Skip to main content
. Author manuscript; available in PMC: 2023 Jun 1.
Published in final edited form as: Biometrics. 2021 Mar 30;78(2):612–623. doi: 10.1111/biom.13458

TABLE 1.

Scenario 1: RS; randomly select tuning parameters space to search. GS; search entire tuning parameters space. MGSDA (Ens) applies sparse LDA method on separate views and perform classification on the pooled discriminant vectors. MGSDA (Stack) applies sparse LDA on stacked views. TPR-1; true positive rate for X1. Similar for TPR-2. FPR; false positive rate for X2. Similar for FPR-2; F-1 is F-measure for X1. Similar for F-2. ρ1 and ρ2 control the strength of association between X1 and X2. c controls the between-class variability within each view

Method Error (%) ρ^ TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2
Setting 1
(ρ1 = 0.9, ρ2 = 0.7, c = 0.5)
SIDA (RS) 0.04 0.99 100.00 100.00 0.00 0.00 100.00 100.00
SIDA (GS) 0.05 0.99 100.00 100.00 0.00 0.00 100.00 100.00
sCCA 0.05 0.99 100.00 100.00 1.04 1.32 69.89 69.19
JACA 0.11 1.00 100.00 100.00 3.42 3.86 42.37 38.07
MGSDA (Stack) 0.19 0.84 7.50 8.50 0.00 0.00 16.82 16.20
MGSDA (Ens) 0.33 0.95 14.25 13.50 0.00 0.05 24.65 22.46
Setting 2
(ρ1 = 0.4, ρ2 = 0.2, c = 0.2)
SIDA (RS) 11.32 0.58 100.00 100.00 1.17 1.90 86.56 80.51
SIDA (GS) 11.42 0.58 100.00 99.75 2.28 1.57 68.82 81.85
sCCA 16.20 0.65 100.00 100.00 2.44 1.14 66.70 70.81
JACA 11.32 0.58 100.00 100.00 2.23 1.94 75.92 76.38
MGSDA (Stack) 12.52 0.55 34.25 32.50 0.04 0.06 48.22 46.29
MGSDA (Ens) 17.05 0.61 39.00 37.00 0.04 0.07 53.34 50.09
Setting 3
(ρ1 = 0.15, ρ2 = 0.05, c = 0.12)
SIDA (RS) 31.03 0.14 98.50 97.00 5.07 2.93 41.43 58.05
SIDA (GS) 29.61 0.26 99.00 99.75 2.48 2.85 53.88 56.07
sCCA 34.80 0.20 92.75 93.75 1.10 1.47 74.66 77.45
JACA 29.84 0.19 97.25 97.00 0.74 0.85 81.51 82.53
MGSDA (Stack) 31.55 0.15 28.00 27.00 0.07 0.05 41.53 40.25
MGSDA (Ens) 35.31 0.16 30.75 28.50 0.17 0.01 41.92 43.09