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ABSTRACT There is a continuously expanding gap between predicted phage gene
sequences and their corresponding functions, which has largely hampered the devel-
opment of phage therapy. Previous studies reported several phage proteins that
could interfere with the intracellular processes of the host to obtain efficient infec-
tion. But few phage proteins that protect host against phage infection have been
identified and characterized in detail. Here, we isolate a phage, vB_Pae_QDWS, capa-
ble of infecting Pseudomonas aeruginosa PAO1 and report that its encoded Gp21
protein protects PAO1 against phage infection. Expression of Gp21 regulates bacte-
rial quorum sensing with an inhibitory effect in low cell density and an activation
effect in high cell density. By testing the type IV pilus (TFP)-mediated twitching mo-
tility and transmission electron microscopy analysis, Gp21 was found to decrease the
pilus synthesis. Further, by constructing the TFP synthesis gene pilB mutant and per-
forming adsorption and phage resistance assay, we demonstrated that the Gp21 pro-
tein could block phage infection via decreasing the TFP-mediated phage adsorption.
Gp21 is a novel protein that inhibits phage efficacy against bacteria. The study deep-
ens our understanding of phage-host interactions.

IMPORTANCE The majority of the annotated phage genes are currently deposited as “hy-
pothetical protein” with unknown function. Research has revealed that some phage pro-
teins serve to inhibit or redirect the host intracellular processes for phage infection.
Conversely, we report a phage encoded protein Gp21 that protects the host against
phage infection. The pathways that Gp21 involved in antiphage defense in Pseudomonas
aeruginosa PAO1 interfere with quorum sensing and decrease type IV pilus-mediated
phage adsorption. Gp21 is a novel protein with a low sequence homology with other
reported twitching inhibitory proteins. As a lytic phage-derived protein, Gp21 expression
protects P. aeruginosa PAO1 from reinfection by phage vB_Pae_QDWS, which may explain
the well-known pseudolysogeny caused by virulent phages. Our discoveries provide valu-
able new insight into phage-host evolutionary dynamics.
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Phages are known to be highly abundant in environments, affecting the bacterial
communities through killing of bacteria and horizontal gene transfer (1, 2). Phage

therapy is being reevaluated as a means to treat or prevent bacterial infections due to
the phenomenon of antibiotic resistance that has grown into a global public health
concern. However, bacteria have evolved numerous mechanisms that actively stop
phage attacks, including the CRISPR (clustered regularly interspaced short palindromic
repeats)-Cas system (3), abortive infection (ABI) system (4), restriction-modification (R-
M) system (5), and bacteriophage exclusion (BREX) system (6). Besides these, the quo-
rum sensing (QS) system was also reported to play key roles in antiphage defenses via
reducing the amount of phage receptors on cell surface (7), increasing the expression
of the CRISPR-Cas immune system, (8) or changing the cell physiological state (9).
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Hence, understanding the complex dynamics interactions between phages and bacte-
ria is an important prerequisite for ensuring the efficacy of phage therapy (10, 11).

Our knowledge on phage gene functions is still limited, considering the enormous
genetic diversity of both bacteria and phages. There are about 70% of phage genes
whose functions have not been annotated (12, 13). More works on the functional char-
acterization of “hypothetical protein” in phage genome are urgently needed. It has
been reported that some phage proteins serve to redirect intracellular processes of the
host, including blocking the action of the CRISPR-Cas complexes (14) and silencing the
QS system (15), to obtain efficient production of phage progeny (16). In addition, some
proteins also serve to inhibit growth of the host and act as potential antimicrobial
agents (12). Evidence demonstrates that the phage hypothetical protein plays a role in
adapting the phage to the host. However, bacteria are always changing their strategies
to prevent phage infection in the coevolutionary arms race (10, 17). It is not very clear
whether these hypothetical proteins are involved in bacterial counterattack on phages.

Pseudomonas aeruginosa is an important opportunistic pathogen and a potential
target for phage therapy (18–20). P. aeruginosa performs several types of motilities,
such as swimming (flagellar mediated), swarming (multiple mechanisms mediated),
and twitching (type IV pilus [TFP] mediated), in order to properly attach and colonize a
desired surface (21–23). In addition, P. aeruginosa possesses an arsenal of virulence
determinants, such as the production of pyocyanin and biofilm, which are regulated
by QS. LasIR, RhlIR, and the Pseudomonas quinolone signal (PQS) system are the typical
QS systems in P. aeruginosa and are organized in a hierarchical manner with LasIR at
the top of the hierarchy, controlling several biological processes (24, 25).

Here, we provide the functional analysis of a P. aeruginosa phage-encoded protein
Gp21. Results revealed that the Gp21 protein involved in QS gene expression changed
with growth period. Since bacterial QS modulates defense against phage attack, Gp21
dynamically affected phage infection. In addition, we found that Gp21 expression
blocked phage infection via decreasing the TFP-mediated phage adsorption. Our study
investigates the roles of the Gp21 protein in bacterial defense from the aspects of quo-
rum sensing and the receptor TFP synthesis, which may help in filling several gaps in
the field of complex phage-host evolutionary dynamics.

RESULTS
Characteristics of phage vB_Pae_QDWS. BLASTn analysis of the whole genome

sequence showed Pseudomonas phage vB_Pae_QDWS shared high similarity with
vB_PaeP_PAO1_1-15pyo (query coverage, 97%; identity, 93.94%) (26) and MPK7 (query cov-
erage, 92%; identity, 98.05%) (27), which are members of the subfamily of Autographivirinae
in the Podoviridae family. Transmission electron micrograph (TEM) imaging showed that the
phage had an approximately 50-nm-diameter head and a nearly invisible short tail (Fig. 1A).
Hence, the phage vB_Pae_QDWS was classified as a member of the Podoviridae family. It
was separated from sewage, formed clear, bright plaques on soft agar plates (Fig. 1B), and
was named vB_Pae_QDWS. Results of a one-step growth curve showed that the latent pe-
riod of phage vB_Pae_QDWS was about 10 min, followed by a burst period of 50 min, and
then the PFU per milliliter stabilized after 70 min. In the rise period, the phage titer increased
from 5.4 � 107 to 1.3 � 1011 PFU/mL in 50 min and then remained at approximately
2.92 � 1011 PFU/mL (Fig. 1C). Since no lysogeny module or lysogens were found in the
phage genome, phage vB_Pae_QDWS is lytic.

The effects of Gp21 on bacteria quorum sensing. The gene product of open read-
ing frame (ORF) 21 (gp21) of phage vB_Pae_QDWS was predicted to consist of 94
amino acids (Fig. 2A). A similarity search was run in BLASTP against nonredundant pro-
tein sequences, and no putative conserved domains were detected. In the BLASTP
analysis, 3 sequences (hits) with high similarity (.98%) (Fig. 2B) were found in phages
PhikF77, RLP, and vB_PaeP_130_113 infecting P. aeruginosa, and they shared a com-
mon genomic position between the phage DNA ligase and DNA polymerase (Fig. 2C).

We investigated three QS key genes, lasI, rhlI, and pqsR, and found that Gp21
decreased their expression when cells grow to an optical density at 600 nm (OD600) of
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0.15 and 1, especially for rhlI and pqsR genes (Fig. 3A and B). However, when cells grow
to an OD600 of 2.5, the expression of the three genes increased in PAO1-gp21, espe-
cially for rhlI (Fig. 3B). We also detected the QS-mediated phenotypic changes and
found the production of pyocyanin and biofilm increased significantly in PAO1-gp21

FIG 2 Sequence analysis of Gp21. (A) Amino acid sequence of Gp21. (B) Amino acid sequence alignment of Gp21 and its homologs from phages PhikF77,
RLP, and vB_PaeP_130_113. (C) The genomic context of gp21 from phages vB_Pae_QDWS, PhikF77, RLP, and vB_PaeP_130_113. The white arrow
designates a hypothetical gene.

FIG 1 Characteristics of phage vB_Pae_QDWS. (A) TEM image of phage vB_Pae_QDWS. (B) Plaque
morphology of phage vB_Pae_QDWS. (C) One-step growth curve of phage vB_Pae_QDWS on P.
aeruginosa strain PAO1. All data are averages of six samples with standard deviations (error bars).
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strains compared to that in PAO1-pBBR5 (Fig. 3C and D). Overexpression of Gp21
formed different effects on P. aeruginosa QS at the different growth phases.

Gp21 inhibits TFP-mediated twitching motility. Swimming, twitching, and swarm-
ing are three modes of motility found in P. aeruginosa (28). PilB is necessary for the assem-
bly of TFP, which has been known to be responsible for twitching and swarming motility
(28, 29). When tested for swimming motility, no significant difference was observed among
PAO1-pBBR5, PAO1-gp21, and PaDpilB-pBBR5. For twitching and swarming tests, expres-
sion of Gp21 resulted in a significant inhibition as PaDpilB-pBBR5 (Fig. 4A). We then
employed TEM to visualize pilus structure. PAO1-gp21 expressed less functional pilus than
PAO1-pBBR5, while no difference was found in the assembly of flagella (Fig. 4B). A series of
genes have been verified to be required for TFP assembly, such as pilA (the major structural
element of TFP), pilB (TFP extension), fimU, and pilVWXY1E (minor pilins prime pilus assem-
bly) (30, 31). Real-time quantitative reverse transcription (RT-qPCR) was used to quantify
the expression of TFP-related genes in PAO1. Results showed that the expression level of
TFP-related genes in PAO1-gp21 was significantly lower than in PAO1-pBBR5, especially for
pilA and pilB (Fig. 5). These data suggest that Gp21 affects TFP formation.

Gp21 increases the resistance of P. aeruginosa to phage attack. Expression of
Gp21 caused a marked increase in phage resistance, as the transparency of plaque
decreased significantly compared with that of PAO1-pBBR5 and PaDpilB-pBBR5 (Fig. 6A).

FIG 3 Effects of Gp21 on quorum sensing. (A to C) The transcripts of QS-related genes in PAO1-pBBR5 and PAO1-gp21 strains were analyzed by RT-qPCR.
Strains were grown in LB medium until the OD600 reached 0.15, 1, and 2.5 for RNA extraction. The rplS transcript was used as the internal standard. (D)
Pyocyanin production by PAO1-pBBR5 and PAO1-gp21 strains cultured at 37°C in LB medium for 24 h. (E) Biofilm formation by PAO1-pBBR5 and PAO1-
gp21 strains grown at 37°C for 24 h in the 96-well microtiter plate. Data are averages and standard deviations of three experiments. t tests were performed
to calculate the P values. *, The sample is different (P , 0.1); **, the sample is significantly different (P , 0.01) from the control PAO1-pBBR5.

Xuan et al. Journal of Virology

March 2022 Volume 96 Issue 5 e01769-21 jvi.asm.org 4

https://jvi.asm.org


Upon further inspection of growth curves of PAO1-pBBR5, PAO1-gp21, and PaDpilB-pBBR5
infected with phage vB_Pae_QDWS, we found PAO1 exhibited a much steeper drop in op-
tical density, but PAO1-gp21 and PaDpilB-pBBR5 did not. Additionally, there was no differ-
ence in growth between PAO1-pBBR5, PAO1-gp21, and PaDpilB-pBBR5 (Fig. 6B).

The pilB gene was reported to be necessary for TFP assembly (32). Through adsorp-
tion rate assay, we found almost no phage adsorption happened on PaDpilB-pBBR5,
which indicated phage vB_Pae_QDWS could use TFP as its receptor. In addition, there
is an obviously reduction in phage adsorption on PAO1-gp21 compared with that of
the control PAO1-pBBR5 (Fig. 7). Combined with the results of Fig. 4, we propose that
Gp21 could block phage infection by decreasing the TFP-mediated phage adsorption.

A quite low sequence homology was found in Gp21 (Fig. 8) compared to that of
other twitching inhibitory proteins, Aqs1 (15), JBD24-4 (33), and Tip (32), that were pre-
viously reported. However, the strategies of these small phage proteins are similar to
that which allowed the host's survival by blocking TFP-mediated phage adsorption.

DISCUSSION

A model that Gp21 is involved in P. aeruginosa antiphage defenses is proposed (Fig.
9). Expression of vB_Pae_QDWS Gp21 has a dual effect on P. aeruginosa QS. Gp21
inhibited QS gene transcription in the early stage of growth and activated QS at high
population densities (Fig. 3). Since QS is closely related to phage infection (7, 8, 34, 35),
Gp21 could influence bacterial antiphage defenses by dynamically regulating QS. In
addition, expression of Gp21 is sufficient for twitching inhibition due to blocking the
synthesis of pilus (Fig. 4), which is the important receptor of phage vB_Pae_QDWS (Fig.
7). Preventing TFP synthesis is another way that Gp21 affects phage infection.

Preventing phage adsorption is probably the main mechanism by which Gp21
dampens phage attacks. On the one hand, QS was reported to regulate phage susceptibility

FIG 4 Gp21 affects TFP-mediated twitching and swarming phenotypes. (A) The motility assays of
PAO1-pBBR5, PAO1-gp21, and PaDpilB-pBBR5 were performed for 60 h at 37°C. (B) TEM of PAO1-
pBBR5 and PAO1-gp21. Strains were grown on LB-containing gentamicin (30 mg/L) at 37°C for 6 h
and then were harvested for TEM analysis. Pilus and flagella were indicated by the small and large
arrows, respectively. P, pilus; F, flagella. Scale bar, 500 nm.
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by interfering with phage adsorption or limiting CRISPR-based immunity (36). However, PAO1
does not contain the CRISPR-Cas system (37). Gp21 may regulate phage vB_Pae_QDWS infec-
tion efficiency mainly by preventing phage adsorption. On the other hand, we found TFP is
the cell surface receptor for phage vB_Pae_QDWS. Gp21 expression reduced the number of
pili (Fig. 4), which are required for phage infection. TFP are also critical for biofilm formation
(38). The formation of biofilm was significantly enhanced in PAO1-gp21 (Fig. 3E), which further
increases the barrier to prevent phage adsorption by masking phage receptors (39, 40).

The Gp21 protein is from the lytic phage vB_Pae_QDWS. Comparisons based on amino
acid sequences confirmed that Gp21 is also distributed in P. aeruginosa phages PhikF77,
RLP, and vB_PaeP_130_113 (Fig. 2). It is unclear whether the Gp21 protein with similar func-
tions is also encoded by other phages due to diversity of phage genomes. However, Gp21
expression may help to resist several phages other than phage vB_Pae_QDWS, as many
Pseudomonas phages could use TFP as their receptor (15, 27). Genomic analysis indicated

FIG 5 TFP-related genes were downregulated in P. aeruginosa-expressed Gp21. (A) Gene organization
of TFP minor components in P. aeruginosa PAO1. (B) RT-qPCR analysis of PAO1-pBBR5 and PAO1-
gp21. The RNA sampling point was OD600 = 1. The rplS transcript was used as the internal standard.
The values were the averages of three measures with standard deviation. t tests were performed to
calculate the P values. **, The sample is significantly different (P , 0.01) from the control PAO1-
pBBR5.

FIG 6 The P. aeruginosa expressing Gp21 gains the ability to defend against phage attacks. (A) Spot assay was used to evaluate phage
resistance. Three microliters each of serial 10-fold dilution (106 to 104) of phage vB_Pae_QDWS was spotted onto PAO1-pBBR5, PAO1-gp21,
and PaDpilB-pBBR5 for assays. (B) Antiphage activity assays of PAO1-pBBR5, PAO1-gp21, and PaDpilB-pBBR5. Growth curves of P. aeruginosa
strains infected with phage vB_Pae_QDWS at an MOI of 0.1 in a 96-well microtiter plate containing 200-mL cultures were detected by a
multimode reader. The values were the averages of three measures with standard deviation.
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that gp21 is likely an early or middle gene, since it is between DNA ligase and DNA polymer-
ase, which may function to take over the host metabolism after infection (41). The lyase
gene, which is required for breaking down the cell wall in order to release progeny phages,
is known to be expressed late in the infection cycle (42, 43). Before bacterial lysis, Gp21 pro-
tein presumably shuts down pilus assembly quite rapidly and limits the number of phages
that infect a single cell. Gp21 also likely serves to affect cell-cell communication, informing
the surrounding cells in time to respond to phage invasion. More importantly, pseudolysog-
eny is a frequent outcome of infection by virulent phages, and bacteria with a pseudolysog-
eny state can further resist the infection of the same phage (44, 45). The effects of Gp21 on
host physiology may explain why Gp21 expression blocked phage vB_Pae_QDWS infection.
More detailed mechanisms by which Gp21 functions will be elucidated by means of omics.

The phage-mediated QS interference and loss of twitching act as the strategy of the
host bacterium to prevent efficient phage infection, which also represents a trade off
in terms of potential benefits for the host bacteria. Though Gp21 interfered with P. aer-
uginosa QS, Gp21 expression promoted the production of pyocyanin in the late growth
stage (Fig. 3D). Pyocyanin is closely associated with pathogenicity (46). TFP and TFP-
mediated twitching are essential for attachment and virulence of P. aeruginosa (47).
Although Gp21 inhibited TFP and twitching, the loss of motility could enhance the fit-
ness of the bacterium in chronic infection (48). We also observed the significant

FIG 7 Gp21 decreases the TFP-mediated phage adsorption. The rates of adsorption of phage
vB_Pae_QDWS to PAO1-pBBR5, PAO1-gp21, and PaDpilB-pBBR5 were determined by mixing phage and
host cultures at an API of 0.001 at 37°C for 5 min without shaking. The values were the averages of three
measures with standard deviation. t tests were performed to calculate the P values. **, The sample is
significantly different (P , 0.01) from the control PAO1-pBBR5.

FIG 8 Multiple sequence alignment of Gp21 and other known phage twitching inhibitory proteins.
Protein sequences shown include P. aeruginosa phage DMS3 Aqs1, P. aeruginosa phage JBD24 JBD24-
4, P. aeruginosa phage D3112 Tip, and phage vB_Pae_QDWS Gp21 (in this study).
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enhancement in biofilm formation (Fig. 3E), which could increase the resistance of
microorganisms in biofilms toward biocides and various stresses (49).

In summary, numerous phages are sequenced so far, and most ORFs coded by
phages are functionally unknown. Our understanding of phage gene products is only
the tip of the iceberg. Gp21, we proposed, is a novel phage-derived protein that pro-
tects P. aeruginosa PAO1 from phage infection. Our study is particularly remarkable for
uncovering a phage-encoded protein and evaluating its roles in host physiology.
Further identification of the Gp21 receptor and screening competitive inhibitors of
Gp21 are needed and will help to confer phage resistance or promote P. aeruginosa
phage therapy in the future.

MATERIALS ANDMETHODS
Bacterial strains and phages. Phage vB_Pae_QDWS was isolated from Qingdao sewage and stored

in Food Safety Laboratory, Ocean University of China. P. aeruginosa and Escherichia coli were cultured in
LB medium at 37°C. PAO1 was also grown in minimal salt medium (MM) supplemented with 1% sodium
gluconate during the process of genes inactivation. The detailed information of strains and plasmids
used in this work are given in Table S1 in the supplemental material. All primers are given in Table S2 in
the supplemental material. The following antibiotics (concentrations) were used when required: genta-
micin (30 mg/mL), kanamycin (50 mg/mL), and tetracycline (30 mg/mL).

Isolation and purification of phages. Phages specific to P. aeruginosa PAO1 were isolated from
sewage samples in Qingdao, China, and were centrifuged at 2,348 � g for 10 min. Then, the samples
were filtered through a 0.22-mm pore size filter (Millipore, Burlington, MA, USA) and mixed with 50 mL
of log-phase P. aeruginosa PAO1 cells, incubating at 37°C and 200 rpm rotary agitation for 12 h. The
resulting culture suspension was filtered as above, and the phages were cultured using the double-layer
agar plate method. Single plaques were separated by stinging with a pipette tip into the plaque fol-
lowed by resuspending the phages in SM buffer (100 mM NaCl, 8 mM MgSO4, 50 mM Tris-HCl, pH 7.5).
After multiple rounds of purification, the phage was verified by electron microscopy.

One-step growth curve. The one-step growth curve was determined according to a reported method
(50). P. aeruginosa PAO1 was grown in LB medium until the log-phase (OD600 = 0.4;0.6). Then, the phage
vB_Pae_QDWS was added to the PAO1 culture at a multiplicity of infection (MOI) of 0.01 and incubated at 37°C.
Using the double-layer agar plate method, we determined the free bacteriophage count at each time point.

Transmission electron microscopy. Transmission electron microscopy was performed as previously
described (51). The bacteria particles or phage pellets were deposited on carbon-coated copper grids and neg-
atively stained with 2% phosphotungstic acid (pH 6.8). Electron microscopy pictures were taken with a trans-
mission electron microscope (TEM) (JEM-1200EX; JEOL, Japan) operating at an accelerating voltage of 100 kV.

Gene cloning and expression. PCR-amplified gp21 genes were cloned into the broad-host-range
plasmid pBBR1MCS5 (linearized via PCR) by using a modified In-Fusion method (52). The verified plasmid
was then transformed into the PAO1 cells via electroporation. Transformants were selected using 30 mg/
mL gentamicin. PAO1 with the empty plasmid pBBR1MCS5 was used as the control.

Physiological and biochemical tests of bacteria. Motility assays were performed as previously
described, with modifications (28). For swimming assay, bacterial culture was grown to an OD600 of 2.
Three microliters of the culture was spotted onto the semisolid medium consisting of 0.8% nutrient
broth, 0.5% glucose, and 0.3% agarose. After incubation at 37°C for 60 h, diameter of the swimming

FIG 9 Schematic representation of phage vB_Pae_QDWS Gp21 participate in antiphage defenses in P.
aeruginosa PAO1.
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zones was measured. For twitching motility, fresh colonies were stab-inoculated through the 1% LB agar
layer. After incubation at 37°C for 60 h, the agar was carefully removed, and the motility zone was meas-
ured by staining the petri dish with 2% crystal violet for 1 h. For swarming assay, 3 mL of the bacterial
culture (OD600 = 2) was spotted onto the semisolid medium consisting of 0.8% nutrient broth, 0.5% glu-
cose, and 0.5% agarose. After incubation at 37°C for 60 h, the motility zone observed was measured.

Biofilm assays were performed in the wells of a 96-well microassay plate (53). Briefly, 10 mL of over-
night culture was transferred into a well containing 200 mL LB fresh medium in a flat-bottom 96-well
microplate. After incubation at 37°C for 24 h without shaking, cultures were gently removed, washed,
and then stained with 0.1% crystal violet solution for 30 min. Bound crystal violet was extracted from
the stained biofilm with 200 mL 30% glacial acetic acid and measured the absorbance at the wavelength
of 570 nm using a multimode reader (Synergy LX; BioTek Instruments, Inc., Winooski, VT).

For the pyocyanin production assay, P. aeruginosa strains were incubated at 37°C with shaking at
200 rpm rotary agitation for 24 h. The supernatants (6 mL) were collected by centrifugation and extracted
with 6 mL of chloroform. Then, 4 mL of the pyocyanin-chloroform solution was extracted again with 1 mL 0.2
M HCl, leading to the development of a pink color, which was measured at 520 nm by a multimode reader
(54). The concentration was calculated and normalized to the cell density (OD600).

Estimation of phage resistance. Phage resistance was detected by spot assay. Briefly, the overnight
P. aeruginosa PAO1-pBBR5 and PAO1-gp21 strains were inoculated in LB medium to an OD600 of 2. Then,
100 mL of the cultures were mixed with 5 mL of the melted 1% agar LB medium, forming the double-
layer agar. Three microliters of diluted phages were spotted to the plate, and the plates were incubated
at 37°C for 12 h before examination. Bacterial growth assay was also used for estimating phage resist-
ance. At an OD600 of 0.5, PAO1-pBBR5 and PAO1-gp21 cultures were mixed with the appropriate phage
(MOI = 0.1) in 96-well plates. Infection dynamics were monitored in three replicates by a multimode
reader (Synergy LX; BioTek Instruments, Inc., Winooski, VT).

Adsorption rate assay. The phage adsorption rate was assayed as described previously with modifi-
cations (50). In brief, overnight cultures (OD600 of 0.05) of the PAO1-pBBR5, PAO1-gp21, and PaDpilB-
pBBR5 strains were inoculated in fresh LB medium. The cells were cultured until the OD600 reached 2.5,
followed by 10-fold dilution in LB medium. The cells were then mixed with the phage vB_Pae_QDWS so-
lution at an MOI of 0.001 and then allowed to adsorb for 5 min at 37°C. The cells were centrifuged at
7,378 � g for 2 min at 4°C to obtain the free phages, which were detected using a soft-agar overlay
assay. The adsorption rate was calculated as follows: adsorption rate (%) = [(initial phage titer 2 phage
titer in the supernatant)/(initial phage titer)] � 100.

Construction of the pilB deletion strain of Pseudomonas aeruginosa. To construct a pilB deletion
mutant, upstream (1,016 bp) and downstream (1,021 bp) regions of the pilBORF were amplified from the P. aeru-
ginosa PAO1 genomic DNA and then subcloned into the pK18mobsacBtet vector at the EcoRI site. The deletion
plasmid pK18mobsacBtet-DpilB was transformed into E. coli S17-1 and then transferred to P. aeruginosa PAO1 by
conjugation. After two rounds of screening by using colony PCR, the correct deletion strain was obtained.

Real-time quantitative reverse transcription-PCR. For RT-qPCR, the cells were collected at a
defined incubation time, and RNA was extracted. RNA was purified using the TRIzol RNA purification kit
(12183555; Invitrogen). Total cDNA was synthesized by the HiScript II reverse transcriptase (Vazyme). RT-
qPCR was performed by using the SYBR green realtime PCR master mix. The StepOnePlus real-time PCR
system (ABI) was used to determine the melting curve and specificity of the PCR products. rplS was
selected as the reference gene for normalization.

Data availability. All data within the paper and its supplementary information file are available
from the authors upon request. The complete genome sequence of phage vB_Pae_QDWS has been de-
posited in GenBank under accession number MZ687409.1.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
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