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Abstract

Human epidermal melanocytes play a central role in sensing the environment and protecting 

the skin from the drastic effects of solar ultraviolet radiation and other environmental toxins or 

inflammatory agents. Melanocytes survive in the epidermis for decades, which subjects them 

to chronic environmental insults. Melanocytes have a poor self-renewal capacity; therefore, 

it is critical to ensure their survival with genomic stability. The function and survival of 

melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by 

epidermal keratinocytes and dermal fibroblasts. A symbiotic relationship exists between epidermal 

melanocytes and keratinocytes on the one hand, and between melanocytes and dermal fibroblasts 

on the other hand. Melanocytes protect epidermal keratinocytes and dermal fibroblasts from 

the damaging effects of solar radiation, and the latter cells synthesize biochemical mediators 

that maintain the homeostasis, and regulate the stress response of melanocytes. Disruption of 

the paracrine network results in pigmentary disorders, due to abnormal regulation of melanin 

synthesis, and compromise of melanocyte survival or genomic stability. This review provides an 

update of the current knowledge of keratinocyte- and fibroblast-derived paracrine factors and their 

contribution to melanocyte physiology, and how their abnormal production is involved in the 

pathogenesis of common pigmentary disorders.
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1 ∣ INTRODUCTION

By synthesizing the pigment melanin, human epidermal melanocytes regulate important 

cutaneous and extra-cutaneous physiological functions. Pigmentation is thought to be 

important for inhibiting the degradation of folic acid, which is critical for normal fetal 

neuronal development during pregnancy (Jablonski & Chaplin, 2000). Also, pigmentation is 

proposed to contribute to proper barrier function of skin to prevent transdermal water loss 

and invasion by pathogens (Man et al., 2014). Epidermal melanocytes play a major role 

in protecting the skin from the drastic effects of solar ultraviolet radiation (UV), mainly 

photocarcinogenesis and photoaging (Gilchrest et al., 1999; Gilchrest & Rogers, 1993). 

Sunburn can instigate melanocyte apoptosis, resulting in vitiligo, and sun exposure can 

cause hyperpigmentary disorders, such as melasma (Manga et al., 2016; Rajanala et al., 

2019). Additionally, severe sunburns, particularly during the childhood or adolescence years, 

can initiate melanomagenesis (Green et al., 2011). Melanin synthesized by melanocytes 

serves as a physical barrier that reduces the penetration of solar UV rays through the 

epidermal layers (Kaidbey et al., 1979). Additionally, eumelanin, the dark brown pigment, 

is a scavenger of reactive oxygen species (ROS), which can cause oxidative damage to 

cellular DNA, proteins, and lipids (Bustamante et al., 1993; Meredith & Sarna, 2006). 

High constitutive melanin content and the ability to tan, as in skin phototypes III-VI, 

are associated with low risk for sun-induced non-melanoma skin cancers and melanoma 

and reduced photoaging (Halder & Bridgeman-Shah, 1995; Lopes et al., 2021). However, 

these phototypes are more prone to post-inflammatory hyperpigmentation (Davis et al., 

2012). Unlike epidermal keratinocytes and dermal fibroblasts, melanocytes are unique in 

their low proliferation capacity and longevity for decades in the skin. Their long life span 

subjects melanocytes to chronic exposure to environmental stressors that can impact their 

function, survival, and/or genomic stability. Given the significance of melanocytes in normal 

skin physiology, it is highly critical to understand the mechanisms that maintain their 

homeostasis.

2 ∣ PARACRINE REGULATION OF MELANOCYTES BY KERATINOCYTES

Melanocytes communicate physically with keratinocytes by the transfer of melanin-

containing melanosomes, a mechanism that confers even skin pigmentation and 

photoprotection. Melanosomes in keratinocytes form supranuclear caps that protect genomic 

DNA from damage caused by impinging solar UV rays (Kobayashi et al., 1998). In turn, 

keratinocytes reciprocate by producing factors that regulate melanin synthesis, as well 

as survival, proliferation, and genomic stability of melanocytes (Figures 1 and 2). Early 

evidence for the role of keratinocyte-derived factors in regulating melanocytes was provided 

by the observation that media conditioned by cultured human keratinocytes stimulate the 

proliferation and melanogenesis of human melanocytes in vitro (Gordon et al., 1989). 

One of the first identified keratinocyte-derived paracrine factors for melanocytes was basic 

fibroblast growth factor (bFGF), which has a mitogenic effect on melanocytes via activating 

a specific tyrosinase kinase receptor and has been proposed to be “the natural growth factor 

for melanocytes in vivo” (Halaban et al., 1988; Pittelkow & Shipley, 1989). Basic FGF is 

associated with keratinocytes and is not secreted, and its synthesis is upregulated by UV 

radiation. Given the mitogenic effect of bFGF, it is commonly used in melanocyte growth 
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media to promote the proliferation of melanocytes in vitro (Abdel-Malek et al., 1995; Swope 

et al., 1995).

The primary cytokine IL-1α indirectly regulates melanocytes by upregulating the synthesis 

of several paracrine factors by keratinocytes, such as α-melanocyte-stimulating hormone 

(α-melanocortin α-MSH) and endothelin-1 (End-1), and by fibroblasts, such as keratinocyte 

growth factor (KGF), hepatocyte growth factor (HGF), and stem cell factor (SCF), as 

described below.

Exposure to UV increases the synthesis of the immune-inflammatory cytokine interleukin 

(IL)-1α, IL-6, and tumor necrosis factor (TNF)-α by keratinocytes (Chung et al., 1996; 

Kock et al., 1990). These cytokines inhibit melanogenesis of cultured human melanocytes 

(Swope et al., 1991). The balance between the levels and effects of these cytokines and those 

of the factors upregulated by IL-1α determines the final outcome on pigmentation.

α-Melanocyte-stimulating hormone has long been known as the physiological regulator 

of integumental pigmentation of many vertebrate species (Sawyer et al., 1983). Pro-

opiomelanocortin (POMC), the precursor peptide of melanocortins and other bioactive 

peptides, including β-endorphin, is expressed by human keratinocytes, as well as 

melanocytes, and its gene expression is upregulated upon UV exposure by the transcription 

factor p53 (Bigliardi-Qi et al., 2004; Chakraborty et al., 1996; Corre et al., 2004; Cui et al., 

2007; Wakamatsu et al., 1997). Given the abundance of keratinocytes relative to melanocytes 

in the epidermis, it is reasonable to assume that keratinocytes are the major source of 

POMC. The expression of POMC in epidermal cells is regulated by corticotropin-releasing 

hormone (CRH), which is expressed in keratinocytes and melanocytes (Slominski et al., 

1995, 2006). The synthesis of CRH and expression of its receptors in melanocytes and 

other skin types suggest that an equivalent of the hypothalamic/pituitary/axis exists in 

the skin. Binding of CRH to CRH receptor-1 expressed on melanocytes increases cAMP 

levels (Slominski et al., 2005), which is expected to stimulate melanogenesis. However, a 

direct effect of CRH on melanogenesis has not been reported. Keratinocytes express the 

enzymes pro-convertases I and II that process POMC to its bioactive products, resulting 

in the synthesis and secretion of α-MSH and adrenocorticotropic hormone (ACTH), which 

are increased upon UV exposure and treatment with IL-1α (Chakraborty et al., 1996; 

Rousseau et al., 2007; Wakamatsu et al., 1997). Human melanocytes respond to both 

α-MSH and ACTH with stimulation of melanogenesis, dendrite formation, and proliferation 

(Abdel-Malek et al., 1995). Both peptides bind the melanocortin 1 receptor (MC1R), a 

Gs protein-coupled receptor, with the same affinity, and transcriptionally upregulate the 

expression of the MC1R (Abdel-Malek et al., 1995; Scott et al., 2002; Swope et al., 2012). 

The increase in dendrites in response to α-MSH and other melanogenic factors facilitates 

the transfer of mature melanosomes from melanocytes to keratinocytes, thereby increasing 

epidermal pigmentation. Rab proteins play important roles in melanosome biogenesis (Rab 

7), trafficking of tyrosinase and TRP-1 (Rab3, 2, and 38), dendrite formation (Rab 21), 

and melanosome transport (Rab 27a) (Ohbayashi & Fukuda, 2012). The cAMP pathway, 

the main signaling pathway for MC1R, promotes melanosome trafficking and transfer 

via increasing Rab27a, Myosin Va, and Cdc42 (Lv et al., 2019). Treatment of human 

melanocytes with α-MSH enhances their adhesion, a potential mechanism to maintain 
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the anchorage of melanocytes to the basement membrane in vivo (Scott et al., 1997). 

β-Endorphin is another POMC derivative synthesized by keratinocytes and stimulates 

melanocyte proliferation, dendricity, and melanogenesis, via activating the μ opiate receptor, 

a G0/Gi-coupled receptor (Bigliardi-Qi et al., 2004; Kauser et al., 2003). These results 

underscore the significance of POMC-derived bioactive peptides in regulating human 

pigmentation.

The MC1R is the major regulator of pigmentation, stimulating eumelanin synthesis upon 

activation by its agonists α-MSH and ACTH in human melanocytes, via increasing 

microphthalmia-associated transcription factor (MITF), the master transcriptional regulator 

in melanocytes, tyrosinase, and tyrosinase-related protein (TRP) 1 levels, and the activity 

of tyrosinase (Abdel-Malek et al., 1995; Hunt et al., 1994, 1995; Kadekaro et al., 2005). 

Eumelanin synthesis is inhibited when MC1R is bound by its physiological antagonist 

agouti signaling protein (ASIP) and human β-defensin 3 (HBD3) (Sakai et al., 1997; Suzuki 

et al., 1997; Swope et al., 2012). The latter is an antimicrobial peptide synthesized by 

keratinocytes, and mutation in HBD3 gene was reported to result in black coat color in dogs 

(Candille et al., 2007). ASIP is reported to be an inverse agonist, while HBD3 is a neutral 

agonist of MC1R (Nix et al., 2013; Siegrist et al., 1997). Overexpression of CBD103, the 

ortholog of HBD3 in mice mimicked the effect of α-MSH, resulting in a black coat color 

(Candille et al., 2007). When tested in vitro, CDB103 did not increase cAMP levels, and 

similarly, HBD3 alone had no effect on basal cAMP levels in cultured human melanocytes 

(Candille et al., 2007; Swope et al., 2012). Based on the in vivo effects of CBD103, it was 

suggested that it inhibits the binding of ASIP to MC1R, thereby maintaining a high basal 

level of MC1R signaling. When tested on cultured human melanocytes, ASIP competitively 

inhibited the binding of α-MSH to MC1R, and both ASIP and HBD3 antagonized the 

α-MSH-activated MC1R signaling via blocking the increase in cAMP (Suzuki et al., 

1997; Swope et al., 2012), thereby inhibiting eumelanin synthesis, allowing only for the 

synthesis of pheomelanin. The apparent discrepancy between the results reported on the 

effects of HBD3 (Candille et al., 2007; Swope et al., 2012) could be explained by the 

conclusions of that HBD3 has no effect on the relative balance between active and inactive 

conformations of MC1R, but causes the melanocortin-binding pocket to be less accessible to 

either stimulatory or inhibitory ligand (Nix et al., 2013).

A third factor that antagonizes the effects of α-MSH is bone morphogenic protein-4 

(BMP-4), a member of the tumor growth factor (TGF)-β superfamily (Yaar et al., 2006). 

Melanocytes express the BMP-4 receptors 1A, 1B, and 2, and respond directly to BMP-4 

by inhibition of melanogenesis, evident as reduced levels of tyrosinase, TRP1, and MC1R 

(Park et al., 2009). Also, BMP-4 negatively regulates pigmentation indirectly by enhancing 

the expression of ASIP by fibroblasts and keratinocytes (Sharov et al., 2005). Irradiation 

of melanocytes with UV downregulates the expression of BMP-4 receptor 1B, thereby 

inhibiting the effect of BMP-4 and potentiating the melanogenic response to UV.

Endothelin-1 (End-1) is a potent keratinocyte-derived mitogen for human melanocytes, 

which binds the endothelin B receptor (ENDBR), a Gq-coupled receptor that activates 

protein kinase C (PKC) and calcium mobilization (Imokawa et al., 1992; Tada et al., 

1998). Endothelin-1 (End-1) stimulates the migration of melanocytes, and during embryonic 
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development, the expression of the related End-3 and ENDBR is critical for melanoblast 

migration from the neural crest and for their survival en route to the epidermis (Baynash et 

al., 1994; Puffenberger et al., 1994; Scott et al., 1997). Synthesis of End-1 is upregulated 

upon irradiation of keratinocytes with UV and by treatment of keratinocytes with IL-1α 
(Imokawa et al., 1992), and its gene is transcriptionally regulated by p53 (Hyter et al., 2013). 

Endothelin-1 interacts synergistically with α-MSH and bFGF to promote the proliferation of 

human melanocytes in vitro (Swope et al., 1995) and upregulates the expression of MC1R, 

to enhance, and/or maintain the response of melanocytes to α-MSH and ACTH (Swope et 

al., 2012).

The eicosanoid prostaglandins (PG) and leukotrienes (LT) are lipid signaling factors derived 

from the metabolism of arachidonic acid via the cyclooxygenase (COX) and lipoxygenase 

pathways, respectively. The main keratinocyte-derived prostaglandins are PGE2 and PGF2α, 

which are also synthesized by melanocytes, and their production is increased upon UV 

exposure (Scott et al., 2004, 2005). The expression of COX-2 seems to be upregulated by 

α-MSH, thereby increasing the production of prostaglandins (Kim et al., 2012). Human 

melanocytes express the PGE2 receptors EP1, EP3, and EP4, which couple to different 

G proteins, and respond to PGE2 with increased cAMP levels, and filopodia formation 

that drives melanosome transfer to keratinocytes (Scott et al., 2004; Starner et al., 2010). 

Human melanocytes also express the PGF2α receptor FP that is upregulated upon UV 

exposure and respond to PGF2α with increased melanogenesis and dendricity (Scott et 

al., 2005; Starner et al., 2010). These results provide evidence that PGE2 and PGF2α are 

inducible paracrine/autocrine regulators of melanocytes. Epidermal cells have the capacity 

to transform leukotriene (LT)A4 synthesized by myeloid cells, such as neutrophils, to LTC4 

and LTD4, which are potent mitogens for melanocytes (Iversen et al., 1994; Morelli et al., 

1989), and LTC4 increases dendricity and tyrosinase levels in melanocytes (Tomita et al., 

1992).

Exposure to UV stimulates the production of nitric oxide (NO) in keratinocytes, as well 

as melanocytes, via increased constitutive NO synthase (Romero-Graillet et al., 1996, 

1997). Treatment of melanocytes with NO donors stimulates melanogenesis and dendrite 

formation via activating cGMP production, while treatment with NO scavengers inhibits the 

melanogenic effect of UV. In human melanocytes, NO increases the expression of tyrosinase 
and the synthesis of eumelanin (Lassalle et al., 2003; Sasaki et al., 2000). In mouse and 

human melanoma cells, treatment with α-MSH was found to augment UV-induced NO 

levels, and treatment with NO was shown to stimulate melanogenesis (Tsatmali et al., 

2000). These results suggest that the melanogenic effect of α-MSH is mediated at least in 

part by increased NO production by melanocytes. While the role of cAMP in stimulating 

melanogenesis is established, the potential role of cGMP needs to be further explored.

Keratinocyte-derived paracrine factors modulate the stress response of melanocytes, 

maintaining their survival, proper function, and genomic stability (Figure 2). Melanocytes 

co-cultured with keratinocytes or incorporated into reconstructed epidermis respond more 

avidly to UVB irradiation than melanocytes in mono-culture by robust increase in 

pigmentation (Duval et al., 2001). These results suggest that the tanning response to 

UVB is modulated by keratinocyte-derived factors. It is established that α-MSH, and by 
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analogy ACTH, via activation of MC1R and its cAMP signaling pathway, modulates the 

DNA damage response (DDR) of melanocytes (Bohm et al., 2005; Kadekaro et al., 2010; 

Swope et al., 2014, 2020). α-MSH and ACTH are survival factors for melanocytes, as 

they reduce melanocyte apoptosis resulting from extensive UVB-induced DNA damage. 

Both α-MSH and ACTH activate Akt, which inhibits the pro-apoptotic protein Bad and 

thereby increasing the levels of the anti-apoptotic Bcl2 (Bohm et al., 2005; Kadekaro et al., 

2010). The activation of the cAMP pathway by α-MSH promotes repair of UVB-induced 

DNA photoproducts by enhancing nucleotide excision repair (NER), via activating the 

DNA damage sensors ataxia-telangiectasia related (ATR) and ataxia-telangiectasia mutated 

(ATM), and promoting the chromatin localization of the NER proteins XPC, the DNA 

damage recognition protein, and XPA, the DNA damage verification protein, resulting 

in enhanced repair of cyclobutane pyrimidine dimers (CPD), the major form of DNA 

photoproducts (Swope et al., 2020). α-MSH also reduces ROS generation and the resulting 

oxidative stress (Kadekaro et al., 2012; Song et al., 2009). The antioxidant effects of α-MSH 

are mediated by the activation of the transcription factors nuclear factor erythroid 2-related 

factor 2 (Nrf2) and p53, major regulators of the antioxidant response, which upregulate the 

expression of target antioxidant genes (Kadekaro et al., 2012; Kokot et al., 2009). Nrf2, p53, 

and MITF activate base excision repair (BER), the main pathway for repair of oxidative 

DNA damage, with Nrf2 upregulating the expression of the BER enzyme 8-oxoguanine 

glycosylase (OGG1), p53 increasing the expression of OGG1 as well as the BER enzyme 

apurinic/apyrimidinic endonuclease 1 (APE1), and MITF upregulating the expression of 

APE1 (Hamann et al., 2011; Liu et al., 2009; Murray et al., 2018). The cAMP pathway is 

absolutely required for the melanogenic response (i.e., tanning response) to UVB (Im et al., 

1998). Inability of melanocytes to respond to α-MSH, due to expression of loss-of-function 

MC1R, reduces their melanogenic response to UVB and compromises their DNA repair and 

antioxidant capacities, thereby increasing their vulnerability to malignant transformation to 

melanoma (Kadekaro et al., 2010; Kennedy et al., 2001; Palmer et al., 2000).

Endothelin-1 is another survival factor that enables melanocytes to overcome the stress 

response to UVB exposure. The activation of EDNBR had similar effects as MC1R on 

survival of UVB-irradiated melanocytes, mediated by activating the Akt pathway (Kadekaro 

et al., 2005). Endothelin-1 also enhances NER, by affecting the same targets as α-MSH 

(Swope et al., 2020). Therefore, by activating different receptors and signaling pathways, 

α-MSH and End-1 provide a double safety net to inhibit genomic instability and ensure 

survival of melanocytes exposed to UV. The neurotrophin nerve growth factor (NGF) 

synthesized by keratinocytes stimulates melanocyte migration and dendricity and inhibits 

UV-induced apoptosis by increasing the levels of the anti-apoptotic protein Bcl2 (Stefanato 

et al., 2003; Yaar et al., 1991; Zhai et al., 1996). The effects of NGF are mediated primarily 

by binding to p75 NGF receptor, a member of the TNF family/Fas/CD40 superfamily. Other 

paracrine factors that are involved in the tanning response, part of the DDR to UV, include 

PGE2 and PGF2α and NO, discussed above. However, the role of these factors in the DNA 

repair pathways is not yet known.

1,25(OH)2 vitamin D3 (D3), the active form of vitamin D3, is produced in the epidermis 

upon exposure to solar UVB (280–320 nm wavelength) by the photoisomerization of 7-

dehydrocholesterol to cholecalciferol, and subsequent hydroxylation on positions 25 and 
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1 (Holick, 1994; Lehmann et al., 2001). Epidermal keratinocytes express 25-hydroxlyase 

(CYP27A1) and 1-α-hydroxylase (CYP27B1) and therefore have the capacity to synthesize 

the active 1,25(OH)2 vitamin D3 (Bikle et al., 1986; Lehmann et al., 2001). The effects of 

D3 are mediated by binding to the vitamin D receptor (VDR), which dimerizes with other 

nuclear receptors, mainly the retinoic acid receptor RXR (Christakos et al., 2016). Treatment 

with D3 has photoprotective effects on cultured human melanocytes and fibroblasts in vitro, 

and mouse skin in vivo, as depicted by enhanced repair of UV-induced CPD, the major form 

of DNA photoproducts (Dixon et al., 2005). In human keratinocytes, the expression of VDR 

is important for efficient NER, as it promotes the dissociation of XPC from DNA damage 

sites to allow subsequent enzymes to resume the repair of DNA photoproducts (Wong & 

Oh, 2021). Recently, it was reported that D3 has potent antioxidant effects on UV-irradiated 

keratinocytes by activating Nrf2 (Chaiprasongsuk et al., 2019). Additionally, D3 results 

in increased p53 levels and its transactivation in keratinocytes and melanocytes irradiated 

with UV (Chaiprasongsuk et al., 2019; Dixon et al., 2005). The antioxidant effect of D3 

is supported by the findings that its analog tacalcitol reduces hydrogen peroxide-induced 

ROS and oxidative damage in melanocytes (Li et al., 2011), and enhances transactivation 

of Nrf2 in hydrogen peroxide-induced melanocytes (Tang et al., 2018). Further investigation 

of the antioxidant effects of D3 in melanocytes is warranted, given the negative impact on 

oxidative stress on melanocyte survival and genomic stability.

There is strong evidence for the role of VDR as a melanoma tumor suppressor. VDR 

expression is reported to be lost during melanoma progression (Brozyna et al., 2011; 

Slominski et al., 2017). Targeted deletion of VDR in mouse melanocytes in vivo results 

in increased levels of UV-induced CPD, possibly due to reduced NER (Chagani et al., 2016). 

Given the evidence that D3, via activation of VDR, reduces DNA damage and oxidative 

stress in epidermal cells, including melanocytes, further studies are needed to elucidate the 

efficacy of D3 in the prevention of photocarcinogenesis, particularly melanoma.

3 ∣ PARACRINE REGULATION OF MELANOCYTES BY FIBROBLASTS

Fibroblasts are mesenchymal cells that constitute the major cellular component of the 

dermis, and are involved in producing extracellular matrix (ECM) components, as well as 

various factors that regulate epidermal melanocytes (Figure 3). Evidence for the regulation 

of melanocytes by fibroblast-derived factors was first provided by the demonstration that 

fibroblast-conditioned medium and ECM markedly increase human melanocyte proliferation 

and stimulate tyrosinase activity in vitro (Buffey et al., 1994; Imokawa et al., 1998). These 

findings sparked interest in identifying the nature of fibroblast-derived paracrine factors and 

their effects on melanocytes.

The most apparent physiological effect of fibroblasts on melanocytes is in palmoplantar 

skin, which is significantly less pigmented and thicker than other anatomical locations. 

The key regulator of this reduced pigmentation is Dickkopf-related protein 1 (DKK1), 

which is secreted by palmoplantar fibroblasts and inhibits differentiation, growth, and 

melanogenesis of melanocytes (Yamaguchi et al., 2004). DKK1 is a secreted antagonist 

of Wnt signaling and acts on Frizzled-lipoprotein receptor-related protein 6 (LRP6) receptor 

complex. The resulting inhibition of the canonical downstream (ß-catenin/GSK3ß signaling 
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is associated with downregulation of proteins involved in melanogenesis including MITF, 

dopachrome tautomerase (DCT; TRP-2), and tyrosinase (Yamaguchi et al., 2004, 2007). 

Additionally, Wnt inhibitory factor (WIF-1), another secreted Wnt modulating protein, 

was reported to have a similar inhibitory effect on melanogenesis (Kim et al., 2013). 

However, another report showed overexpression of WIF-1 in primary human melanocytes 

stimulates melanogenesis by the activation of ß-catenin pathway (Park et al., 2014). 

Further confirmation of the effects of WIF-1 on melanocytes is needed to define its 

role in regulation of melanogenesis. Secreted frizzled-related protein 2 (sFRP2), another 

WNT modulating protein, proved to activate ß-catenin signaling in human melanocytes 

and stimulate melanogenesis by upregulating MITF and tyrosinase (Kim et al., 2016). 

These effects were observed in melanocytes overexpressing sFRP2 or co-cultured with 

fibroblasts overexpressing sFRP2. The melanogenic effect of sFRP2 was further confirmed 

by treatment of human skin ex vivo with recombinant sFRP2. Expression of sFRP2 was 

significantly increased in skin acutely exposed to UV, further suggesting paracrine effects of 

WNT signaling and its participation in regulating melanogenesis (Kim et al., 2016).

Another fibroblast-secreted protein, neuregulin-1 (NRG-1), is highly expressed in dark skin, 

as compared to light skin (Choi et al., 2010). The levels of NRG-1 correlate directly with 

expression of its receptor ErbB3 on melanocytes, suggesting that NRG-1/ErbB3 signaling is 

involved in determining constitutive skin pigmentation. NRG-1 also acts on ErbB4 receptor, 

which, contrary to ErbB3, is expressed at higher levels in light skin melanocytes, as 

compared to their dark counterparts; the significance of ErbB4 on pigmentation remains 

unknown. NRG1 stimulates melanogenesis in cultured human melanocytes and 3-D skin 

model and increases melanocyte proliferation through PI3K/Akt signaling (Choi et al., 

2010). Further investigation is warranted to determine the regulation of NRG-1 synthesis by 

UV and its participation in the DDR of melanocytes to UV exposure.

Keratinocyte growth factor is synthesized and secreted by fibroblasts, and its synthesis is 

upregulated by UV exposure via stimulation of IL-1 production by keratinocytes. Besides 

regulating the proliferation of keratinocytes, KGF stimulates the transfer of melanosomes 

from melanocytes by enhancing phagocytosis by keratinocytes. The latter process is more 

prominent in lighter skin due to higher expression of KGF receptor (Cardinali et al., 2008). 

In addition, KGF stimulates melanogenesis directly in cultured melanocytes by upregulating 

tyrosinase mRNA levels, as well as in human skin explants (Chen et al., 2010). The effect 

of KGF on pigmentation was attributed to its synergistic interaction with other paracrine 

factors including bFGF, End-1, and IL-1, and with activators of the cAMP pathway (Chen et 

al., 2010; Hirobe et al., 2013).

Another growth factor produced by dermal fibroblasts is pleiotrophin (PTN), also called 

heparin-binding growth factor, which is involved in various biological functions including, 

but not limited to, cell growth and differentiation, angiogenesis, and tumorigenesis 

(Choudhuri et al., 1997; Gonzalez-Castillo et al., 2014). In human skin, PTN is expressed 

mainly in fibroblasts and to a lesser extent in melanocytes (Choi et al., 2015; Zhang et 

al., 2013). The PTN receptors anaplastic lymphoma kinase (ALK) and receptor tyrosine 

phosphatase β/ζ are expressed in melanocytes, as well as keratinocytes and fibroblasts 

(Choi et al., 2015). PTN was found to inhibit melanogenesis in human melanocytes by 
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promoting MITF degradation via ERK1/2 activation, effects that are mediated by receptor 

tyrosine phosphatase β/ζ. Reduction in pigmentation was also observed in ex vivo treated 

with recombinant PTN. Irradiation of fibroblasts with UV results in downregulation of 

PTN, which should reduce its suppressive effect of melanogenesis, allowing for the tanning 

response to UV (Choi et al., 2015).

CCN1, also called Cyr61 or cysteine-rich 61, is a secreted ECM protein from fibroblasts 

that belong to CCN protein family, coded for by six different genes. CCN1 is involved 

primarily in maintaining collagen homeostasis and was recently reported to stimulate 

melanogenesis in melanocytes by binding to integrin α6ß1 receptor and activating p38 and 

ERK1/2 MAPK signaling (Xu et al., 2018). Exposure to solar UV upregulates CCN1 and 

CCN2 in fibroblasts through transcription factor AP-1, but downregulates the expression of 

the remaining CCN genes (Quan et al., 2009, 2010), suggesting that CCNs modulate the 

melanogenic response of melanocytes to solar UV.

4 ∣ KERATINOCYTE- AND FIBROBLAST-DERIVED PARACRINE FACTORS

Other important paracrine factors for melanocytes derived from both fibroblasts and 

keratinocytes include HGF, SCF, and semaphorin 7a (sema7a) (Table 1). HGF, also known 

as scatter factor, is highly expressed by skin fibroblasts and is a potent mitogen for 

melanocytes (Czyz, 2018; Matsumoto et al., 1991). The effects of HGF are mediated by 

binding to c-Met receptor expressed on melanocytes, which, similar to other tyrosine kinase 

receptors, activates MAPK and PI3K/Akt signaling to modulate CREB activity upstream 

of MITF and affects melanocyte proliferation, motility, and survival. The presence of HGF, 

in addition to other melanocyte growth factors in melanocyte culture medium, significantly 

increases dendrite number and length and increases tyrosinase activity and melanin content 

of cultured human melanocytes (Halaban et al., 1992; Hirobe et al., 2013). Upregulation of 

HGF synthesis by fibroblasts is caused by UV-induced secretion of IL-1α by keratinocytes, 

and not by direct irradiation of cultured fibroblasts (Mildner et al., 2007), indicating the role 

of keratinocytes in regulating HGF production by fibroblasts.

Stem cell factor is a cytokine synthesized by fibroblasts and keratinocytes and is important 

for melanocyte survival (Grabbe et al., 1994). It is constitutively secreted by fibroblasts 

and binds to c-kit receptor tyrosine kinase on melanocytes to activate ERK and PI3K/Akt 

pathways (Hachiya et al., 2001). There is also a membrane-bound form of SCF that 

is highly expressed in keratinocytes. As in the case of HGF, production of SCF by 

fibroblasts is increased upon stimulation by keratinocyte-derived IL-1β (Shin et al., 2012). 

Treatment of human skin grafted onto mice with SCF increases melanocyte density in 

the epidermis and melanocyte proliferation in vitro (Cario-Andre et al., 2006; Grichnik 

et al., 1998). Conversely, injection of adult human skin xenografts with SCF- or c-kit 

neutralizing antibody results in loss of melanocytes and decreased expression of TRP-1 and 

the melanosome protein Pmel 17, suggesting the significance of SCF in the maintenance of 

melanocyte survival in adult skin and regulation of melanogenesis (Grichnik et al., 1998).

Semaphorin (Sema) family is a class of secreted and membrane-bound proteins that 

functions in neuronal pathfinding and axonal development (Alto & Terman, 2017). Skin 
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fibroblasts and keratinocytes express sema7a, which stimulates melanocyte dendricity (Scott 

et al., 2008). Sema7a is a ligand for Plexin C1 and (ß1-integrin receptors expressed 

in melanocytes. Upon UVB exposure, Sema7a is strongly expressed in fibroblasts and 

is associated with increased attachment, spreading, and dendricity, which are mediated 

by binding to integrins. Binding to Plexin C1 receptor inhibits these effects, suggesting 

opposing roles of these two receptors. Another Sema family member, Sema 4D, is expressed 

by keratinocytes and fibroblasts and acts on Plexin B1 receptor in melanocytes (Soong 

et al., 2012). The activated Plexin B1 inhibits HGF-dependent c-Met signaling, thereby 

reducing the decrease in E-cadherin by c-Met, mainly through Shp2, a non-receptor 

tyrosine phosphatase (Soong & Scott, 2013). Sema 4D is a protective paracrine factor for 

human melanocytes, as it inhibits UVB-induced apoptosis and stimulates their proliferation. 

UVB irradiation reduces the expression of Plexin B1, which is expected to increase c-

Met signaling. These results suggest modulation of melanocyte adhesion and survival by 

Semaphorins.

5 ∣ ABNORMAL PARACRINE FACTOR PRODUCTION AND PIGMENTARY 

DISORDERS

Dysregulation of production of paracrine factors such as α-MSH, NO, SCF, KGF, 

HGF, End-1, TNF-α, sFRPs, DKK1, and eicosanoids has been implicated in multiple 

common pigmentary disorders, including melasma, solar lentigines, post-inflammatory 

hyperpigmentation, and vitiligo. Melasma is a common acquired hyperpigmentation 

characterized by irregularly shaped variably brown patches on sun-exposed areas of 

the face, neck, and upper extremities. Endocrine signaling and paracrine signaling are 

thought to contribute to the pathogenesis of melasma. By immunohistochemistry and 

immunofluorescence, increased levels of α-MSH are observed in the epidermis of melasma 

lesions when compared to perilesional normal-appearing skin (Espósito et al., 2018; Im 

et al., 2002; Miot et al., 2010). Increased inducible NO synthase is also observed in the 

basal keratinocytes of melasma lesions, and it is likely that increased NO contributes to 

the persistent hyperpigmentation of lesional skin. (Jo et al., 2009). Also, there is increased 

expression of SCF (Byun et al., 2016; Kang et al., 2006), KGF (Hasegawa et al., 2015), 

and NGF (Byun et al., 2016) in skin affected by melasma. Additionally, Wnt signaling is 

altered in melasma via upregulation of sFRP2, which was one of the most upregulated genes 

in lesional skin (Kang et al., 2011; Kim et al., 2016), and decreased expression of WIF-1 

(Kim et al., 2013). In melasma, the contribution of paracrine factors might be potentiated by 

the disruption of the dermal-epidermal junction, which might allow for greater diffusion of 

signaling molecules from the dermis to the epidermis (Lee et al., 2012; Torres-Álvarez et al., 

2011).

Similarly, paracrine factors are involved in the formation of solar lentigines, where both 

KGF and sFRP2 are upregulated (Hasegawa et al., 2015; Kim et al., 2016). In addition, 

earlier immunohistochemical studies showed increased expression of End-1, SCF, and HGF 

in the epidermis of affected skin (Hattori et al., 2004; Kadono et al., 2001; Kovacs et al., 

2010). Both KGF and SCF are necessary for the initiation of solar lentigines. In early-stage 

solar lentigines, characterized by lower levels of melanin accumulation as well as shorter 
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and less complex rete ridges, the expression of KGF and SCF is increased, compared to 

both normal skin and more advanced lesions (Lin et al., 2010). The importance of KGF 

in the induction of solar lentigines is further supported by in vivo experiments in which 

application of topical KGF and IL-1α results in the formation of hyperpigmented patches 

with elongated rete ridges in swine and human facial skin grafted onto immunodeficient 

mice (Chen et al., 2010). Finally, disruption of heparan sulfate at the dermal-epidermal 

junction may enhance diffusion of cytokines between the dermis and epidermis of solar 

lentigines, which may further contribute to their progression (Iriyama et al., 2011).

Solar lentigines are commonly known as aging spots, and factors synthesized by aged 

fibroblasts may contribute to the development of these hyperpigmented lesions. Fibroblasts 

from old skin and photo-aged or senescent fibroblasts have a greater melanogenic 

activity on melanocytes than young fibroblasts, due to higher expression and release 

of fibroblast-derived cytokines including HGF, SCF, and KGF (Imokawa et al., 1998; 

Kovacs et al., 2010). Reconstructed skin model established with the same keratinocytes 

and melanocytes and either young or aged fibroblast showed that aged fibroblasts result 

in greater pigmentation (Duval et al., 2014). Aged fibroblasts synthesize lower levels of 

granulocyte-macrophage colony-stimulating factor (GM-CSF) than their young counterpart. 

Moreover, recently it was found that UV-irradiated senescent fibroblasts express high level 

of stress-responsive cytokine GDF15, which activates ß-catenin signaling to induce MITF 

expression, suggesting the role of fibroblasts on age-associated pigmentation (Kim et al., 

2020). Stimulation of melanogenesis by GDF-15 was confirmed using cultured human 

melanocytes, human skin explants ex vivo, and reconstructed skin.

Post-inflammatory hyperpigmentation is a common acquired pigmentary disorder that 

occurs following inflammatory skin conditions or cutaneous injury, and disproportionately 

affects Black and Hispanic patients (Davis et al., 2012). The inflammatory mediators PGE2 

and LTB4 are upregulated in skin affected by atopic dermatitis (Fogh et al., 1989) and 

psoriasis (Brain et al., 1984; Hammarström et al., 1975), suggesting that inhibition of the 

COX and lipoxygenase pathways might be efficacious in the prevention and/or treatment of 

post-inflammatory hyperpigmentation.

Vitiligo is a common depigmentary autoimmune disease, with a complex etiology, and 

aberrant production of paracrine factors may contribute to the loss of functional melanocytes 

in lesional skin (Abdel-Malek et al., 2020). Levels of these signaling molecules appear to 

vary among patients, and there are conflicting reports about the alterations in SCF, End-1, 

HGF, GM-CSF, and bFGF levels in vitiligo skin, which makes it difficult to determine 

conclusively their role in vitiligo pathogenesis (Kitamura et al., 2004; Lee et al., 2005; 

Moretti et al., 2002, 2009). Modulation of the Wnt signaling pathway has been implicated 

in the pathogenesis of vitiligo, since high levels of the Wnt inhibitor DKK1 are found in 

lesional skin compared with non-lesional skin of vitiligo patients (Oh et al., 2012). The 

expression of α-MSH is reduced in skin of vitiligo patients, but it is not clear if it is different 

in lesional versus perilesional skin (Graham et al., 1999; Thody et al., 1983). Treatment 

with the potent α-MSH analog NDP-α-MSH, known also as afamelanotide, enhances the 

effects of narrowband UVB on repigmentation of skin of vitiligo patients (Grimes et al., 

2013; Lim et al., 2015). The clinical efficacy of this melanocortin analog supports the 
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role of α-MSH in promoting the migration, survival, proliferation, and differentiation of 

melanocyte precursors, which are essential for repigmentation of vitiligo skin.

The aberrant cutaneous microenvironment in vitiligo skin upregulates the production by 

keratinocytes of a number of cytokines and chemokines that enhances the recruitment of 

CD8+ T cells, resulting in autoimmune destruction of melanocytes. TNF-α is detected at 

higher levels in lesional vitiligo epidermis compared with perilesional and healthy control 

skin by immunohistochemistry, ELISA, in situ hybridization, and quantitative PCR (Birol 

et al., 2006; Moretti et al., 2002, 2009; Seif El Nasr et al., 2013), as well as IL-6, IL-8, 

and IL-18 (Cui et al., 2019; Mitra et al., 2017). Additionally, genetic polymorphisms in 

the promoter region of TNF-α may be a risk factor for vitiligo (Laddha et al., 2012). 

Keratinocytes in vitiligo skin also produce high levels of the chemokines CXCL 9, 10, and 

16 (Cui et al., 2019; Rashighi et al., 2014). These results connect aberrant production of 

paracrine factors with the autoimmune response that instigates melanocyte death in vitiligo.

6 ∣ CONTRIBUTION OF ABERRANT PRODUCTION OF PARACRINE AND 

AUTOCRINE FACTORS TO MELANOMA PROGRESSION

While the survival effects of keratinocyte- and fibroblast-derived paracrine factors protect 

normal melanocytes from genotoxic effects of environmental factors, mainly solar UV, 

their aberrant synthesis can have detrimental effects on melanoma cells, promoting their 

survival, proliferation, and resistance to targeted therapies. As described above, End-1 

is known to be a survival factor for normal melanocytes that reduce UV-induced DNA 

damage by enhancing NER (Kadekaro et al., 2005; Swope et al., 2020; von Koschembahr 

et al., 2015). However, aberrant autocrine expression of End-1 by melanoma tumor cells 

is associated with resistance to MAPK inhibitors (Smith et al., 2017). Melanoma tumor 

cells from patients treated with BRAF inhibitor express high levels of End-1 and ENDBR, 

and conditioned media from melanoma tumor cells treated with BRAF inhibitor increase 

the tolerance of naïve melanoma cells to BRAF inhibitor. Melanoma tumor cells are 

heterogeneous in the levels of Mitf and the receptor tyrosine kinase AXL, and treatment with 

MAPK inhibitors increases the expression of both Mitf and AXL. Endothelin-1 supports the 

survival of Mitf-high melanoma cells via activating the ENDBR and that of AXL-high cells 

via activating the ENDAR. These results ascribe a role of End-1 as an autocrine factor for 

melanoma cells, involved in acquisition of drug resistance to BRAF inhibitors and thereby 

increasing tumor progression and invasiveness. In addition to End-1, autocrine production 

of HGF is implicated in melanoma development and acquisition of metastatic phenotype 

(Czyz, 2018), and overexpression of factors, such as bFGF and SCF in vitro in skin explants, 

led to melanoma initiation (Haass & Herlyn, 2005). Additionally, NRG1 is expressed at high 

levels in melanoma tumor cells, as compared to normal melanocytes, and stimulates tumor 

growth in an autocrine manner (Zhang et al., 2012).

Fibroblast represents the major constituents of the stroma associated with tumors. With 

age, the secretome of fibroblasts is altered in a manner that is conducive to melanoma 

drug resistance and invasiveness. This can explain why elderly melanoma patients usually 

have a poorer prognosis than young patients (Kaur et al., 2016). The senescence-associated 
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secretory phenotype (SASP), composed of proinflammatory cytokines, chemokines, growth 

factors, and proteases, promotes tumor cell progression and invasion. Conditioned media 

from cultured aged fibroblasts, but not from young fibroblasts, significantly increase the 

invasiveness melanoma tumor cells and their resistance to BRAF inhibitor (Kaur et al., 

2016). These effects are attributed to increased production of secreted frizzled-related 

protein 2 (sFRP2), which acted as a WNT antagonist, and decreased β-catenin and MITF, 

and the MITF target APE1, the base excision repair gene, rendering melanoma cells less 

responsive to oxidative damage and to BRAF inhibitors. sFRP2 increases angiogenesis, 

thereby melanoma metastasis. It is paradoxical that the above effects of sFRP2 on melanoma 

cells seem to be in contrast to its effects on normal melanocytes, where it acted as a WNT 

agonist, which increased the expression of β-catenin and MITF (Kim et al., 2016).

Aged fibroblasts also have altered lipid secretome and increase the secretion of neutral 

lipids, mainly ceramides (Alicea et al., 2020). Exposure of melanoma cells to aged fibroblast 

lipid secretome upregulates the expression of the fatty acid transporter FATP2, and blocking 

this transporter reverses the age-related resistance to BRAF/MEK inhibitors, and increases 

the survival of melanoma tumor-bearing mice.

There is unequivocal evidence that paracrine factors synthesized by epidermal keratinocytes 

and dermal fibroblasts play essential roles in maintaining the normal physiology of 

melanocytes and modulating their DDR to solar UV. To ensure normal melanocyte 

physiology, these factors can have redundant effects, despite activating different signaling 

pathways. This is exemplified by the ability of the keratinocyte-derived End-1 to compensate 

for loss of responsiveness to α-MSH in melanocytes expressing loss-of-function MC1R 
variants, by activating DNA repair and survival pathways in order to mitigate the genotoxic 

and apoptotic effects of UV (Swope et al., 2020). Paracrine factors can also interact 

synergistically, as in the case of bFGF, End-1, and α-MSH, which synergistically stimulate 

the proliferation of melanocytes in vitro. Some paracrine factors can modulate the response 

of melanocytes to other factors by regulating the expression of their receptors, exemplified 

by upregulation of MC1R expression by End-1 (Swope et al., 2012) and upregulation of 

c-Met by bFGF (Czyz, 2018).

Dysregulation of synthesis of paracrine factors leads to pigmentary abnormalities, 

jeopardizing the normal function, and/or survival of melanocytes. The autocrine synthesis 

of certain growth factors by melanoma cells supports their autonomous growth (Czyz, 

2018; Zhang et al., 2012) and confers drug resistance (Smith et al., 2017). Altered 

production of paracrine factors in the melanoma tumor microenvironment contributes to 

tumor progression and reduces response to targeted therapy. Identifying the nature and 

regulation of production of paracrine factors and their mechanisms of action can potentially 

translate to the development of novel therapies for prevention and/or management of various 

pigmentary disorders, including melanoma.
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FIGURE 1. 
List of the major paracrine factors synthesized by keratinocytes, their receptors, and 

biological effects on melanocyte survival, proliferation, and melanogenesis
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FIGURE 2. 
Participation of α-MSH, End-1, NGF, and vitamin D in the DNA damage response to UV, 

which results in reduced DNA photoproducts by activating NER, oxidative DNA damage by 

upregulating BER and antioxidant genes, and apoptosis, by increasing Bcl2 levels, thereby 

maintaining melanocyte survival and genomic stability. BER, base excision repair; NER, 

nucleotide excision repair
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FIGURE 3. 
List of the known fibroblast-derived paracrine factors, and the biological effects of these 

factors via their receptors and of ECM on melanocyte proliferation and melanogenesis. 

ECM, extracellular matrix
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