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Abstract

Classification methods that leverage the strengths of data from multiple sources (multiview data) 

simultaneously have enormous potential to yield more powerful findings than two-step methods: 

association followed by classification. We propose two methods, sparse integrative discriminant 

analysis (SIDA), and SIDA with incorporation of network information (SIDANet), for joint 

association and classification studies. The methods consider the overall association between 

multiview data, and the separation within each view in choosing discriminant vectors that are 

associated and optimally separate subjects into different classes. SIDANet is among the first 

methods to incorporate prior structural information in joint association and classification studies. 

It uses the normalized Laplacian of a graph to smooth coefficients of predictor variables, thus 

encouraging selection of predictors that are connected. We demonstrate the effectiveness of our 

methods on a set of synthetic datasets and explore their use in identifying potential nontraditional 

risk factors that discriminate healthy patients at low versus high risk for developing atherosclerosis 

cardiovascular disease in 10 years. Our findings underscore the benefit of joint association and 

classification methods if the goal is to correlate multiview data and to perform classification.
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1 | INTRODUCTION

With advancements in technologies, multiple diverse but related high-throughput data, such 

as gene expression, metabolomics, and proteomics data, are often times measured on 

the same subject. A common research goal is to effectively synthesize information from 

these sources of data in a way that goes beyond simply stacking the data to exploit the 

overall dependency structure among views to identify associated factors (e.g., genetic and 

environmental [e.g., metabolites ]) that potentially separate subjects into different groups. 

Popular approaches in the literature for integrative analysis and/or classification studies can 

broadly be grouped into three categories: association, classification, or joint association and 

classification methods. The literature on the first two is numerous, but the literature on 

the latter is rather limited. We focus on developing integrative analysis and classification 

methods to identify multiview variables that are highly associated and optimally separate 

subjects into different groups.

1.1 | Motivating application

Cardiovascular diseases (including atherosclerotic cardiovascular disease (ASCVD)) 

continue to be the leading cause of death in the United States and have become the costliest 

chronic disease (American Heart Association, 2016). It is projected that nearly half of 

the U.S. population will have some form of cardiovascular disease by 2035 and will cost 

the economy about $2 billion/day in medical costs (American Heart Association, 2016). 

Established environmental risk factors for ASCVD (e.g., age, gender, and hypertension) 

account for only half of all cases of ASCVD (Bartels et al., 2012). Finding other novel risk 

factors of ASCVD unexplained by traditional risk factors is important and may help prevent 

cardiovascular diseases. Trans-omics integrative analysis can leverage the strengths of omics 

to further our understanding of the molecular architecture of ASCVD. We integrate gene 

expression, metabolomics, and/or clinical data from the Emory University and Georgia Tech 

Predictive Health Institute (PHI) study to identify potential biomarkers beyond established 

risk factors that can distinguish between subjects at high versus low risk for developing 

ASCVD in 10 years.

1.2 | Existing methods

As mentioned earlier, the literature for integrative analysis and/or classification studies can 

be broadly grouped into three categories: association, classification, or joint association 

and classification methods. Association-based methods (Hotelling, 1936; Witten and 

Tibshirani, 2009; Min et al., 2018; Safo et al., 2018) correlate multiple views of data to 

identify important variables as a first step. This is followed by independent classification 

analyses that use the identified variables. These methods are largely disconnected from 

the classification procedure and oblivious of the effects class separation has on the overall 

dependency structure. The classification-based methods either stack the views and perform 

classification on the stacked data, or individually use each view in classification algorithms 

and pool the results. Several classification methods, including Fishers linear discriminant 

analysis (LDA) (Fisher, 1936) and its variants, may be used. These techniques take no 

consideration of the dependency structure between the views, and may be computationally 

expensive if the dimension of each view is large. Finally, the joint association- and 
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classification-based methods (Witten and Tibshirani, 2009; Luo et al., 2016; Li and Li, 2018; 

Zhang and Gaynanova, 2018) link the problem of assessing associations between multiple 

views to the problem of classifying subjects into one of two or more groups within each 

view. The goal is then to identify linear combinations of the variables in each view that are 

correlated with each other and have high discriminatory power. The method we propose in 

this paper falls into this category.

1.3 | Overview of the proposed methods

Our proposal is related to existing joint association- and classification-based methods but 

our contributions are multifold. First, our formulation of the problem is different from 

the regression approach largely considered by existing methods; this provides a different 

insight into the same problem. More importantly, our methods rely on summarized data 

(i.e., covariances) making them applicable if the individual view cannot be shared due to 

privacy concerns. Second, while existing association and classification methods concentrate 

on sparsity (i.e., exclude nuisance predictors), which is mainly data-driven, our SIDANet 

method is both data- and knowledge-driven. Third, our formulation makes it easy to 

include other covariates without enforcing sparsity on the coefficients corresponding to 

the covariates. This is rarely done in integrative analysis and classification methods. 

Fourth, our formulation of the problem can be solved easily with any off-the-shelf convex 

optimization software. We develop computationally efficient algorithms that take advantage 

of parallelism.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the motivation 

of our proposed methods. In Section 3, we present the proposed methods for two views of 

data. In Section 4, we introduce the sparse versions of the proposed methods. In Section 5, 

we present the algorithm for implementing the proposed methods. In Section 6, we conduct 

simulation studies to assess the performance of our methods in comparison with other 

methods in the literature. In Section 7, we apply our proposed methods to a real dataset. 

Discussion and concluding remarks are given in Section 8. Extensions of the methods to 

more than two views are provided in the Supporting Information.

2 | MOTIVATION

Suppose that there are two sets of high-dimensional Data X1 = x1
1, ⋯, xn1

T ∈ ℜn × p and 

X2 = x1
2, ⋯, xn2

T ∈ ℜn × q, p, q > n, all measured on the same set of n subjects. For subject 

i, i = 1, …, n, let yi be the class k(k = 1, …K) membership. Given these data, we wish to 

predict the class membership yj of a new subject j using their high-dimensional information 

zj1 ∈ ℜp and zj2 ∈ ℜq. Several supervised classification methods, including Fishers LDA 

(Fisher, 1936), may be used to predict class membership when there is only one view of 

data, but not when there are two views of data. Of note, naively stacking the data and 

performing LDA on the stacked data does not model the correlation structureamong the 

different views. On the other hand, unsupervised association methods, including canonical 

correlation analysis (CCA) (Hotelling, 1936) may be used to study association between the 

two views of data, but are not suitable when classification is the ultimate goal. We propose 
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two methods for joint association and classification problems that bridge the gap between 

LDA and CCA. We briefly describe LDA and CCA.

2.1 | Linear discriminant analysis

For the description of LDA, we suppress the superscript in X. Let 

Xk = x1k, …, xnk, k
T ∈ ℜnk × p, xk ∈ ℜp be the data matrix for class k, k = 1, …, K, 

and nk is the number of samples in class k. Then, the mean vector for class 

k, common covariance matrix for all classes, and the between-class covariance 

are, respectively, given by μk = 1/nk ∑i = 1
nk xik; Sw = ∑k = 1

K ∑i = 1
n xik − μk xik − μk

T; 

Sb = ∑k = 1
K nk μk − μ μk − μ T. Here, μ is the combined class mean vector and is defined 

as μ = (1/n)∑k = 1
K nkμk. For a k class prediction problem, LDA finds k − 1 direction 

vectors, which are linear combinations of all available variables, such that projected 

data have maximal separation between the classes and minimal separation within the 

classes. Mathematically,the solution to the optimization problem: maxβkβk
TSbβk subject to 

βk
TSwβk = 1, βl

TSwβk = 0 ∀l < k, k = 1, 2, …, K − 1 yields the LDA directions that optimally 

separate the K classes, and these are the eigenvalue–eigenvector pairs λk, βk , λ1 > ⋯ > λk

of Sw
−1Sb for Sw ≻ 0.

2.2 | Canonical correlation analysis

Without loss of generality, we assume that X1 and X2 have zero means for each variable. 

The goal of CCA (Hotelling, 1936) is to find linear combinations of the variables in X1, 

say X1α and in X2, say X2β, such that the correlation between these linear combinations is 

maximized. If S1 and S2 are sample covariances of X1 and X2, respectively, and S12 is the 

p × q sample cross-covariance between X1 and X2,then mathematically, CCA finds α and 

β that solve the optimization problem: maxα, βαTS12β subject to αTS1α = 1 and βTS2β = 1. 

The solution to the CCA problem is given as α = S1
−1/2e1, β = S2

−1/2f1, where e1 and f1 are 

the first left and right singular vectors of S1
−1/2S12S2

−1/2, respectively. Note that maximizing 

the correlation is equivalent to maximizing the square of the correlation. Hence, the CCA 

objective can be written as αTS12ββTS12
T αT; we use this in our proposed method.

3 | DISCRIMINANT ANALYSIS FORTWO VIEWS OF DATA

Consider a K-class classification problem with two sets of variables X1 ∈ ℜn × p and 

X2 ∈ ℜn × q and the class membership vector y. Let S12 be the covariance between X1 

and X2. Our goal is to find linear combinations of X1 and X2 that explain the overall 

association between these views while optimally separating the k classes within each view. 

These optimal discriminant vectors could be used to effectively classify a new subject into 

one of the k classes using their available data. We propose a method that combines LDA and 

CCA. Specifically, we consider the optimization problem below for A = α1, …, αK − 1  and 

B = β1, …, βK − 1 :
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max
A, B

ρtr ATSb
1A + BTSb

2B

+(1 − ρ)tr ATS12BBTS12
T A

subject to tr ATSw
1 A /(K − 1) = 1,

tr BTSw
2 B /(K − 1) = 1.

(1)

Here, tr(.) is the trace function, and ρ is a parameter that controls the relative importance 

of the first (i.e., “separation”) and second (i.e., “association”) trace terms in the objective. 

The first trace term in Equation (1) considers the discrimination between classes within 

each view and the second trace term models the dependency structure between the views 

through the squared correlation. Essentially, the goal here is to uncover some basis 

directions that influence both separation and association.We note that the “separation” 

and “association” terms are loosely defined as the objective could be rewritten so that 

the separation term also accounts for the covariance between the views. In particular, the 

cross-covariance, S12, can be decomposed as S12 = Sb
12 + Sw

12 where Sw
12 and Sb

12 are defined 

as follows: Sw
12 = ∑k = 1

K ∑i = 1
n xik

1 − μk
1 xik

2 − μk
2 T

; Sb
12 = ∑k = 1

K nk μk
1 − μ1 μk

2 − μ2 T
. Here 

μk
j = 1/nk ∑i = 1

nk xik
j , j = 1, 2 and μj is the combined class mean vector for view j, j = 1, 2, 

and is defined as μj = (1/n)∑k = 1
K nkμk

j . We also note that Sw
12 measures the covariance 

within the classes and across the two views (we term this within-class cross-covariance), 

and Sb
12 measures the covariance between the classes and across the two views (we 

refer to this as between-class cross-covariance). Ignoring the weights ρ and (1 − ρ) 

in Equation (1) for now, substituting S12 = Sb
12 + Sw

12 into the second trace term (i.e., 

association term) in Equation (1), and expanding, we obtain the objective function: 

maxA, Btr ATSb
1A + BTSb

2B + ATSb
12BBTSb

12TA + 2ATSb
12BBTSw

12TA + tr ATSw
12BBTSw

12TA . This 

and the objective function in Equation (1) both account for the covariance between the 

views. The “separation” term (first trace term) in this decomposition also models the 

covariance between the views through both Sb
12 and Sw

12, while the “association” term in 

Equation (1) models the covariance, also through Sb
12 and Sw

12. We prefer Equation (1) 

because when we add in the weights ρ and (1 − ρ), respectively, to the first and second terms 

in this new decomposition, and we let ρ = 1 or ρ = 0, our objective in Equation (1) has a nice 

property in that it reduces to LDA or CCA, respectively, while this decomposition does not. 

Consider optimizing Equation (1) above using Lagrangian multipliers. One can show that 

the solution reduces to a set of generalized eigenvalue (GEV) problems. Theorem 1 gives a 

formal representation of the solution to the optimization problem (1).

Theorem 1.

Let Sw
1 , Sw

2  and Sb
1, Sb

2, respectively, be withinscatter and between-scatter covariances for 

X1 and X2. Let S12 be the covariance between the two views of data. Assume Sw
1 ≻ 0, 

Sw
2 ≻ 0. Then A = α1, …, αr

T ∈ ℜp × r, B = β1, …, βr
T ∈ ℜq × r, k = 1, …, r are eigenvectors 
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corresponding respectively to eigenvalues Λ1 = diag λ1k, …, λ1r  and Λ2 = diag λ2k, …, λ2r , 

λ1k > ⋯ > λ1r > 0, λ2k > ⋯ > λ2r > 0 that iteratively solve the geGEV system:

ρSb
1 + ρSb

1T + (1 − ρ)Ω1 + (1 − ρ)Ω1T

A = Sw
1 + Sw

1 T Λ1A,
(2)

ρSb
2 + ρSb

2T + (1 − ρ)Ω2 + (1 − ρ)Ω2T

B = Sw
2 + Sw

2 T Λ2B,
(3)

where Ω1 = S12BBTS12
T  and Ω2 = S12

T AATS12. Equations (2) and (3) may be solved iteratively 

by fixing B and solving an eigensystem for A, and then fixing A and solving an eigensystem 

in (3) for B. The algorithm may be initialized using any arbitrary normalized nonzero 

vector. With B fixed at B* in (2), the solution is the eigenvalue–eigenvector pair of 

Sw
1 + Sw

1 T −1
ρSb

1 + ρSb
1T + (1 − ρ)Ω1 + (1 − ρ)Ω1T

. With A fixed at A* in (3), the solution of 

(3) is the eigenvalue–eigenvector pair of Sw
2 + Sw

2 T −1
ρSb

2 + ρSb
2T + (1 − ρ)Ω2 + (1 − ρ)Ω2T

.

We rewrite the optimization problem (1) and the generalized eigensystems (2) and (3) 

equivalently so that we solve a system of eigenvalue problems to facilitate computations. We 

omit its proof for brevity sake because it follows easily from (1). Let ℳ1 = Sw
1−1/2

Sb
1Sw

1−1/2
, 

ℳ2 = Sw
2−1/2

Sb
2Sw

2−1/2
. Also, let N12 = Sw

1−1/2
S12Sw

2−1/2
 and N21 = Sw

2−1/2
S12

T Sw
1−1/2

.

Proposition 1.

The maximizer (1) is equivalent to (A, B) = Sw
1 − 1/2Γ1, Sw

2−1/2
Γ2  where

Γ1, Γ2 = max
Γ1, Γ2

ρtr Γ1Tℳ1Γ1 + Γ2Tℳ2Γ2

+(1 − ρ)tr Γ1TN12Γ2Γ2TN21Γ1

subject to tr Γ1TΓ1 /(K − 1) = 1,

tr Γ2TΓ2 /(K − 1) = 1.

Furthermore, this yields the equivalent eigensystem problems of (4) and (5)
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ρℳ1 + ρℳ1T + (1 − ρ)N12 + (1 − ρ)N12
T Γ1 = Λ1Γ1, (4)

ρℳ2 + ρℳ2T + (1 − ρ)N21 + (1 − ρ)N21
T Γ2 = Λ2Γ2, (5)

where N12 = N12Γ2Γ2T
N21 and N21 = N21Γ1Γ1T

N12 ..

3.1 | SPARSE LDA FOR TWO VIEWS OF DATA

In the high-dimensional setting where n ≪ p, Γ1 and Γ2 are weight matrices of all available 

variables in X1 and X2. These coefficients are not usually zero (i.e., not sparse) making 

interpreting the discriminant functions challenging. We propose to make Γ1 and Γ2 sparse 

by imposing convex penalties subject to modified eigensystem constraints. Our approach 

follows ideas in Safo et al. (2018), which is, in turn, motivated by the Dantzig selector 

(DS) (Candes and Tao, 2007). The DS was designed for linear regression models where 

the number of variables is large but the set of regression coefficients is sparse, and it 

was shown to have desirable theoretical properties. It has successfully been used for LDA 

(Cai and Liu, 2011) and has also shown impressive performance in real world applications 

for large p. It is easy to understand and is readily solved by any off-the-shelf convex 

optimization software. We impose penalties that depend on whether or not prior knowledge 

in the form of functional relationships is available. In what follows, for a vector v ∈ ℝp, we 

define ∥ v ∥∞ = maxi = 1, ⋯, p vi , ∥ v ∥1 = ∑i = 1
p vi , and ∥ v ∥2 = ∑i = 1

p vi2. For a matrix 

M ∈ ℝn × p, we define mi to be its ith row, mij to be its i,jth entry, and define the maximum 

absolute row sum ∥ M ∥∞ = max1 ≤ i ≤ n∑j = 1
p mij .

3.1.1 | Sparse integrative discriminant analysis (SIDA)—Let 

Γ1 = γ1
1, …, γp1

T ∈ ℜp × K − 1 and Γ2 = γ1
2, …, γq2

T ∈ ℜq × K − 1 denote the collection of basis 

vectors that solve the eigensystems (4). To achieve sparsity, we define the following block 

l1∕l2 penalty functions that consider the length of row elements in Γ1 and Γ2 and shrinks the 

row vectors of irrelevant variables to zero:

P Γd = ∑
i = 1

p or q
∥ γid ∥ 2, d = 1, 2. (6)

We note that variables with null effects are encouraged to have zero coefficients 

simultaneously in all basis directions. This is because the block l1∕l2 penalty applies the 

l2-norm ∥ γid ∥ 2 within each variable, and the l1-norm across variables, and thus, shrinks 

the row length to zero. This results in coordinate-independent variable selection, making it 

appealing for screening irrelevant variables. With penalty (6), we obtain sparse solutions Γ1

and Γ2
 by iteratively solving the following convex optimization problems for fixed Γ1 or Γ2:
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min
Γ1

∑
i = 1

p
∥ γi1 ∥ 2 s.t ∥ ρℳ1 + ρℳ1T

+(1 − ρ)N12 + (1 − ρ)N12
T Γ1 − Λ1Γ1 ∥∞ ≤ τ1

min
Γ2

∑
i = 1

q
∥ γi2 ∥ 2 s.t ∥ ρℳ2 + ρℳ2T

+(1 − ρ)N21 + (1 − ρ)N21
T Γ2 − Λ2Γ2 ∥∞ ≤ τ2 .

(7)

Equation (7) essentially constrains the first and second eigensystems (4) to be within τ1 

and τ2, respectively. It can be easily shown that naively constraining the eigensystems 

result in trivial solutions. Hence, we substitute Γ1 and Γ2 in the left-hand side (LHS) 

of the eigensystem problems in (4), respectively, with Γ1 and Γ2, the nonsparse 

solutions that solve equation (4). Here, Λ1, Λ2  are the eigenvalues corresponding to 

Γ1 and Γ2. Also, τ1, τ2  are tuning parameters controlling the level of sparsity; their 

selection will be discussed in Section 6. Γ1
 may be obtained from (7) by fixing Γ2

(definition of N12 involves Γ2). Similarly, Γ2
 may be obtained by fixing Γ1. The 

solutions Γ1, Γ2
 may not necessarily be orthogonal, as such we use Gram–Schmidt 

orthogonalization on Γ1, Γ2
. We note that Equation (7) can be equivalently written 

as minΓ1 ∥ ρℳ1 + ρℳ1T
+ (1 − ρ)N12 + (1 − ρ)N12

T Γ1 − Λ1Γ1 ∥
∞

+ τ1
∗∑i = 1

p ∥ Γi
1 ∥ 2, τ1

∗ > 0

(similarly for solving Γ2), but we use our current formulation as it follows closely the DS 

approach.

Remark 1. Inclusion of covariates:  Our optimization problems in (7) make it easy 

to include other covariates to potentially guide the selection of relevant variables likely 

to improve classification accuracy. Assume that τ2 is set to zero (no penalty on the 

corresponding coefficients). Then Γ2 solves the second optimization problem. But the 

basis discriminant directions Γ1
 for the first view of data depend on the second view (X2) 

through the covariance matrix S12. Thus, to account for the influence of covariates in the 

optimal basis discriminant directions, one could always include the available covariates (as 

a separate view) and set the corresponding tuning parameter to zero. This forces data from 

the covariates to be used in assessing associations and discrimination without necessarily 

shrinking their effects to zero. For binary (e.g., biological sex) or categorical covariates 

(assumes no ordering), we suggest the use of indicator variables (Gifi, 1990). RRefer to 

Section 10.4 in the Supporting Information for a simulation example.

3.1.2 | SIDA for structured data (SIDANet)—We introduce SIDANet for structured 

or network data. SIDANet utilizes prior knowledge about variable–variable interactions 

(e.g., protein–protein interactions) in the estimation of the sparse integrative discriminant 

vectors. Incorporating prior knowledge about variable–variable interactions can capture 
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complex bilateral relationships between variables. It has potential to identify functionally 

meaningful variables (or network of variables) within each view for improved classification 

performance, as well as aid in interpretation of variables.

Many databases exist for obtaining information about variable–variable relationships. One 

such database for protein–protein interactions is the human protein reference database 

(HPRD) (Peri et al., 2003). We capture the variable–variable connectivity within each view 

in our sparse discriminant vectors via the normalized Laplacian (Chung and Graham, 1997) 

obtained from the underlying graph. Let Gd = V d, Ed, W d , d = 1, 2 be a network given by 

a weighted undirected graph. Vd is the set of vertices corresponding to the pd variables 

(or nodes) for the dth view of data. Let Ed = u ∼ v  if there is an edge from variable 

u to v in the dth view of data. Wd is the weight of an edge for the dth view satisfying 

w(u, v) = w(v, u) ≥ 0. Note that if u, v ∉ E(G), then w(u, v) = 0. Denote rv as the degree of 

vertex v within each view; rv = ∑uw(u, v). The normalized Laplacian of Gd for the dth view 

is

ℒn(u, v) (8)

=

1 − w(u, v)/rv if u = v and rv ≠ 0

− w(u, v)
rurv

if u ≠ v and variables u and v are adjacent

0 otherwise.

The matrix ℒn(u, v) is usually sparse (has many zeros) and so can be stored with sparse 

functions in any major software programs such as R or Matlab. For smoothness while 

incorporating prior information, we impose the following penalty:

P Γd = η ∑
i = 1

pd
∥ γi

ℒn ∥ 2 + (1 − η) ∑
i = 1

pd
∥ γi ∥ 2 . (9)

γi
ℒn is the ith row of the matrix product ℒnΓd. Note that ℒn(u, v) is different for each view. 

The first term in Equation (9) acts as a smoothing operator for the weight matrices Γd so that 

variables that are connected within the dth view are encouraged to be selected or neglected 

together. Note that because we use the normalized laplacian, the coefficients of variables 

that are connected may not be the same; this will capture each variable’s contribution to 

overall objective. The second term in Equation (9) enforces sparsity of variables within the 

network; this is ideal for eliminating variables or nodes that contribute less to the overall 

association and discrimination relative to other nodes within the network. η balances these 

two terms. Several η values in the range (0,1) can be considered with the η that yields higher 

classification accuracy and/or correlation chosen.
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3.2 | INITIALIZATION, TUNING PARAMETERS, AND ALGORITHM

In Section 6 of the Supporting Information, we extend the proposed methods to more 

than two views. The optimization problems in Equations (7) and (6) in the Supporting 

Information are biconvex. With Γd fixed at Γd∗
, the problem of solving for Γj

, j ≠ d is 

convex, and may be solved easily with any-off-the shelf convex optimization software. At 

the first iteration, we fix Γd∗
 as the classical LDA solution from applying LDA on Xd. We 

can initiate Γd∗
 with random orthonormal matrices, but we choose to initialize with regular 

LDA solutions because the algorithm converges faster. Algorithm 1 in the Supporting 

Information gives an outline of our proposed methods. The optimization problems depend 

on tuning parameters τd, which need to be chosen. We fix ρ = 0.5 to provide equal weight 

on separation and association. Without loss of generality, assume that the Dth (last) view is 

the covariates, if available. We fix τD = 0 and select the optimal tuning parameters for the 

other views from a range of tuning parameters. Note that searching the tuning parameters 

hyperspace can be computationally intensive. To overcome this computational bottleneck, 

we follow ideas in Bergstra and Bengio (2012) and randomly select some grid points (from 

the entire grid space) to search for the optimal tuning parameters; we term this approach 

random search. Our simulations with random search produced satisfactory results (Tables 

2–4) compared to grid search. A detailed comparison of random and grid search is found in 

Section 7 in the Supporting Information. Our approach for classifying future observations is 

found in the Supporting Information.

3.3 | SIMULATIONS

We consider two main simulation examples to assess the performance of the proposed 

methods in identifying important variables and/or networks that optimally separate classes 

while maximizing association between multiple views of data. In the first example, we 

simulate a D = 2, K = 3 class discrimination problem and assume that there is no prior 

information available. Refer to the Supporting Information for more simulation scenarios 

including a scenario with covariates as a third view. In the second example, we simulate a D 
= 3 and K = 3 class problem and assume that prior information is available in the form of 

networks. In each example, we generate 20 Monte Carlo datasets for each view.

3.3.1 | Example 1: Simulation settings when no prior information is available
—Scenario 1 (multiclass, equal covariance with class). : The first view of data X1 has P 
variables and the second view X2 has q variables, all drawn on the same samples with size 

n = 240. Each view is a concatenation of data from three classes, that is, Xd = X1
d, X2

d, X3
d , 

d = 1, 2. The combined data Xk
1, Xk

2  for each class are simulated from N μk, Σ , where 

μk = μk
1, μk

2 T ∈ ℜp + q, k = 1, 2, 3 is the combined mean vector for class k; μk
1 ∈ ℜp, μk

2 ∈ ℜq

are the mean vectors for Xk
1 and Xk

2, respectively. The true covariance matrix Σ is partitioned 

as
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Σ = Σ1 Σ12

Σ21 Σ2 , Σ1 = Σ1 0
0 Ip − 20

, Σ2 = Σ2 0
0 Iq − 20

,

where Σ1 and Σ2 are, respectively, the covariance of X1 and X2, and Σ12 is the cross 

covariance between the two views. Σ1 and Σ2 are each block diagonal with two blocks 

of size 10, between-block correlation 0, and each block is a compound symmetric matrix 

with correlation .8. We generate Σ12 as follows. Let V1 = V1
1, 0(p − 20) × 2

T ∈ ℜp × 2 where 

the entries of V 1
1 ∈ ℜ20 × 2 are i.i.d. samples from U(0.5,1). We similarly define V2 for 

the second view, and we normalize such that V1T
Σ1V1 = I and V2TΣ2V2 = I. We then set 

Σ12 = Σ1V1DV2TΣ2, D = diag ρ1, ρ2 . We vary ρ1 and ρ2 to measure the strength of the 

association between X1 and X2. For separation between the classes, we take μK to be the Kth 

column of ΣA, 0p + q ∈ ℜ(p + q) × 3, and A = A1, A2 T ∈ ℜ(p + q) × 2. Here, the first column 

of A1 ∈ ℜp × 2 is set to c110, 0p − 10 ; the second column is set to 010, − c110, 0p − 20 . 

We set A2 ∈ ℜq × 2 similarly. We vary c to assess discrimination between the classes, and 

we consider three combinations of ρ1, ρ2, c  to assess both discrimination and strength of 

association. For each combination, we consider equal class size nk = 80, and dimensions 

(p∕q = 2000∕2000). The true integrative discriminant vectors are the generalized eigenvectors 

that solve Theorem 1. Figure S1 in the Supporting Information is a visual representation 

of random data projected onto the true integrative discriminant vectors for different 

combinations of c, ρ1, and ρ2.

Competing methods: We compare SIDA with classification- and/or association-based 

methods. For the classification-based method, we consider Multi-Group Sparse Discriminant 

Analysis (MGSDA) (Gaynanova et al., 2016) and either apply MGSDA on the stacked 

data (MGSDA (Stack)), or apply MGSDA on separate datasets (MGSDA (Ens)). To 

perform classification for MGSDA (Ens), we pool the discriminant vectors from the 

separate MGSDA applications, and apply the pooled classification algorithm discussed in 

the Supporting Information. For association-based methods, we consider the sparse CCA 

(sCCA) method (Safo et al., 2018). We perform sCCA using the Matlab code the authors 

provide, pool the canonical variates, and perform classification in a similar way as MGSDA 

(Ens). We also compare SIDA to JACA (Zhang and Gaynanova, 2018), a method for joint 

association and classification studies. We use the R package provided by the authors, and set 

the number of cross-validation folds as 5.

Evaluation criteria: We evaluate the methods using the following criteria: (1) test 

misclassification rate, (2) selectivity, and (3) estimated correlation. We consider three 

measures to capture the methods ability to select true signals while eliminating false 

positives: true positive rate (TPR), false positive rate (FPR), and F1 score defined as 

follows: TPR = TP
TP + FN , FPR = FP

FP + TN , F1 score = 2TP
2TP + FP + FN , where TP, FP, TN,and 

FN are defined, respectively, as true positives, false positives, true negatives, and false 
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negatives. We estimate the overall correlation, ρ, by summing estimated pairwise unique 

correlations obtained from the R-vector (RV) coefficient (Robert and Escoufier, 1976). 

The RV coefficient for two centered matrices X ∈ ℜn × k and Y ∈ ℜn × k is defined 

as RV (X, Y) =
tr ΣXYΣYX

tr ΣXX
2 tr ΣYY

2 . The RV coefficient generalizes the squared Pearson’s 

correlation coefficient to multivariate data sets. We obtain the estimated correlation as 

ρ = 2
D(D − 1) ∑d = 1, d ≠ j

D RV Xtest
d Γd, Xtest

j Γj
, ρ ∈ [0, 1]

Results: Tables 1 shows the averages of the evaluation measures from 20 repetitions, 

for scenarios 1 and 2 (refer to the Supporting Information for other scenarios). We first 

compare SIDA with random search (SIDA(RS)) to SIDA with grid search (SIDA(GS)). 

We note that across all evaluation measures, SIDA (RS) tends to be better or similar to 

SIDA (GS). In terms of computational time, SIDA (RS) is faster than SIDA (GS) (refer to 

the Supporting Information). This suggests that we can choose optimal tuning parameters 

at a lower computational cost by randomly selecting grid points from the entire tuning 

parameter space and searching over those grid values, and still achieve similar or even better 

performance compared to searching over the entire grid space. We next compare SIDA 

with an association-based method, sCCA. In scenario 1, across all settings, we observe 

that SIDA (especially SIDA (RS)) tends to perform better than sCCA. Compared to a 

classification-based method, MGSDA (either Stack or Ens), SIDA has a lower error rate, 

higher estimated correlations (except in setting 3), higher TPR, and higher F1 scores. Similar 

results hold for scenarios 2 and 3 (Supporting Information). When compared to JACA, a 

joint association- and classification-based method, for scenarios 1 and 2, SIDA has lower 

error rates in setting 1, and comparable error rates in settings 2 and 3. In terms of selectivity, 

SIDA has comparable TPR in setting 1, lower TPR in setting 2, higher TPR in setting 

3, lower or comparable FPR, comparable estimated correlations, and higher F1 scores in 

settings 1 and 2. These simulation results suggest that joint integrative- and classification-

based methods, SIDA and JACA, tend to out-perform association- or classification-based 

methods. In addition, the proposed method, SIDA, tends to be better than JACA in the 

scenarios where the views are moderately or strongly correlated,and the separation between 

the classes is not weak.

3.3.2 | Example 2: Simulation settings when prior information is available—In 

this setting, there are three views of data Xd, d = 1,2,3, and each view is a concatenation 

of data from three classes. The true covariance matrix Σ is defined as in Model 1 but with 

the following modifications. We include Σ3, Σ13, and Σ23. Σ1, Σ2, and Σ3 are each block 

diagonal with four blocks of size 10 representing four networks, between-block correlation 

0, and each block is a compound symmetric matrix with correlation .7. Each block has 

a 9 × 9 compound symmetric submatrix with correlation .49 capturing the correlations 

between other variables within a network. The cross-covariance matrices Σ12, Σ13, and Σ23
follow Model 1, but to make the effect sizes of the main variables larger, we multiply their 

corresponding values in Vd, d = 1,2,3 by 10. We set D =diag(0.9,0.7) when computing the 

cross-covariances.
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We consider two scenarios in this example that differ by how the networks contribute to both 

separation and association. In the first scenario, all four networks contribute to separation 

of classes within each view and association between the views. Thus, there are 40 signal 

variables for each view, and P1 − 40, P2 − 40, and P3 − 40 noise variables. In the second 

scenario, only two networks in the graph structure contribute to separation and association; 

hence, there are 20 signal variables and P1 − 20, P2 − 20, and P3 − 20 noise variables. 

Figure 3 is a pictorial representation for the two scenarios. For each scenario, we set nk = 

40, k = 1,2,3, and generate the combined data Xk
1, Xk

2, Xk
3  from MV N μk ⋅ Σ . We set c (refer 

to Model 1) to 0.2 when generating the mean matrix μk In both scenarios, the weight for 

connected variables is set to 1.

Competing methods and results: We compare SIDANet with fused sparse LDA 

(FNSLDA) (Safo and Long, 2019), a classification-based method that incorporates prior 

information in sparse LDA. We apply FNSLDA on the stacked views (FNSLDA (Stack)) 

and use the classification algorithm proposed in the original paper. We also perform 

FNSLDA on separate views and perform classification on the combined discriminant vectors 

(FNSLDA (Ens)) using the approach described in the Supporting Information. Compared 

to FNSLDA, SIDANet tends to have competitive TPR, lower FPR, higher F1 scores, and 

competitive error rates and estimated correlations (refer to Table 2). These findings, together 

with the findings when there are no prior information, underscore the benefit of considering 

joint integrative and classification methods when the goal is to both correlate multiple views 

of data and perform classification simultaneously.

3.4 | REAL DATA ANALYSIS

We focus on analyzing the gene expression, metabolomics, and clinical data from the PHI 

study. Our main goals are to (i) identify genes and metabolomics features (mass-tocharge 

ratio [m/z]) that are associated and optimally separate subjects at high versus low risk for 

developing ASCVD, and (ii) assess the added benefit of the identified variables in ASCVD 

risk prediction models that include some established risk factors (i.e., age and gender).

3.4.1 | Application of the proposed and competing methods—We used data 

for 142 patients for whom gene expression and metabolomics data are available and for 

whom there were clinical and demographic variables to compute ASCVD risk score. The 

ASCVD risk score for each subject is dichotomized into high (ASCVD > 5%) and low 

(ASCVD ≤ 5%) risks based on guidelines from the American Heart Association. Because 

of the skewed distributions of most metabolomic levels, we log2 transformed each feature. 

We obtained the gene–gene interactions from the HPRD (Peri et al., 2003). The resulting 

network had 519 edges. Both datasets were normalized to have mean 0 and variance 1 

for each variable. We divided each view of data equally into training and testing sets. We 

selected the optimal tuning parameters that maximized average classification accuracy from 

fivefold cross-validation on the training set. The selectedtuningparameterswerethenapplied 

tothetesting set to estimate test classification accuracy. The process was repeated 20 times 

and we obtained average test error, variables selected, and RV coefficient using the training 

data.
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3.4.2 | Average misclassification rates, estimated correlations, and variables 
selected—Table 3 shows the average results for the 20 resampled datasets. Of note, 

(+ covariates) refers to when the covariates age, gender, BMI, systolic blood pressure, 

low-density lipoprotein (LDL), and triglycerides are added as a third dataset to SIDA 

or SIDANet; we assess the results with and without covariates. For SIDANet, we 

only incorporated prior information from the gene expressions data (i.e., protein–protein 

interactions).

We observe that SIDA and SIDANet offer competitive results in terms of separation 

of the ASCVD risk groups. They also yield higher estimated correlations between the 

gene expressions and metabolomics data. SIDANet yields higher estimated correlation 

and competitive error rate when compared to SIDA, which suggests that incorporating 

prior network information may be advantageous. It seems that including covariates in this 

example does not make the average classification accuracy and correlation any better. From 

this application, stacking the data results in better classification rate, but the estimated 

correlation is poor,which is not surprising because this approach ignores correlation that 

exists between the datasets. Among the methods compared, sLDA (Ens) and sLDA (Stack) 

identify fewer number of genes and m/z features. This agrees with the results from the 

simulations where these methods had lower false and TPRs.

3.4.3 | Variable stability and enrichment analysis—To reduce false findings and 

improve variable stability in identifying variables that potentially discriminate persons at 

high versus low risk for ASCVD, we used resampling techniques and chose variables that 

were selected at least 12 times (≥60%) out of the 20 resampled datasets. SIDANet and 

JACA selected 28 and 45 genes (and 7 and 20 m/z features), respectively, of which 17 genes 

(6 m/z features) overlap. Additionally, all genes identified by SIDA were also selected by 

SIDANet; there were six overlapping m/z features selected by SIDA and SIDANet. sLDA 

(Ens) and sLDA (Stack) did not identify any gene and m/z feature (refer to the Supporting 

Information).

We also used ToppGene Suite (Chen et al.,2009) to investigate the biological relationships 

of these “stable” genes. These genes were taken as input in ToppGene online tools for 

pathway enrichment analysis. The pathways that are significantly enriched (Bonferonni p-

value <= .05) in the 28 genes selected by SIDANet include Sphingolipid signaling and RNA 

Polymerase 1 Promoter Opening pathways (see Supporting Information). These pathways 

play essential roles in some important biological processes including cell proliferation, 

maturation, and apoptosis (Borodzicz et al., 2015). For instance, several experimental 

and clinical studies suggest that sphingolipids are implicated in the pathogenesis of 

cardiovascular diseases and metabolic disorders (Borodzicz et al., 2015).

We also assessed whether including the “stable” genes and/or m/z features identified by our 

methods is any better than a model with only age and gender. We observe that including 

genes and/or m/z features as a risk score to a model with age and gender results in better 

discrimination of the ASCVD risk groups compared to association or classification-based 

methods, and when compared to a model with only age and gender. By integrating gene 

expression and m/z features and simultaneously discriminating ASCVD risk group, we have 
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identified biomarkers that potentially may be used to predict ASCVD risk, in addition to a 

few established ASCVD risk factors.

3.5.| CONCLUSION

We have proposed two methods for joint integrative analysis and classification studies 

of multiview data. Our framework combines LDA and CCA and is aimed at finding 

linear combination(s) of variables within each view that optimally separate classes while 

effectively explaining the overall dependency structure among multiple views. Of the 

methods we compared our approach to, JACA (Zhang and Gaynanova, 2018) with the same 

end goal and use of both LDA and CCA, emerged as the strongest competitor. However, 

our methods have several advantages over JACA. One such advantage is that our methods 

rely on summarized data (i.e., covariances) making them applicable if the individual view 

cannot be shared due to privacy concerns. Another advantage is that our algorithms provide 

the users the option to include covariates (such as clinical covariates) to guide the selection 

of predictors without putting those covariates up for selection. It is possible to include 

covariates in Zhang and Gaynanova (2018) as another view but the coefficients would be 

penalized and potentially excluded. Finally, SIDANet is both data- and knowledge-driven, 

while JACA (Zhang and Gaynanova (2018)) is mainly data-driven. The use of both data and 

prior knowledge allows us to assess variable– variable interactions and leads to biologically 

interpretable findings. In addition, our tuning parameters selection and our use of parallel 

computing make our algorithm computationally efficient. The encouraging findings from the 

real data analysis motivate further applications. We acknowledge some limitations in our 

methods. The methods we propose are only applicable to complete data and do not allow 

for missing values. The Laplacian matrix encourages smoothing in the same direction. In 

some applications, it is possible that the variables are connected but they have opposite 

signs. In such instances, our approach may fail; a penalty that encourages βi ≈ βj  for 

connected variables i and j might be appropriate. Despite these limitations,our proposed 

methods advance statistical methods for joint association and classification of data from 

multiple sources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Simulation setup when network information is available. In scenario 1, all four networks 

contribute to both separation and association. In the second scenario, two networks (circled 

and in red color [this figure appears in color in the electronic version of this article, and any 

mention of color refers to that version]) contribute to both separation and association
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