Skip to main content
. Author manuscript; available in PMC: 2022 Mar 9.
Published in final edited form as: Biometrics. 2020 Feb 19;76(4):1120–1132. doi: 10.1111/biom.13235

TABLE 3.

Performance summary across 25 simulated data sets Note. Comparison of true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient (MCC) and area under the ROC curve (AUC) for structure learning, and Frobenius loss (FL) for precision matrix estimation. The standard error of the mean is given in parentheses. The methods compared are the fused and group graphical lasso of Danaher et al. (2014), separate Bayesian graph estimation with mixture priors of Wang (2015), the joint Bayesian estimation with mixture priors of Shaddox et al. (2018), and the proposed linked precision matrix approach

All Edges Differential Edges
TPR FPR MCC AUC Fr Loss # edges TPR FPR MCC AUC
Fused graphical lasso 0.80 0.07 0.48 0.97 0.065 461 0.74 0.14 0.11 0.24
(0.01) (0.003) (0.01) (0.001) (0.001) (15.1) (0.01) (0.001) (0.003) (0.01)
Group graphical lasso 0.73 0.08 0.40 0.96 0.077 508 0.68 0.14 0.10 0.13
(0.01) (0.003) (0.005) (0.001) (0.001) (16.3) (0.02) (0.004) (0.003) (0.004)
Separate estimation with 0.17 0.0002 0.40 0.89 0.099 31 0.16 0.01 0.10 0.84
mixture priors (0.002) (3.0×10−5) (0.003) (0.001) (0.001) (0.5) (0.01) (2.0×10−4) (0.01) (0.01)
Joint estimation with 0.57 0.03 0.47 0.89 0.327 236 0.53 0.06 0.12 0.84
mixture priors (0.004) (3.0×10−4) (0.003) (0.002) (0.003) (1.6) (0.02) (0.001) (0.004) (0.01)
Linked precision 0.43 0.0002 0.64 0.95 0.057 77 0.22 0.003 0.23 0.87
matrix approach (0.01) (2.6×10−5) (0.004) (0.001) (7.4×10−4) (1.1) (0.01) (9.9×10−5) (0.019) (0.01)

For MCC, AUC, and FL, the result reflecting the best performance among the methods compared is marked in bold.