNN-registered follow-up images achieved near-perfect 

agreement with the manual reference (ICCs > 0.99), suggesting accurate registration of the 

liver. The Bland-Altman analysis shows no significant bias (p value = 0.85) and limits of 

agreement were less than 1.5% (Supplementary Materials Figure A.2).

Discussion

In this study, we explored the feasibility of using a CNN-based registration algorithm to 

generate difference maps to display and allow visual assessment of spatiotemporal changes 

in liver PDFF, without needing manual annotations. Agreement between visually assessed 

PDFF changes and manual ROI analysis as well as inter-reader agreement for visually 

assessed segmental PDFF changes were calculated. We found strong agreement between 

visual and manual ROI-based PDFF change estimates, showing that a hands-free visual 

assessment of longitudinal changes in PDFF is feasible. Additionally, inter-reader agreement 

for visually assessed segmental PDFF changes was excellent among 3 independent readers, 

including a novice radiologist. CNN-based difference maps can potentially offer a practical 

alternative to laborious manually drawn ROIS for radiological quantitative assessment in 

longitudinal studies.

Visually assessed PDFF change based on color-coded maps showed high agreement across 

all readers, including a non-expert radiologist. A lower agreement between manually and 

visually assessed PDFF changes was observed in segment 2, in addition to slightly lower 

inter-reader agreement for visually assessed PDFF changes. Hooker et al investigated 

inter-reader agreement of longitudinal manual ROI-based segmental PDFF. With excellent 

agreement (ICC = 0.997) across 27 ROIS (i.e., whole liver) for PDFF changes, they also 

found lower agreement in segment 2 [5]. While we did not investigate factors affecting 

agreement, segment 2 smaller craniocaudal size and contact with the heart related motion 
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may challenge ROI placement and introduce measurement variability. However, the inter-

reader agreement for visual assessment in this segment was higher than prior reports 

using ROI-based methods [5]. We believe that this improvement is due to the use of 

organ-focused image registration which allows for accurate colocalization of liver anatomy 

across longitudinal studies [9].

As liver biopsy carries risks and may not reflect the true burden of disease due to sampling 

limitations, non-invasive imaging biomarkers are preferred [3, 4]. Bonekamp et al have 

investigated the spatial variability of liver PDFF using 27 individual segmental ROIS 

[7]. They found variable PDFF across segments, with consistently lower PDFF values in 

segment 2, and segment 8 showing the highest average PDFF. In our study, segment 2 had 

lower mean PDFF values at baseline and follow-up, with segments 7 and 8 exhibiting the 

highest fat fraction. Longitudinally, Dehkordy et al described different rates of steatosis 

regression across liver segments using segmental ROIS in patients undergoing weight loss 

surgery [6]. We found similar variability in change across segments, with segment 2 showing 

smaller variability in PDFF change than segment 8. Despite the excellent results at a 

segmental level, questions may rise about the frequency in which radiologists draw ROIS 

in each liver segment to assess changes in clinical practice. The proposed method can 

be also used to practically assess whole liver PDFF changes, as evidenced by the almost 

perfect agreement between manually and visually assessed whole liver PDFF changes. 

With excellent inter-reader agreement for the assessment of these variabilities in PDFF, 

difference maps are accurate and robust in depicting the spatial heterogeneity of changes 

of disease. The authors believe that this visual approach could also be used to facilitate the 

communication of results to non-radiologists in the multidisciplinary setting, as well as to 

display longitudinal changes to patients during their treatment. As a future direction of our 

work, we are interested in assessing the outcomes associated with the latter, potentially 

increasing patient adherence to freatment through a better understanding of treatment 

results.

Our study has limitations. As an exploratory study, our study has a small convenience 

cohort that did not include all ranges of PDFF values and a potential for selection bias that 

cannot be ignored. Categorization and color-coding of difference maps were empirically 

chosen with the objective of balancing granularity of PDFF changes and simplicity of visual 

assessment. Increasing the number of PDFF categories would improve precision of PDFF 

changes but would make visual distinction between similar color tones challenging. As 

changes in PDFF of ~ 2% likely represent true biological differences [12, 13], our 5% 

increments may have overlooked some of these changes, although the clinical relevance 

of such small PDFF changes is yet to be determined. Also, the lack of clear anatomical 

boundaries of liver segments in the color maps may have affected inter-reader agreement. 

Although other images could have been provided to readers to determine the boundaries 

of liver segments, morphological images were not provided to minimize potential bias due 

to signal intensity changes related to fat. Finally, we did not time readers when visually 

estimating PDFF changes, hindering the possibility of a head-to-head comparison with 

the manual analysis for time efficiency. Future studies should be performed to refine the 

visualization of difference maps and to evaluate the proposed difference maps for time 

efficiency.
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In conclusion, visual assessment of liver segmental PDFF changes using a CNN-generated 

difference map strongly agreed with manual estimates performed by an expert reader and 

yielded high inter-reader agreement, potentially offering an efficient alternative to manual 

annotation for longitudinal follow-up. As future directions of our work, difference maps 

could be used to visually assess other quantitative imaging biomarkers, such as R2*, 

stiffness, or cT 1 and may be used to facilitate communication of results to referrers and 

their patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Visual assessment of longitudinal changes in quantitative liver MRI can 

be performed using a CNN-generated difference map and yields strong 

agreement with manual estimates performed by expert readers.
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Fig. 1. 
Development of difference color maps for longitudinal visualization and assessment of 

PDFF change. Follow-up PDFF maps are registered to baseline PDFF maps using a CNN-

based liver registration algorithm. Registered follow-up PDFF maps are then subtracted 

from baseline PDFF maps, smoothed using a 5 cm2 round kernel, and colorcoded using a 

categorical color scale to create PDFF difference maps
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Fig. 2. 
The same patient baseline and follow-up PDFF maps with manually drawn ROIS 

and corresponding difference map for visual assessment of longitudinal PDFF change. 

According to manual ROIs, the patient exhibits a 3% increase and 9% increase in segments 

Ill and VIl, respectively. These heterogeneous increases are visually captured by the 

proposed difference map with the predominant alterations in green (2.5 – 5%) and yellow (5 

– 10%), respectively
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Fig. 3. 
Example ROI annotations on baseline and follow-up PDFF maps to manually estimate 

longitudinal PDFF change compared to readers visual assessment (a, b). 5 cm round 

ROIS were manually drawn in each of the 9 liver Couinaud segments across baseline and 

follow-up PDFF maps. Longitudinal PDFF changes were computed by subtracting followup 

segmental mean PDFF estimates from their corresponding baseline PDFF estimates (a). 

Readers’ visual assessment of segmental PDFF changes using the difference map (b)
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Fig. 4. 
Proposed difference maps summarizing PDFF reductions between baseline and follow-up 

for two patients. a Patient 1 exhibits heterogeneous improvement in liver PDFF with slightly 

higher decrease in fat fraction in segments I, Ill, and IVb. b Patient 2 exhibits mild reduction 

in PDFF in segments VII and VIII, and no change in segments I, Ill, and most of segment 

Iva
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Fig. 5. 
Agreement between manually and visually assessed whole liver and segmental longitudinal 

PDFF changes by reader (top) and interreader agreement for visual assessment (bottom). 

Note the lower bound of the y-axes starts at 0.5 for visualization. Visually assessed PDFF 

changes achieved sfrong agreement with the manual reference (ICCs > 0.95) and inter-

reader agreement was also strong (ICCs > 0.96) with exception of segment 2 (ICC = 0.93). 

Wide confidence intervals in segments 2 and 4a are attributed to outlier observations by their 

respective readers
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Fig. 6. 
Bland-Alman plots comparing manually and visually assessed longitudinal PDFF changes 

across readers. Biases were not significantly different from zero and limits of agreement 

were within 5% across all readers
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