TABLE 3.
Performance summary across 25 simulated data sets Note. Comparison of true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient (MCC) and area under the ROC curve (AUC) for structure learning, and Frobenius loss (FL) for precision matrix estimation. The standard error of the mean is given in parentheses. The methods compared are the fused and group graphical lasso of Danaher et al. (2014), separate Bayesian graph estimation with mixture priors of Wang (2015), the joint Bayesian estimation with mixture priors of Shaddox et al. (2018), and the proposed linked precision matrix approach
All Edges | Differential Edges | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TPR | FPR | MCC | AUC | Fr Loss | # edges | TPR | FPR | MCC | AUC | |
Fused graphical lasso | 0.80 | 0.07 | 0.48 | 0.97 | 0.065 | 461 | 0.74 | 0.14 | 0.11 | 0.24 |
(0.01) | (0.003) | (0.01) | (0.001) | (0.001) | (15.1) | (0.01) | (0.001) | (0.003) | (0.01) | |
Group graphical lasso | 0.73 | 0.08 | 0.40 | 0.96 | 0.077 | 508 | 0.68 | 0.14 | 0.10 | 0.13 |
(0.01) | (0.003) | (0.005) | (0.001) | (0.001) | (16.3) | (0.02) | (0.004) | (0.003) | (0.004) | |
Separate estimation with | 0.17 | 0.0002 | 0.40 | 0.89 | 0.099 | 31 | 0.16 | 0.01 | 0.10 | 0.84 |
mixture priors | (0.002) | (3.0×10−5) | (0.003) | (0.001) | (0.001) | (0.5) | (0.01) | (2.0×10−4) | (0.01) | (0.01) |
Joint estimation with | 0.57 | 0.03 | 0.47 | 0.89 | 0.327 | 236 | 0.53 | 0.06 | 0.12 | 0.84 |
mixture priors | (0.004) | (3.0×10−4) | (0.003) | (0.002) | (0.003) | (1.6) | (0.02) | (0.001) | (0.004) | (0.01) |
Linked precision | 0.43 | 0.0002 | 0.64 | 0.95 | 0.057 | 77 | 0.22 | 0.003 | 0.23 | 0.87 |
matrix approach | (0.01) | (2.6×10−5) | (0.004) | (0.001) | (7.4×10−4) | (1.1) | (0.01) | (9.9×10−5) | (0.019) | (0.01) |
For MCC, AUC, and FL, the result reflecting the best performance among the methods compared is marked in bold.