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Abstract

Lesion detectability (LD) quantifies how easily a lesion or target can be distinguished from 

the background. LD is commonly used to assess the performance of new ultrasound imaging 

methods. The contrast-to-noise ratio (CNR) is the most popular measure of LD; however, recent 

work has exposed its vulnerability to manipulations of dynamic range. The generalized CNR 

(gCNR) has been proposed as a robust histogram-based alternative that is invariant to such 

manipulations. Here, we identify key shortcomings of CNR and strengths of gCNR as LD 

metrics for modern beamformers. Using measure theory, we pose LD as a distance between 

empirical probability measures (i.e. histograms) and prove that 1) gCNR is equal to the total 

variation distance between probability measures, and 2) gCNR is one minus the error rate of 

the ideal observer. We then explore several consequences of measure-theoretic LD in simulation 

studies. We find that histogram distances depend on bin selection, that LD must be considered 

in the context of spatial resolution, and that many histogram distances are invariant under measure-

preserving isomorphisms of the sample space (e.g., dynamic range transformations). Finally, we 

provide a mathematical interpretation for why quantitative values such as contrast ratio, CNR, 

and signal-to-noise ratio should not be compared between images with different dynamic ranges 

or underlying units, and demonstrate how histogram matching can be used to re-enable such 

quantitative comparisons.
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I. Introduction

Ultrasound image quality is difficult to define in an objective and rigorous manner. Image 

quality depends intrinsically on the specific task that the image is used for. A popular task 

in ultrasound imaging is to detect a low-contrast lesion or target embedded in a background, 

where an imaging method with greater lesion detectability (LD) is one that more easily 

detects the target. The most widely-used measure of LD is the contrast-to-noise ratio 

(CNR), which rewards increased overall contrast between the target and background while 

penalizing increased variance within each. Historically, the CNR has been popular for its 

connections to the ideal observer with statistical decision theory, a rigorous hypothesis-based 

framework for detecting signals in noise [1].

As early as 1983, the ideal observer for lesion detection was derived for envelope-detected 

speckle amplitudes and intensities [2]. The ideal observer was then derived for raw 

radiofrequency (RF) echo signals [3], and it was later shown that LD is degraded by 

the envelope detection process [4, 5]. More recently, Nguyen et al. [6, 7] have further 

extended the ideal observer to minimum variance and Wiener-filter beamformers. These 

ideal observer approaches provide rigorous upper bounds on ultrasound LD for given signal 

and noise models. Under appropriate conditions, lesion detection performance of the ideal 

observer test statistic t is captured by the CNR:

CNR(t) = Ef[t] − Eg[t]
Varf[t] + Varg[t] , (1)

where f and g denote the probability distributions of t in the lesion and background, 

respectively, and Ef[t] and Varf[t] denote the expected value and variance of t under 

distribution f.

However, major inconsistencies in current practices have undermined the utility of 

CNR as a LD measure, as demonstrated by Rindal et al. [8]. Ultrasound images are 

often treated as qualitative sources of information, where the raw pixel values are less 

important than their relative values. Clinicians are regularly presented with images that 

have undergone substantial post-processing, such as dynamic range compression, speckle 

reduction, edge enhancement, and more. As ultrasound researchers seek clinically-relevant 

imaging methods, the line between traditional quantitative beamforming and qualitative 

image presentation has become blurred. This trend is especially apparent in the proliferation 

of adaptive methods wherein the delay-and-sum (DAS) beamformer output is weighted by 

various quantities such as coherence factor [9], generalized coherence factor [10], and phase 

coherence factor [11], as well as in nonlinear beamformers that replace DAS altogether, 

such as short-lag spatial coherence (SLSC) [12], delay-multiply-and-sum (DMAS) [13], and 

echogenicity estimation with neural networks [14].

CNR is currently used as the de facto measure of LD when proposing and evaluating 

new imaging techniques. However, recent seminal work by Rindal et al. [8] and Rodriguez-

Molares et al. [15] demonstrated that arbitrarily high values for CNR can be obtained by 

skewing the image dynamic range. We further found that CNR is preserved only for affine 
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dynamic range transformations and not for the more general monotonic transformations 

common to image post-processing [16]. As we will show, many newer methods violate 

core assumptions used to derive the ideal observer for traditional DAS. Amidst the recent 

proliferation of ultrasound image reconstruction techniques, these findings demand that we 

revisit the definitions and assumptions surrounding the ideal observer and CNR as an image 

quality metric. There is a critical need for robust LD image quality metrics that are valid 

across a wide range of different techniques.

To this end, Rodriguez-Molares et al. [15] recently proposed a generalized CNR (gCNR) 

as a robust alternative metric for LD. The gCNR compares histogram-derived probability 

densities of two regions in an image (e.g., lesion and background), denoted as f and g, as

gCNR = 1 − ∫
−∞

∞
min f(a), g(a) da . (2)

The gCNR is reported as being resistant to dynamic range alterations, independent of signal 

units, and as being related to the minimum probability of error by the ideal observer [15]. 

Here, we provide a rigorous confirmation of these findings, and further elucidate the reasons 

why CNR breaks down and why gCNR is robust to transformations on the dynamic range of 

images. The main contributions of this article are as follows:

1. A review of classical LD using statistical decision theory and its often-violated 

assumptions.

2. A measure-theoretic description of LD as a distance between probability 

measures, with a clear identification of where classical LD metrics fail.

3. Mathematical proofs that gCNR is the total variation distance, and that it 

describes ideal observer performance.

4. Key considerations for measure-theoretic LD and a suggested remedy to restore 

the applicability of classical LD metrics.

II. Classical Lesion Detectability

A. Deriving the Ideal Observer

Statistical decision theory provides a framework for detecting lesions embedded in a 

background. Denote the probability density functions (PDFs) of image values a in the 

lesion and background as f(a) and g(a), respectively. Classical decision theory addresses 

the simple hypothesis testing problem, wherein f and g are fully known a priori [1]. In 

this framework, the LD problem can be posed as: Given a sample of N independent and 

identically distributed (i.i.d.) samples a = {a1, a2, …, aN}, decide if a is drawn from f or g. A 

useful quantity is the likelihood ratio of a:

ℒ(a) = g(a)
f(a) =

∏i = 1
N g ai

∏i = 1
N f ai

. (3)
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The Neyman-Pearson lemma [17] states that ℒ(a) is the most powerful test at a given 

significance level α, where the decision boundary is selected as a : ℒ(a) > γα  for some 

threshold γα that depends on α [1]. The same optimal decision boundary can be obtained 

using monotonic transformations of ℒ (and the corresponding transformations of γα), 

including the more convenient log-likelihood ratio.

Consider the case of detecting a speckle lesion embedded in a speckle background. 

Classically, ultrasound speckle amplitudes and intensities are Rayleigh- and exponentially-

distributed, respectively [18]. The PDFs of speckle amplitudes in the lesion f(a) and 

background g(a) are given by

f(a) = a
θf

2 exp − a2

2θf
2 (4)

g(a) = a
θg

2exp − a2

2θg
2 , (5)

where the parameters θf and θg correspond to the known lesion and background reflectivity, 

respectively. The log-likelihood ratio for N i.i.d. samples is

ℓ (a) = logℒ(a) = 2N logθf
θg

+ 1
2θf

2 − 1
2θg

2 ∑
i = 1

N
ai2 . (6)

The log-likelihood is monotonic to the mean speckle intensity:

t = 1
N ∑

i = 1

N
ai2 . (7)

Thus t, the mean speckle intensity, is an optimal test statistic for lesion detection for two 

Rayleigh-distributed speckle amplitudes. The same optimal test statistic is derived when 

starting with speckle intensity distributions for f and g [2]. Others have derived optimal test 

statistics for more difficult cases, such as multivariate normally-distributed RF data [3] and 

for data from beamformers with matched filtering, minimium variance, and Wiener filtering 

[5–7].

B. Characterizing the Ideal Observer with CNR

As N increases to infinity, t in (7) converges to the expected intensity:

lim
N ∞

t = E a2 . (8)

Furthermore, t itself becomes normally-distributed by the central limit theorem, allowing it 

to be fully characterized using only its mean and variance, which are
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lim
N ∞

Ej[t] = 2θj
2, lim

N ∞
Varj[t] = 4θj

4/N (9)

for j = f, g. For sufficiently large N, the detection performance of the optimal test statistic 

can be wholly captured by the CNR in (1), also referred to as the “signal-to-noise ratio” 

(SNR) of the optimal test statistic [2]:

CNR(t) ≈
θf

2 − θg
2

1
N θf

4 + θg
4

. (10)

A rule of thumb is that the approximation is valid for speckle intensities when N > 10 

[2] and for multivariate-normally distributed RF data when N > 50 [19]. Nguyen et al. 

[19] further showed that the CNR is also equal to the square root of the Kullback-Leibler 

divergence and the “detectability index” under conditions of normality.

Note that this ideal observer characterization by CNR uses the expected value and variance 

of the statistic t, and not of the image values a themselves (i.e., not E[a] and Var[a]).

C. Quantifying Lesion Detectability with CNR

In practice, the CNR is used as a LD metric directly on image values a rather than on 

statistic t [20]. However, image values are not normally-distributed in general, in which case 

CNR does not describe ideal observer performance. Consider the CNR of speckle intensities 

a2, which are exponentially distributed with means 2θj
2 and variances 4θj

4. As the number of 

samples N → ∞ (i.e. as the regions of interest grow to include more speckles), the CNR 

approaches

CNR a2 ≈
θf

2 − θg
2

θf
4 + θg

4 = 1
N CNR(t) . (11)

Thus CNR(a2) can be viewed as a N = 1 approximation of the ideal observer 

characterization CNR(t); however, at N = 1, the central limit theorem does not apply. The 

CNR of speckle amplitudes a (mean 2θj, variance (2 − π/2)θj
2) shows even less resemblance 

to the ideal observer performance:

CNR(a) ≈ π
4 − π

θf − θg

θf
2 + θg

2 . (12)

We can attempt to restore the ideal observer interpretation of CNR by devoting a proportion 

of the samples towards first estimating a test statistic t (normally-distributed by the central 

limit theorem), followed by measuring the CNR of t. However, the number of samples (i.e. 

size of the region of interest) is often a limiting factor, making this approach impractical.

Thus the CNR of a normally-distributed optimal test statistic is an excellent quantifier of 

LD built on rigorous hypothesis testing assuming a known signal model; however, these 
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assumptions are commonly violated in ultrasound LD image analysis, causing CNR to lose 

its ideal observer interpretation.

III. Measure-Theoretic Lesion Detectability

The rising interest in imaging methods with non-traditional statistics strongly motivates a 

need for distribution-free tests of LD, i.e. tests that do not assume a known underlying PDF. 

Two examples include work by Nguyen et al. [19, 21], who first demonstrated how detection 

performance is related to the Kullback-Leibler divergence, an information-theoretic measure 

of class separability, as well as Rodriguez-Molares et al. [15], who proposed gCNR using 

image histograms. Below, we unify these ideas using the framework of measure theory to 

develop a new perspective of LD that is suitable for non-traditional ultrasound imaging 

methods.

A. Definitions

We begin with some definitions from measure theory [22, 23], presented for completeness 

and to build towards our discussion of LD as a distance between probability measures.

Consider an arbitrary set Ω. A σ-algebra of Ω is a collection of subsets of Ω that includes 

Ω itself, is closed under complement, and is closed under countable unions. A σ-algebra 

defines the set of all measurable events of interest. Examples include the trivial σ-algebra 
{∅, Ω}, the Borel σ-algebra ℬΩ (the set of all open subsets for a topological space Ω), and 

the discrete σ-algebra 2Ω (the set of all possible subsets for a discrete Ω, i.e. its power set). 

The pair (Ω, Σ) is a measurable space, comprised of a set Ω and a σ-algebra Σ defined on Ω.

A measurable function is a map ϕ : (Ω1, Σ1) → (Ω2, Σ2) from one measurable space (Ω1, 

Σ1) into a second measurable space (Ω2, Σ2) such that if a measurable event S is in Σ2, then 

ϕ−1(S) = {ω ∈ Ω1 : ϕ(ω) ∈ S} ∈ Σ1. That is, every measurable event in Σ2 must have a 

corresponding measurable event in Σ1 under the inverse mapping ϕ−1.

A measure on (Ω, Σ) is a function μ : Σ → [0, ∞] that gives a “size” to every measurable 

subset of Ω (i.e. every S ∈ Σ) while satisfying the properties of a null empty set (μ(∅) = 0) 

and countable additivity (μ ∪i = 1
∞ Xi = ∑i = 1

∞ μ Xi  for disjoint Xi ∈ Σ). A measure provides 

a systematic and self-consistent way of assigning sizes to arbitrary events S ∈ Σ. Important 

examples are the Lebesgue measure (e.g., the length, area, or volume of an open set in ℝ, ℝ2, 

or ℝ3) and the counting measure (which assigns measure 1 to every element in a discrete Ω). 

When the entire set has measure 1 (μ(Ω) = 1), μ is called a probability measure and μ(S) is 

the probability of event S occurring.

A density of μ with respect to a reference measure λ on (Ω, Σ) is f = dμ/dλ, defined 

such that μ(S) = ∫Sdμ = ∫Sf dλ for any S ∈ Σ. For the standard case of a continuous Ω 

with σ-algebra ℬΩ, the density with respect to the Lebesgue measure gives the familiar 

probability density function. For the standard case of a discrete Ω with σ-algebra 2Ω, the 

density with respect to the counting measure gives the familiar probability mass function.
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B. Images, Sample Spaces, and Their Embeddings in ℝ
Denote an imaging field of view (FOV) as Ω ⊂ ℝd, where the FOV is a subset of 

d-dimensional Euclidean space, often a 2D or 3D rectangular or sector region of space 

originating at the transducer. While Ω can refer to a continuous FOV, we often work with 

discrete FOVs of pixels or voxels in practice. A real-valued ultrasound image maps Ω to ℝ
by assigning some real number to every point in the FOV.

Here, we explicitly decompose this real-valued representation into two distinct parts: 1) the 

intrinsic image ϕ : Ω → A, which maps the FOV into some abstract sample space A; and 2) 

its extrinsic representation using real numbers ρ : A ℝ, which embeds A in ℝ. The sample 

space A is the abstract set of values that ϕ can produce, e.g., {a1, a2, …}; these are then 

represented as real values (e.g., {0, 0.1, …}) via an embedding {ρ(a1), ρ(a2), …}. There 

are many ways to embed A in ℝ: for instance, we may wish to have an embedding ρlin 

that preserves linearity with respect to the inputs, or an embedding ρlog on a logarithmic 

scale designed to optimize contrast for human observers. Within this framework, dynamic 

range transformations are simply different embeddings ρ applied to the same image ϕ. Fig. 1 

illustrates the composition ρ ◦ ϕ.

We often work with real-valued images (i.e. ρ ◦ ϕ), treating the embedding step as 

implicit. However, an image ϕ carries intrinsic information in its distribution over A that 

is independent of its embedding in ℝ by ρ. This intrinsic information is the primary focus 

of this paper. For the remainder of the paper, we explicitly refer to intrinsic image values as 

a ∈ A and their real-valued embeddings as ρ(a). We address the special case of quantitative 

images (where the embedding ρ itself also conveys information, e.g., as physical units) in 

Sec. IV-D, where we also show that ambiguity in embedding leads to a major lapse in rigor 

for traditional lesion detectability with newer methods.

C. Image Histograms as Probability Measures

Images provide a natural definition of a probability measure based on the proportion of the 

FOV that corresponds to a given image value. Let us define an image more precisely as a 

measurable function ϕ : (Ω, Σ) → (A, ΣA), where Σ and ΣA are σ-algebras on each respective 

space. For any measurable subset of image values S ∈ ΣA, there is a corresponding subset of 

the FOV whose image values are in S (see Fig. 2). We refer to this as the inverse image of S, 

defined as the set of all FOV points with values in S:

ϕ−1(S) = ω ∈ Ω:ϕ(ω) ∈ S . (13)

By the definition of a measurable function, ϕ−1(S) is also measurable, i.e. S ∈ ΣA implies 

ϕ−1(S) ∈ Σ.

Let m be a measure on (Ω, Σ) that describes the size of any measurable region of interest 

(ROI) in Ω. Specifically, let m be the Lebesgue measure for continuous Ω or the counting 

measure for discrete Ω. For a given set of image values S, the fraction of the FOV that takes 

on these values defines a probability measure μ:
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μ(S) =
m ϕ−1(S)

m(Ω) . (14)

That is, μ(S) is the proportion of Ω that has image values that lie in S. Another way to say 

this is that μ is the pushforward of a normalized Lebesgue or counting measure from (Ω, 

Σ) onto (A, ΣA). The density f of μ with respect to an appropriate (Lebesgue or counting) 

reference measure λ is referred to as the (continuous or discrete) histogram of the image. 

Note that ΣA essentially defines the histogram intervals of interest. This entire process is 

illustrated in Fig. 2. For real-valued images, if the embedding is a measurable function 

ρ : A, ΣA ℝ, Σρ , then the composition of ϕ with ρ is also a measurable function, i.e. 

ρ ∘ ϕ : (Ω, Σ) ℝ, Σρ , in which case the real-valued image specifies a probability measure 

in the same way.

To summarize, an ultrasound image ϕ maps a FOV Ω into a sample space A. This image 

naturally defines a probability measure μ and histogram f, measured as the fraction of Ω that 

gets mapped into the corresponding image values.

D. Lesion Detectability as a Distance Between Measures

Consider now two regions of interest (ROIs) Ωf, Ωg ⊂ Ω corresponding to a lesion and 

background, as illustrated in Fig. 3a. For an image ϕ : (Ω, Σ) → (A, ΣA), we can restrict 

ϕ to Ωf and Ωg and form the corresponding probability measures μ and ν with histograms 

f and g, respectively (Fig. 3b). We further require that both μ and ν are measures on the 

same measurable space (A, ΣA) (e.g., both ROIs share a common set of histogram intervals). 

Then μ and ν constitute two points in the space of all probability measures on (A, ΣA), 

and LD implies the notion of a distance between μ and ν, where an easily detectable lesion 

corresponds to a larger distance and an undetectable lesion to a smaller distance.

Traditional LD can be expressed in this framework, given some embedding ρ : A ℝ. The 

contrast ratio (CR) between the two ROIs is defined as

CR(μ, ν; ρ) =
∫Aρ(a)dμ
∫Aρ(a)dν = Eμ[ρ(a)]

Eν[ρ(a)] , (15)

where Eμ[ρ(a)] is the expected value of ρ(a) over μ. Observe that the expected value only 

makes sense in the context of a real-valued embedding. The CR is the ratio between the 

first moments of ρ(a) with respect to μ and ν. Similarly, CNR takes the difference of first 

moments normalized by the second centered moments of ρ(a):

CNR(μ, ν; ρ) = Eμ[ρ(a)] − Eν[ρ(a)]
Varμ[ρ(a)] + Varν[ρ(a)] (16)

These expectations are taken over A, and are equivalent to the more classical expectation 

over Ωf and Ωg.
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Neither CR nor CNR are true “metrics” in the geometric sense because zero distance 

does not imply μ = ν and CNR does not satisfy the triangle inequality. Furthermore, CR 

and CNR depend only on the first and second moments and do not capture higher-order 

statistics such as skewness or kurtosis. Perhaps most importantly, CR and CNR depend 

explicitly on ρ : A ℝ. Consequently, neither CR nor CNR are invariant under dynamic 

range transformations, as demonstrated by Rindal et al. [8]. We expand upon this point in 

Sec. IV-D.

E. Generalized CNR is the Total Variation Distance

Let μ and ν denote two probability measures on (A, ΣA), and let f = dμ/dλ and g = dν/dλ 
denote their respective densities. The gCNR [15] is defined as

gCNR(μ, ν) = 1 − ∫
A

min f, g dλ . (17)

The total variation distance of μ and ν is defined as [24]:

dTV(μ, ν) ≡ sup
S ∈ ΣA

μ(S) − ν(S)
(18)

= 1
2 max

ℎ ≤ 1 ∫A
ℎdμ − ∫

A
ℎdν , (19)

where (19) is a maximum over all functions h : A → [−1, 1]. In words, the total variation 

distance describes the maximum difference in the values that μ and ν can give to the same 

event S, for all possible S ∈ ΣA.

Theorem 1.—The gCNR is the total variation distance.

Proof.: The total variation distance can be rewritten as

dTV(μ, ν) = 1
2 max

ℎ ≤ 1 ∫A
(f − g)ℎdλ (20)

= 1
2∫A

f − g dλ, (21)

where (20) is obtained by replacing dμ = f dλ and dν = g dλ in (19), and where we observe 

that the absolute value of the integral in (20) is maximized by a function h(a) defined as ±1 

depending on the sign of f(a)−g(a), which is equivalent to bringing the absolute value inside 

of the integral.

The gCNR can also be rewritten. Observe that the pointwise minimum of two functions is

min f, g = 1
2(f + g − f − g ) . (22)
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Therefore, the gCNR is

gCNR(μ, ν) = 1 − 1
2∫A

(f + g − f − g )dλ (23)

= 1
2∫A

f − g dλ . (24)

where we see in (23) that ∫Af dλ = ∫Agdλ = 1 because μ and ν are probability measures. 

Therefore, gCNR = dTV. □

F. Total Variation Distance and the Ideal Observer

The original derivation of gCNR [15] identified a statistical relationship to the minimum 

probability of error Pmin for the ideal observer, defined as a decision boundary based on 

an optimal threshold ρ(a) = ϵ0 (see Fig. 2 and Eq. (13) in [15]). As noted by the authors, 

this derivation only applies to the case where densities f and g intersect at a single point, 

and would require multiple thresholds to extend the derivation to the more general case of 

multimodal f and g (or more precisely, to when f and g may intersect multiple times).

Here, we provide a formal proof to complete the derivation by restating a well-known 

theorem from measure theory [25]. The proof replaces sample-space thresholds (i.e. along 

the horizontal axis A in Fig. 3b) with probability-based thresholds (i.e. along the vertical 

axis in Fig. 3b), analogous to the difference between a Riemann integral and a Lebesgue 

integral. The proof further dispenses of the embedding ρ of A in ℝ, working directly with 

the abstract A.

Let μ and ν denote probability measures on (A, ΣA) for a positive and negative ground truth 

(i.e. lesion and background) and let f and g denote their densities with respect to reference 

measure λ, respectively. Let ψ : A → [0, 1] denote a detection algorithm, where a positive 

decision by the algorithm is denoted ψ(x) = 1. The probability of error by ψ is the sum of 

the false positive ∫A ψ dν  and false negative ∫A(1 − ψ)dμ  probabilities.

Theorem 2.—For all possible detectors ψ, the infimum (i.e. greatest lower bound) on the 

probability of error is 1 − dTV:

Pmin(μ, ν) ≡ inf
ψ ∫

A
ψ dν + ∫

A
(1 − ψ)dμ (25)

= 1 − dTV(μ, ν) . (26)

Proof.: (Adapted from [25].) Rewrite (25) using f, g, and dλ:

Pmin(μ, ν) = inf
ψ ∫

A
ψ gdλ + ∫

A
(1 − ψ)f dλ (27)
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= 1 + inf
ψ ∫

A
(g − f)ψ dλ . (28)

The optimal ψ that minimizes the integral in (28) is

ψ⋆(a) = 1, f(a) > g(a)
0, f(a) ≤ g(a) (29)

This is equivalent to restricting A to the subset S where f > g:

Pmin(μ, ν) = 1 + ∫
S

(g − f)dλ . (30)

Denoting the complement of S as Sc ≡ A \ S, the integral over all of A can be decomposed as 

the sum over S and Sc:

∫
A

(g − f)dλ = ∫
S

(g − f)dλ + ∫
Sc(g − f)dλ . (31)

Furthermore, note that ∫A(g − f)dλ = 0 because μ and ν are probability measures, i.e. 

∫Adμ = ∫Adν = 1. Therefore,

∫
S

(f − g)dλ = ∫
Sc(g − f)dλ . (32)

Next, observe that the definition of the absolute value implies

∫
A

f − g dλ = ∫
S

(f − g)dλ + ∫
Sc(g − f)dλ, (33)

i.e., the integral of f−g over S (where f > g) plus the integral of g − f over Sc (where f ≤ g).

We can use (32) and (33) together to show that

∫
S

(f − g)dλ = 1
2∫A

f − g dλ . (34)

Finally, combining (30) and (34), we have

Pmin(μ, ν) = 1 − 1
2∫A

f − g dλ (35)

= 1 − dTV(μ, ν), (36)

completing the proof. □

Therefore, dTV = 1 − Pmin, coinciding with the original interpretation of gCNR [15]. 

Theorem 2 implicitly handles an arbitrary number of intersections between f and g, 
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extending the derivation to the case of arbitrary probability measures μ and ν, as illustrated 

in Fig. 4. Additionally, ψ★ defines the ideal observer in the Pmin sense. Observe that this 

ideal observer makes no assumptions on the distribution of a, unlike prior definitions of the 

ideal observer that assumed parametric distributions on a [2–7, 26]. Furthermore, ψ★ bases 

its decision only on the sign of f(a)−g(a), and is entirely independent of A’s embedding in 

ℝ, unlike CR, CNR, and even the ρ(a) = ϵ0 interpretation of gCNR. This decoupling of A 
from ℝ makes dTV invariant under isomorphisms of A, and thus dTV is an excellent metric 

for comparing LD between imaging methods with different units (i.e., different embeddings 

of A).

G. Other Distances Between Probability Measures

The total variation is one of many well-studied distances on the space of probability 

measures on (A, ΣA), including integral probability metrics (IPMs) such as the Kolmogorov, 

Kantorovich (i.e. Wasserstein), and Hellinger metrics, as well as ϕ-divergences such as the 

Kullback-Leibler divergence (i.e. relative entropy) [24, 27, 28]. We list several examples 

in Table I. Each of these quantities can be used to quantify LD as the distance between 

two probability measures. The specific choice of metric depends upon the application 

and desired statistical properties. Metrics like dTV are excellent choices for qualitative 

data where distances in A are not physically meaningful, such as grayscale-transformed 

image data, where the actual pixel values have arbitrary units. By contrast, metrics like the 

Wasserstein distance may be preferred for quantitative data where the geometry of A is 

meaningful, such as velocity estimates. (See Sec. IV-D for further discussion.)

The present exposition is intentionally abstract to illustrate the wide applicability of this 

framework. The sample space A can refer to image values of not only DAS B-mode 

but also to SLSC [12], F-DMAS [13], Power Doppler, Color Doppler, acoustic radiation 

force impulse (ARFI), shear-wave elastography imaging (SWEI), to vector-valued images 

like vector flow Doppler and channel data, and even to other medical imaging modalities 

altogether. As long as the probability measures μ and ν (from ROIs Ωf and Ωg, respectively) 

are defined on a common measurable space (A, ΣA), LD can be measured as the distance 

between μ and ν using not only dTV (i.e. gCNR) but also with any of the other distances 

mentioned above.

IV. Further Considerations and Examples

A. Methods: Ultrasound Simulations

Below, we highlight several key considerations for measure-theoretic LD using simple 

simulated examples of pulse-echo ultrasound. Using Field II [29, 30], an L12–3v transducer 

(128 elements, 8 MHz center frequency, 60% fractional bandwidth) was simulated in a 

full-synthetic aperture configuration with single element transmissions. A speckle phantom 

of size 10 mm × 3 mm × 10 mm (azimuth × elevation × depth) was centered at the elevation 

lens focal depth of 20 mm. Speckle was simulated using randomly placed scatterers with 

random amplitude at a density of 20 scatterers per resolution cell. Cylindrical lesions with 

a diameter of 3 mm were placed at the focus, and were simulated to have intrinsic contrasts 
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of −20 dB, −12 dB, −6 dB, and 0 dB. A total of 8 speckle realizations were simulated per 

lesion contrast. Dynamic focusing was applied on transmit and receive.

B. Lesion Detectability with Empirical Densities

The histograms of image pixels within the lesion and background are empirical densities 

that define empirical probability measures μ and ν . These empirical measures are estimates 

of a true underlying μ and ν. While the goal is to measure d(μ, ν), in practice we can 

only measure d μ, ν . Therefore, care must be taken to ensure that the distance of empirical 

measures is an accurate reflection of the true distance [31].

For example, dTV is sensitive to the choice of histogram bins (i.e. σ-algebra Σ). Fig. 5 

shows a pathological example where two histograms with zero overlap (Fig. 5a, dTV = 1) 

can completely overlap under a coarser bin size (Fig. 5b, dTV = 0). Fig. 6 further illustrates 

how dTV varies as a function of the number of histogram bins for −20 dB, −12 dB, −6 dB, 

and 0 dB lesions. Although lesions with greater intrinsic contrast have greater detectability 

as expected, all lesions can be made to have dTV → 0 by using extremely coarse bins and 

dTV → 1 by using extremely fine bins. Nearly identical plots were observed for lesions with 

positive contrast (+20 dB, +12 dB, and +6 dB; not pictured). This behavior does not reflect a 

true change in the underlying LD but rather an artifact due to inadequate sampling.

Therefore, histogram bins must be fine enough to capture the detailed behavior of the 

density, yet coarse enough to avoid bins of artificially low counts due to insufficient samples. 

A reasonable choice for number of bins depends on the number of available samples; 

popular rules of thumb include N and N1/3. When comparing the LDs of two different 

imaging methods (e.g., with different underlying units), appropriate histograms bins should 

be selected for each method separately (e.g., with variable widths for heavily-skewed 

distributions), preferably with the same number of bins.

C. Lesion Detectability Versus Spatial Resolution

It is important to emphasize that LD is a narrow aspect of overall image quality. 

Although histogram distances are an excellent measure of LD, histograms ignore the 

spatial arrangement of the pixel values within each ROI. Consequently, these histogram-

based methods ignore important spatially-dependent image quality attributes such as spatial 

resolution, as first observed by Rindal et al. [32].

Fig. 7 shows a clear example of the interplay between dTV and spatial resolution for 

a −6 dB lesion. B-mode images were formed using six image reconstruction methods: 

conventional DAS beamforming, coherence factor (CF)-weighted B-mode [9], SLSC [12, 

33], DMAS [13], incoherent spatial compounding (4 subapertures on receive), and the 

beamforming deep neural network (DNN) from Hyun et al. [14] designed for speckle-

reduced echogenicity estimation. The original images from each beamformer (top row) 

were low-pass filtered using a 2D Gaussian window with standard deviations of roughly 
1
3λ, 2

3λ, and λ ≈ 193 um. Surprisingly, we were able to achieve arbitrarily high dTV using 

low-pass filtering with every tested method. One concerning interpretation of these results 

is that techniques with worse spatial resolution perform better in LD tasks. Indeed, spatial 
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compounding (which trades resolution for speckle reduction) reported higher dTV than every 

other method besides the DNN (which aggressively smooths speckle while preserving edges 

and resulted in the maximum dTV = 1). When LD is the sole image quality metric, one can 

simply low-pass filter the same image to achieve better LD up to the maximum of dTV = 1. 

These results agree with the conclusions of Rindal et al. [32] and strongly indicate that LD 

must be taken in the context of spatial resolution.

In Fig. 8, we demonstrate how LD can be combined with spatial resolution to draw 

more powerful conclusions. A simple low-pass filter (LPF) was compared against spatial 

compounding (SC) beamforming. LPF was applied to a DAS image of a −6 dB lesion, with 

standard deviations ranging from 0 λ to 0.7 λ. Spatial compounding (SC) was performed 

by dividing the receive aperture into N subapertures, where N ranged from 1 to 128. For 

each case, dTV was plotted against the axial and lateral resolution, measured as the speckle 

autocorrelation FWHM. While there were individual cases where LPF had higher dTV than 

SC, these plots make clear that for a fixed spatial resolution, SC was strictly superior to 

LPF in dTV. Spatial resolution thus provides crucial context needed to avoid making unfair 

comparisons between different imaging methods. However, defining spatial resolution for 

nonlinear methods remains a difficult and open challenge [34, 35].

D. Comparing Quantitative Measurements

As described in Sec. III-B, a raw image ϕ and its sample space A are intrinsic entities 

independent from their extrinsic embedding in ℝ via ρ. We have shown that probability 

measure distances like the total variation, Kolmogorov, Hellinger, and Lp norm can be used 

to comparing raw images directly without reference to their embeddings. However, images 

are eventually embedded in ℝ for display and analysis. Therefore, it is important to be able 

to analyze the real-valued representations of images within the context of an embedding.

A variety of embeddings are used in practice. For instance, DAS B-mode images are 

commonly analyzed (e.g., CR, CNR, SNR) using a linear scale embedding ρlin
DAS ∘ ϕ, but 

displayed using a log-scale embedding ρlog
DAS ∘ ϕ. Many of the new beamforming methods 

being introduced today also use different embeddings. Hverven et al. [36] provide a 

comprehensive comparison of the distributions of popular ultrasound beamformers, noting 

that speckle statistics vary significantly. Using the images in Fig. 7 as an example, we can 

express this variety of embeddings as ρlog
DAS ∘ ϕDAS, ρlog

CF ∘ ϕCF, ρlin
SLSC ∘ ϕSLSC, … . Note that 

although CF and DMAS images are all considered “B-mode” images, in reality, their sample 

spaces are embedded in ℝ in slightly different ways, i.e., ρlin 
DAS ≠ ρlin 

CF ≠ ρlin 
DMAS.

This use of different embeddings creates a problem. Criteria like CR, CNR, and SNR, 

measure statistics of the composition ρ ◦ ϕ, and thus the results are affected by changes in 

both ρ and ϕ. For example, a change in CNR before and after log-compression describes 

the effect of ρ, not ϕ. These criteria are useful when analyzing quantitative images, where 

ρ imparts meaningful, numerical information, such as physical units or preserving linearity. 

However, we encounter a critical lapse in rigor when ρ is considered to be a degree of 

freedom. Rindal et al. [8] showed that one can raise and lower these quantitative criteria 
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arbitrarily with dynamic range transformations, i.e., when ρ is not held constant. Arguably, 

most ultrasound beamforming efforts aim to improve the intrinsic content ϕ, not the extrinsic 

embedding ρ. Therefore, to restore rigorous quantitative evaluations of ϕ, we must first hold 

ρ constant.

In certain situations, a preferential embedding may exist. For instance, we may be calibrated 

to a canonical embedding, e.g., lesion contrasts defined with respect to ρlin 
DAS, or we might 

want to compare methods within the embedding used for a visual observer, e.g., under ρlog
DAS. 

Whatever the selected embedding, we are able to isolate the contribution of the underlying 

image by holding ρ constant, e.g., {ρ ◦ ϕDAS, ρ ◦ ϕCF, ρ ◦ ϕSLSC, …}. (Alternatively, one 

could hold the image ϕ constant and use different embeddings intentionally as {ρDAS ◦ 
ϕ, ρCF ◦ ϕ, …} to study the embedding’s impact on image perception, but we leave that 

discussion to future work.) In these cases, quantitative criteria like CR, CNR, and SNR can 

be used rigorously to evaluate image quality under the specified embedding.

E. Enforcing a Common Embedding with Histogram Matching

In practice, images are already embedded in ℝ when they are obtained. To place all images 

under a common embedding, we must first undo their respective embeddings and then apply 

the desired one. For example, given a real-valued image ρ1 ◦ ϕ, we can embed ϕ via ρ2 as

ρ2 ∘ ρ1
−1 ∘ ρ1 ∘ ϕ = ρ2 ∘ ϕ, (37)

where ρ2 ∘ ρ1
−1: ℝ, Σρ1 ℝ, Σρ2  is a measurable function that takes an image embedded by 

ρ1 and embeds it by ρ2 instead. The requirement of a measurable function ensures that any 

probability measures can be properly pushed forward from one embedding to another in a 

measurable way.

This process is a well-established practice in image processing better known as histogram 
matching [37], and has been used sporadically for comparing visually different ultrasound 

images [16, 38–40]. There are numerous criteria one can use to “match” two histograms. 

We provide a brief survey of methods for ultrasound histogram matching in Bottenus et al. 

[16], including matching the full FOV vs. ROIs and using affine vs. monotonic transforms 

ρ2 ∘ ρ1
−1.

We illustrate with an example in Fig. 9 comparing DAS and SLSC images. Each image is 

usually presented under its own respective embedding, e.g., ρlog
DAS ∘ ϕSLSC vs. ρlin

SLSC ∘ ϕSLSC. 

These images differ significantly in their overall appearance and in the range of values 

observed for CR, CNR, and SNR. Some of these differences are attributable to differences 

in the information captured in the underlying images, whereas others are due to differences 

in their embeddings. Here, we isolate the effect of the images by holding the embedding 

constant, using ρlog
DAS for display and ρlin 

DAS for quantitative values, allowing the images to 

be compared qualitatively and quantitatively in a fair manner. The change in embeddings is 

achieved using a full FOV monotonic histogram match [16].
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Histogram matching is not always exact, especially in cases where the two embeddings 

correspond to physically different values (e.g., echogenicities vs. correlation coefficients) 

that have no natural one-to-one mapping. The validity of any quantitative comparisons of 

histogram-matched images rests on the validity of the selected histogram matching process. 

The methods prescribed by Bottenus et al. [16] provide an empirical way to obtain ρ2 ∘ ρ1
−1

on a per-image basis. It is possible that more meaningful matching can be achieved by using 

a large database of paired images or even using an analytical equation. Nevertheless, even a 

first-order attempt to match embeddings should considerably improve the rigor with which 

new ultrasound methods are compared.

V. Discussion and Conclusion

Traditional LD theory relies on signal and noise models with known PDFs. However, 

knowledge of the PDF has become an untenable assumption in modern ultrasound 

beamforming and imaging research, where complex and nonlinear methods are regularly 

proposed and deployed under non-ideal imaging conditions. We showed in Sec. II that 

while the CNR has origins in rigorous ideal observer theory, many of its underlying 

assumptions are violated regularly in current practice. By contrast, we described in Sec. 

III a distribution-free histogram-based approach to LD without making assumptions on 

the PDFs. We decomposed real-valued images into their abstract representation ϕ and 

their embedding as real numbers ρ. Although not discussed here, this decomposition has 

information-theoretic implications, where the probability measure induced by ϕ can be used 

to measure quantities like the entropy of the image [35]. Finally, we showed that LD can 

be formulated as a distance between probability measures of image values from lesion and 

background ROIs.

Theorem 1 proved that the popular gCNR metric is equal to the well-known total variation 

distance. Theorem 2 proved that its value is equal to one minus the best achievable error rate 

by an ideal observer. We further showed that dTV is one among many histogram distance 

metrics, listed in Table I; just as the L1 and L2 errors give two measures of regression error, 

each histogram distance presents its own statistical properties and interpretations. Unlike 

traditional contrast values like CR and CNR, many histogram distances are independent of 

the sample space embedding in ℝ, making them invariant under monotonic transformations 

and well-suited for comparing information content between images that have undergone 

different dynamic range transformations, or that have different underlying units.

The measure-theoretic approach has several potential pitfalls. In general, distribution-free 

approaches sacrifice some statistical power for broader applicability. We consider this trade 

off necessary given the breadth of current ultrasound research. Additionally, we illustrated 

in Sec. IV-B how histogram-based LD is affected by the histogram estimation process. 

Similar to how the CNR approximates classical detection performance in the limit of N → 
∞, empirical histogram distances are approximations of the true underlying distance that 

depend on the quality of the histograms. The histogram bins must be fine enough to capture 

the important shapes of the distributions but coarse enough that the given number of samples 

can sufficiently characterize the distribution.
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We also showed in Sec. IV-C that LD describes a narrow aspect of image quality. Histogram 

distances discard information about the spatial arrangement of image values and hence must 

be presented in the context of spatial resolution. Fig. 7 showed that a simple low-pass 

filter sharply increased dTV for every tested beamformer, at the cost of resolution. Fig. 8 

gave a basic example of how presenting dTV as a function of spatial resolution provided 

important context for interpreting imaging performance. However, there is a current lack of 

consensus on an appropriate definition of spatial resolution for nonlinear imaging methods. 

The rigorous development of complementary image quality metrics should be an emphasis 

of future work [35].

Finally, we utilized the measure-theoretic framework in Sec. IV-D to illustrate why 

quantitative values like CR, CNR, and SNR cannot be compared across different imaging 

methods unless they share the same embedding. Quantitative values are explicitly defined 

with respect to a particular embedding. However, modern beamforming techniques introduce 

changes to both the underlying image and its embedding. When the embedding is 

unconstrained, one can arbitrarily improve the quantitative values without qualitatively 

changing the image [8]. The images must thus be embedded in ℝ using a common 

embedding to enable rigorous cross-method comparisons. We proposed to resolve this issue 

via histogram matching [16], a method that specifies a new embedding for an image, 

allowing direct comparisons of CR, CNR, SNR, and beyond.

Through these derivations and examples, we have found that framing LD as a distance 

between probability measures sheds light on existing pitfalls and provides a powerful 

perspective to guide new developments in ultrasound imaging research.
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Fig. 1. 
(a) A 2D FOV Ω in 3D space. (b) A log-compressed B-mode image with a −6 dB lesion. (c) 

Image formation is decomposed into two distinct steps: 1) mapping Ω to an abstract sample 

space A using ϕ, and 2) embedding A in ℝ using ρ. Examples of a linear and logarithmic 

embedding are shown. The final image in (b) corresponds to the composition of ϕ with ρlog.
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Fig. 2. 
Illustration of how a probability measure is induced by an image ϕ. (a) Three disjoint subsets 

(E1, E2, E3) of the sample space A are shown in different shades of gray. (b) Each Ei 

corresponds to a different subset of the FOV Ω under the inverse mapping ϕ−1 (shown as 

the corresponding shades of gray). The fraction of the total FOV area corresponding to each 

ϕ−1(Ei) defines a probability measure μ (i.e. μ(Ei) is the probability of observing a value in 

Ei in the FOV) whose density is the histogram f = dμ/dλ.
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Fig. 3. 
The lesion detectability problem is illustrated. (a) Given the image function ϕ from Fig. 1b, 

we select two image domains Ωf and Ωg (e.g. regions of interest). (b) The histograms of ϕ in 

Ωf and Ωg are obtained as f and g, respectively. Lesion detectability can be measured as the 

distance between the probability measures specified by f and g.
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Fig. 4. 
The advantages of the measure-theoretic ideal observer are illustrated. (a) The one-

intersection case is easily handled by a threshold ρ(a) = ϵ0 [15]. (b) Multiple intersections 

between f and g require multiple thresholds and a complicated decision rule that depends on 

ρ. (c) The measure-theoretic perspective extends gCNR to arbitrary intersections of f and g 
with the simple decision rule f ≥ g, and is entirely independent of the embedding ρ.
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Fig. 5. 
An example of how the choice of histogram bins (i.e. σ-algebra Σ) affects the distance 

estimate. The histograms f (hatched bars) and g (gray solid bars) show the densities of μ and 

ν. (a) Measures μ and ν on Σ are maximally distant (dTV = 1). (b) The exact same measures 

restricted to a coarser sub-σ-algebra Σsub ⊂ Σ are indistinguishable (dTV = 0). The choice of 

Σ has an undesirably strong influence on histogram distance measures.
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Fig. 6. 
The total variation distance (gCNR) is plotted as a function of number of bins for 0 dB, −6 

dB, −12 dB, and −20 dB lesions. The distance is artificially low when using few coarse bins 

(left) and grows arbitrarily high when using many fine bins (right). The dashed line shows 

the number of pixels in the whole image, and the shaded area around each plot shows one 

standard deviation measured across 8 speckle realizations.
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Fig. 7. 
LD of a −6 dB lesion is compared for several imaging methods (columns) under low-pass 

filtering with Gaussian windows of increasing standard deviation (rows). With low-pass 

filtering, the dTV (i.e. gCNR) of every tested method could be made arbitrarily high. These 

results demonstrate that lesion detectability cannot be considered independently of spatial 

resolution.
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Fig. 8. 
Total variation distance (gCNR) is plotted as a function of axial and lateral resolution for 

low-pass filtering (LPF) versus spatial compounding (SC), for different filter window sizes 

and different subaperture sizes, respectively, as annotated on the plots. Both LPF and SC 

improve dTV at the cost of resolution, but SC achieves better dTV for a given resolution. 

Lesion detectability is more informative when measured as a function of spatial resolution.
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Fig. 9. 
To compare the intrinsic information content of ultrasound images, the embedding should 

be held constant. (top left) A DAS image ϕDAS is displayed using a log-scale DAS 

embedding ρlog
DAS. (top middle) An SLSC image ϕlin

SLSC is displayed using a linear-scale 

SLSC embedding ρlin
SLSC and has a sharply different appearance. (top right) The SLSC image 

is placed on the same embedding as the log-scale DAS image via histogram matching, 

resulting in a fairer visual comparison of the underlying information content. (bottom left) 

The gCNR, CR, CNR, and SNR are computed on ϕDAS using a linear scale DAS embedding 

ρlin 
DAS. (bottom middle) The same are computed for ϕSLSC using the SLSC embedding, 

yielding very different CR and SNR values. (bottom right) The same values are computed 

for ϕSLSC using ρlin 
DAS, allowing quantitative analysis of the underlying image that is not 

confounded by ρlin
SLSC. Note that gCNR (i.e. dTV) does not depend on the embedding and is 

thus invariant under histogram matching.

Hyun et al. Page 29

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyun et al. Page 30

Table I

Distances Between Probability Measures

Name Distance Between μ and v

Contrast Ratio* CR(μ, ν) = 20log10 Eμ[ρ(a)]/Eν[ρ(a)]

CNR* CNR(μ, ν) =
Eμ[ρ(a)] − Eν[ρ(a)]

Varμ[ρ(a)] + Varν[ρ(a)]

Total Variation (gCNR) dTV(μ, ν) = 1
2∫A|f − g |dλ

Kolmogorov
† dKolm.(μ, ν) = sup

a ∈ A
|F(a) − G(a)|

Kullback-Leibler
‡ dKL(μ ν) = ∫Alog(f /g)f dλ

Hellinger dHe.(μ, ν) = ∫A
( f − g)2

2 dλ
1
2

Lp norm dLp(μ, ν) = ∫A(f − g)pdλ 1/p

Wasserstein* dW p(μ, ν) = inf
γ(a, b)

∫A × Am(ρ(a), ρ(b))pdγ
1
p

*
Dependent on embedding ρ;

‡
An asymmetric divergence

†
F and G are cumulative distribution functions
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