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A B S T R A C T   

Researchers have developed more intelligent, highly responsive, and efficient detection methods owing to the 
COVID-19 demands for more widespread diagnosis. The work done deals with developing an AI-based frame-
work that can help radiologists and other healthcare professionals diagnose COVID-19 cases at a high level of 
accuracy. However, in the absence of publicly available CT datasets, the development of such AI tools can prove 
challenging. Therefore, an algorithm for performing automatic and accurate COVID-19 classification using 
Convolutional Neural Network (CNN), pre-trained model, and Sparrow search algorithm (SSA) on CT lung im-
ages was proposed. The pre-trained CNN models used are SeresNext50, SeresNext101, SeNet154, MobileNet, 
MobileNetV2, MobileNetV3Small, and MobileNetV3Large. In addition, the SSA will be used to optimize the 
different CNN and transfer learning(TL) hyperparameters to find the best configuration for the pre-trained model 
used and enhance its performance. Two datasets are used in the experiments. There are two classes in the first 
dataset, while three in the second. The authors combined two publicly available COVID-19 datasets as the first 
dataset, namely the COVID-19 Lung CT Scans and COVID-19 CT Scan Dataset. In total, 14,486 images were 
included in this study. The authors analyzed the Large COVID-19 CT scan slice dataset in the second dataset, 
which utilized 17,104 images. Compared to other pre-trained models on both classes datasets, MobileNetV3Large 
pre-trained is the best model. As far as the three-classes dataset is concerned, a model trained on SeNet154 is the 
best available. Results show that, when compared to other CNN models like LeNet-5 CNN, COVID faster R–CNN, 
Light CNN, Fuzzy + CNN, Dynamic CNN, CNN and Optimized CNN, the proposed Framework achieves the best 
accuracy of 99.74% (two classes) and 98% (three classes).   

1. Introduction 

The COVID-19, the infectious disease caused by Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) is the deadliest 
pandemic ever crept on humanity. The COVID-19 is still spreading 
rapidly throughout the real world, instilling fear in people’s ability to 
communicate physically and a threat to global public health. The 
COVID-19 pandemic impacts everyone’s life in a million ways with strict 
quarantine, travel restrictions, isolation measures, and causing many 
shutdowns in different sectors worldwide. The world is waiting for the 
end of the COVID-19 epidemic and its moral implications, which have 

changed human society over the last two years. However, the virus 
persists and exhibits different patterns. 

The terrible and rapid spread of the third wave of pandemic and the 
emerging highly transmissible corona virus’s new Delta, Omicron, and 
Ihu raised many concerns worldwide. These variants present a challenge 
in dealing with the COVID-19 pandemic [1]. Governments have begun 
to fund COVID-19 vaccine development and research [2]. However, the 
world does not know how long a vaccine would stay effective as the 
virus mutates. The Delta mutant causes significant lung damage and 
severe breathing difficulties, leading to death. While Omicron poses less 
threat than previous coronavirus strains, its spreading speed causes fear 
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and panic. The Omicron carries more than 50 mutations detected in 
roughly 100 countries. The number of COVID-19 cases involving Omi-
cron is doubling every 1.5 to three days [3]. The sharp increase in om-
icron infections worldwide may increase the likelihood of a new, more 
dangerous mutation. Besides, The new “Ihu” mutant hit the French city 
of Marseille and spread rapidly. Ihu eludes the immune system with 46 
mutations and has a high ability to spread and resist vaccines. The world 
is afraid of returning to the early days of the coronavirus when a terrible 
number of people died worldwide. Since the virus’s first appearance in 
China in December 2019, over 289 million cases have been infected, 
including over 5.4 million deaths, as shown in Fig. 1 [4]. 

Despite extensive research being conducted to develop a vaccine, 
many immune countries are now experiencing record levels of a new 
infection. As shown in Fig. 2 [3], the global number of new cases 
increased by 71%, while the number of new deaths decreased by 10%. 
According to WHO weekly report (2nd of January 2022), there are 
approximately 9.5 million new cases and over 41000 new deaths. When 
we see such an increase in cases, more people with severe symptoms will 
likely end up in the hospital and possibly die. Even in capable and 
developed healthcare systems, real challenges are emerging at the 

moment. Thus, accurate and rapid screening of infected patients is 
essential, and this is considered the primary stage for fighting this global 
pandemic and “flattening the curve” of the coronavirus pandemic. 

With this pandemic explosion, it is necessary to combat the spread of 
COVID-19 in the early stages. Therefore, there is a crucial need for 
timely and accurate COVID-19 diagnosis tools to increase the effec-
tiveness of patient care, proper treatment planning, and quarantine 
precautions. Fig. 3 shows four common methods for detecting COVID-19 
[5]. The swab-based reverse transcription-polymerase chain reaction 
(RT-PCR) is the accepted standard screening strategy known as a 
microbiological test for diagnosing the presence of COVID-19. However, 
the method is laborious, has long turnaround times (takes 4–6 h) to 
furnish a result, is limited available, has low detection sensitivity in the 
initial stages, is tedious and time-consuming. Additionally, RT-PCR 
shows false-negative rates as large as 15%–20% [6]. Because 
COVID-19 is a contagious disease, many developing countries cannot 
provide RT-PCR test kits, especially on a large scale. 

Due to the limitation of the swab test, the developed countries use 
routine blood tests as an inexpensive solution that may help identify 
COVID-19 patients [6]. In addition, blood sample-based tests can be 

Fig. 1. Worldwide daily new confirmed COVID-19 cases and deaths per million people [4].  

Fig. 2. COVID-19 cases reported weekly by WHO Region, and global deaths, as of 2 January 2022 [3].  
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used as serology tests to help estimate how many people have already 
been infected (antibody test) [7]. The use of human respiratory sound 
can also be used as a diagnostic tool for detecting COVID-19 from 
human-generated sounds such as voice/speech, dry cough, and breath 
[8]. With many cases emerging every day, health systems in all countries 
are collapsing. Accordingly, Chest Computed Tomography (CCT) and 
chest X-ray (CXR) radiography images have been recently used as a 
useful diagnostic tool for COVID-19. The radiography images are char-
acterized by less complexity, availability, and faster diagnosis. CXR-ray 
is less expensive; however, its performance in COVID-19 screening is 
weaker compared to CCT as less information is embedded in a CXR scan 
image. Fig. 4 (a) and (b) depict two CCT scans of COVID-19 and 
non-COVID-19, respectively. 

Nevertheless, CCT has played a vital role in diagnosis during this 
pandemic, demonstrating typical radiographic features of most COVID- 
19 infected patients. In addition, CCT imaging is a valid alternative to 

detect COVID-19 with a higher sensitivity up to 98% compared with 
71% of RT-PCR [9]. One hundred forty laboratories-confirmed that 
COVID-19 patients had positive CCT results in the early stages, ac-
cording to Ref. [10]. However, radiologists have to be experienced in 
medical imaging analysis and interpretation to decipher the radiography 
images. 

Furthermore, due to the rapid spread of COVID-19 outbreaks, hos-
pitals have long queues for CCT scan image examination. Therefore, 
there is a high infection risk of spreading to other patients. In addition, 
the medical staff has to evaluate many CCT images quickly, which 
causes an overburdened medical system. The healthcare systems can be 
disrupted or completely breakdown due to limitations of RT-PCR kits, 
the burden of specialized radiologists, and intensive care equipment 
availability for hospitals. Automatic, highly responsive, accurate, and 
scalable detection of COVID-19 patients is still a major problem and a 
crucial point for global health concerns. Therefore, intelligent 

Fig. 3. COVID-19 diagnosis techniques.  

Fig. 4. CCT scan of lungs of a patient (a) affected by COVID-19 and (b) not affected by COVID-19.  
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approaches are needed to support the healthcare system and automati-
cally classify CCT images. Therefore, there is a need for feasible alter-
native methods to support the medical aspects in automatic detecting 
COVID-19 in early stages that achieves optimal tradeoff between cost, 
testing accuracy, and consumed time. Therefore, the cooperation be-
tween the medical and computer-engineering researchers is crucial for 
developing Computer-Aided Detection approaches that efficiently di-
agnose COVID-19 faster and less laborious [11] to alleviate the pressure 
on healthcare systems. 

Artificial Intelligence (AI), specifically machine learning, deep 
learning (DL), and transfer learning (TL) diagnostics techniques, has 
recently gained popularity in the medical field. This is because it enables 
end-to-end image classification without human intervention. However, 
despite the existence of a variety of COVID-19-AI-based diagnosis 
techniques, the desired diagnosis accuracy has yet to be achieved due to: 
(1) limitations of training data available for the research community, (2) 
data imbalances, (3) variation in image quality, (4) the classification 
performance, (5) time and space complexity, (6) insufficient general-
isability, and 7) the optimization of the huge number of existing 
hyperparameters. Thus developing an intelligent, highly responsive, and 
automated COVID-19 diagnosis model is challenging. 

The primary motivations for this study are: (1) The rapid spread of 
COVID-19 and the crucial need for the early detection to limit the 
occurrence of COVID-19 among individuals. (2) The RT-PCR tests have 
limited availability and require a significant amount of time. (3) Medical 
imaging modalities have an important role in automatically diagnosing 
COVID-19 patients, particularly infected children and pregnant women 
[12]. (4) The CAD systems based on deep learning strategies motivate 
the need for more accurate automated classification approaches for 
rapidly diagnosing COVID-19 patients. (5) Datasets availability limits 
DL networks training. (6) Deploying optimization strategies to choose 
the best model architectures and hyper-parameters. 

The novel feature of the study is the use of transfer learning-based 
CNN’s whose hyperparameters are optimized using sparrow search for 
automatic diagnosis and classification of COVID-19 from chest CT im-
ages. In addition, depending on the CNN and TL hyperparameters, the 
SpaSA algorithm is used to choose the best-pretrained model among all 
recommended models and the best optimal settings of model hyper-
parameters. It is beneficial to re-use a pretrained network and transfer 
an already-learned model to a new model using transfer learning. The 

results show that pre-trained CNNs for MobileNetV3Large and SeNet154 
deliver optimal or near-optimal results when used to train binary clas-
sification classifiers and multiclassification classifiers, respectively. 

This study proposed a framework to perform automatic classification 
of COVID-19 based on CT lung images with the help of Convolutional 
Neural Network (CNN) and the Sparrow Search Algorithm (SpaSA) for 
hyperparameters optimization. Furthermore, this study proposes 
adapting the SpaSA [13] to improve and optimize the CNN network 
classification to obtain more accurate results. SpaSA is a swarm opti-
mization approach inspired by sparrows’ group wisdom, foraging, and 
anti-predation behaviors. The SpaSA outperforms other optimization 
algorithms regarding search speed, precision, convergence rate, stabil-
ity, and local optimal value avoidance. The current study contributions 
can be summarized in the following points:  

● Proposing a framework to perform automatic classification of 
COVID-19 based on the CT lung images with the help of CNN, TL, and 
SpaSA Algorithm. 

● The SpaSA is used to optimize the different CNN and TL hyper-
parameters aiming to find the best configurations for each used pre- 
trained model and to enhance the classification performance.  

● The proposed technique is adaptable; there is no need to assign the 
CNN architecture’s hyperparameters values manually.  

● Two different datasets are used. The first dataset (15,186 images) is 
partitioned into two classes, while the second one (22,779 images) is 
partitioned into three classes. The dataset in the current study faces 
four different scaling techniques. The SpaSA is used to find the best 
scaler technique.  

● A comparison between the suggested approach and the other state- 
of-the-art approaches is conducted. The achieved results of the 
standard performance metrics are very promising. 

The rest of the paper is organized as follows: In Section 2, the related 
studies of COVID-19 diagnosis based on CT and X-ray are reviewed. In 
Section 3, the background of AI, deep learning, and its counterparts are 
introduced. In Section 4, the methodology and the proposed framework 
overview are discussed. In Section 5, the numerical results are analyzed 
and discussed. Finally, in Section 6, the paper is concluded. . 

Fig. 5. The suggested framework.  
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2. Related studies 

The main barriers to containing the spread of COVID-19 are 
untrusted screening systems and a scarcity of clinical facilities. As a 
result, the artificial neural network plays a significant role in computer 
vision, particularly medical imaging, for achieving human-level accu-
racy in visual data processing, classification, and segmentation. Con-
volutional Neural Network (CNN) has made a significant contribution to 
the medical system by being extremely useful in digital image process-
ing. Innovative Pre-trained CNN models trained on large datasets are 
used to capitalize on the knowledge of generic features from the images. 
Since the COVID-19 has become widespread, extensive research has 
been conducted to address the application of various deep learning 
methods that aid in developing a new end-to-end diagnosis of the 
COVID-19 that does not require manual feature engineering [14]. Deep 
learning algorithms are essential to developing new diagnosis methods 
that can achieve promising performance in detecting acute Pneumonia. 

Polsinelli et al. [15] developed a CNN-based light classifier based on 
CCT images of the lungs for the COVID-19 efficient and rapid diagnosis. 
The classifier determines if the CCT image is Pneumonia or healthy. The 
proposed architecture is characterized by short classification time and 
low computation resources. The proposed classifier is based on the 

SqueezeNet model characterized by the fewer parameters deployment 
and achieved acceptable accuracy density and inference time. In addi-
tion, they used the Bayesian method for hyperparameters optimization. 
The optimized hyperparameters are Initial Learning Rate, Momentum, 
and L2-Regularization. However, preprocessing stage can be deployed to 
increase the classifier performance. Maghdid et al. [16] introduced a 
modified simple CNN Diagnosing model based on transfer learning 
AlexNet architecture. They used the CXR and CCT scan images dataset 
from multiple sources to develop, train, and evaluate their diagnosing 
model. Their datasets are divided equally for training CNN and model 
validation. The proposed model achieves accuracy up to 98%. However, 
Performance degradation is found in chest radiograph-based diagnosis. 
A VGG-16 Network-based faster region CNN approach is proposed for 
the detection of COVID-19 based on CXR scans [17]. The proposed deep 
learning-based approach used 13,800 X-Ray images with a classification 
accuracy of 97.36%. However, the model can be enhanced to detect CT 
images with higher accuracy. A deep learning lung CT scans prediction 
model is implemented by Islam et al. [18]. They used LeNet-5 CNN ar-
chitecture with a dataset that involves 746 CCT images. They used the 
image augmentation technique for the sake of enlarging the dataset. As a 
result, 80% of lung CT frames are used for training and 20% for testing. 
The model can be further enhanced to be more convenient and efficient 
enough. 

Kundu et al. [19] introduced an end-to-end transfer learning CNN 
binary classification framework based on CT-scan images. First, they 
used three models to generate the initial decision scores fused by the 
proposed ensemble model. Then, ensembling is used to incorporate the 
discriminating properties of all the contributing models and assign fuzzy 

Table 1 
The configurations used for the different augmentation 
techniques to balance the datasets.  

Technique Value 

Rotation 30◦

Width Shift Ratio 20% 
Height Shift Ratio 20% 
Shear Ratio 20% 
Zoom Ratio 20% 
Brightness change [0.8, 1.2] 
Vertical Flip Yes 
Horizontal Flip Yes  

Table 2 
The corresponding hyperparameter for each element in the solution.  

Element # Value 

1 Loss function 
2 Batch size 
3 Dropout ratio 
4 TL learning ratio 
5 Weights optimizer 
6 Scaler technique 
7 Apply augmentation or not 
8 Rotation value (if augmentation is true) 
9 Width shift value (if augmentation is true) 
10 Height shift value (if augmentation is true) 
11 Shear value (if augmentation is true) 
12 Zoom value (if augmentation is true) 
13 Horizontal flip flag (if augmentation is true) 
14 Vertical flip flag (if augmentation is true) 
15 Brightness change range (if augmentation is true)  

Table 3 
The used datasets specifications summarization.  

Dataset No. of 
Classes 

Classes No. of 
Images 
(Before) 

No. of 
Images 
(After) 

COVID-19 Lung CT 
Scans and 
COVID 19 CT 
Scan Dataset 

2 “COVID” and 
“NonCOVID” 

14, 486 15, 186 

Large COVID-19 
CT scan slice 
dataset 

3 “CAP”, “COVID”, 
and “NonCOVID” 

17, 104 22, 779  

Table 4 
Common experiments Configurations.  

Configuration Specifications 

Apply Dataset Shuffling? Yes (Random) 
Input Image Size (100 × 100 × 3) 
Hyperparameters 

Metaheuristic Optimizer 
Sparrow Search Algorithm (SpaSA) 

Train Split Ratio 85%–15% (i.e., 85% for training and validation; and 
15% for testing) 

SpaSA Size of Population 10 
SpaSA Number of Iterations 10 
Number of Epochs 5 
Output Activation Function SoftMax 
Pre-trained Models SeresNext50, SeresNext101, SeNet154, MobileNet, 

MobileNetV2, MobileNetV3Small, and 
MobileNetV3Large 

Pre-trained Parameters 
Initializers 

ImageNet 

Losses Range Categorical Crossentropy, Categorical Hinge, 
KLDivergence, Poisson, Squared Hinge, and Hinge 

Parameters Optimizers 
Range 

Adam, NAdam, AdaGrad, AdaDelta, AdaMax, 
RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp 
Centered, and Adam AMSGrad 

Dropout Range [0 → 0.6] 
Batch Size Range 4 → 48 (step = 4) 
Pre-trained Model Learn 

Ratio Range 
1 → 100 (step = 1) 

Scaling Techniques Normalize, Standard, Min Max, and Max Abs 
Apply Data Augmentation 

(DA) 
[Yes, No] 

DA Rotation Range 0◦ → 45◦ (step = 1◦) 
DA Width Shift Range [0 → 0.25] 
DA Height Shift Range [0 → 0.25] 
DA Shear Range [0 → 0.25] 
DA Zoom Range [0 → 0.25] 
DA Horizontal Flip Range [Yes, No] 
DA Vertical Flip Range [Yes, No] 
DA Brightness Range [0.5 → 2.0] 
Scripting Language Python 
Python Major Packages Tensorflow, Keras, NumPy, OpenCV, and Matplotlib 
Working Environment Google Colab with GPU (i.e., Intel(R) Xeon(R) CPU 

@ 2.00 GHz, Tesla T4 16 GB GPU, CUDA v.11.2, and 
12 GB RAM)  
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ranks to the classifiers. The proposed method achieves high classifica-
tion accuracies of 98.80% based on experimental results. However, the 
proposed framework has drawbacks such as computation cost, over-
fitting issues, and recognition capability of the CNN models. Pathana 
et al. [20] introduced two classification architectures based on a transfer 
learning approach. The first architecture uses five standards, namely 
ResNet-50, AlexNet, VGG19, Densenet, and Inception V3. The second 
architecture deploys CNN hyperparameters optimization strategy using 
the WOA-BAT optimization algorithm. The optimized CNN extracts 
features and classifies CCT images into COVID-19 and normal. They 
used 746 CCT images combined from three datasets from different 
hospitals. 

Tripti Goel et al. [12] developed a deep learning-based framework 
for the automatic diagnosis of COVID-19 patients. The proposed 
framework introduced an effective feature extraction and high perfor-
mance in three stages. The first stage concerns the augmentation of the 
data through a generative adversarial network (GAN) architecture to 
generate more CCT images for DL networks training. The WOA 

Optimization is used to optimize the GAN hyperparameters in the sec-
ond stage. The main objective was to avoid issues with overfitting and 
instability. Finally, the classification stage used a pretrained Incep-
tionV3 DL model to classify COVID-19 patients automatically. They used 
the SARS-CoV-2 CT-Scan dataset that contains 2,482 CCT scan images. 
The experimental study proved that the proposed model outperformed 
other state-of-the-art models with achieved accuracy of 99.22%. 

Huang et al. [21] proposed a collaborative multi-center sparse 
learning (MCSL) and decision fusion approach that considered data 
inconsistency for COVID-19 classification based on CCT images. First, 
the CCT images are converted into HOG images to reduce structural 
differences. Then, feature extraction is performed via a proposed 
3D-CNN model to extract deep features. The MCSL method selects 
discriminative features for training multi-center classifiers and then 
fuses the classifiers’ decisions. To validate the effectiveness of the pro-
posed method experimental study was performed based on five CCT 
datasets of 1,034 images. They achieved appealing accuracy(98.03%), 
sensitivity (95.89%), and specificity (99%). The authors intended to 
further enhance the MCSL approach by supporting multi-modal data, 
deploying a semisupervised method to adapt many cases, and adding the 
segmentation stage to improve diagnostic performance further. 
Abraham and Nair [22] proposed COVID-19 diagnosis method consist-
ing of CNNs and Kernel SVM classifier. They aimed to classify patients 
into COVID-19 and non-COVID-19 using CT images. The proposed 
method combined features extracted from TL and five pre-trained CNNs. 
They used a dataset consisting of 746 CT images. The experimental 
analysis proved that the extracted features using the CNNs and KSVM 
classifier achieved an accuracy of 91.6%. R. Murugan and Tripti Goel 
[23] proposed an accurate modified pre-trained CNN-ResNet50 based 
on the Extreme Learning Machine (E-DiCoNet) model for diagnosing 
COVID-19 (COVID-19, bacterial Pneumonia, and normal). The E-DiCo-
Net model consists of an input layer, several hidden layers, a pooling 
layer, and a classifier. This model has utilized 2,700 chest CXR images 
from multiple data sources. The proposed model achieved accurate 
diagnosis with less training time and exceptionally exactness. In addi-
tion, the proposed framework achieved good performance metrics as 
follows: accuracy (94.07%), sensitivity (98.15%), specificity (91.48%), 
recall (85.21%), precision (98.15%), and F1-score (91.22%). Based on 
CXR and CCT images, Goura and Jain [24] introduced a novel deep 
learning-based stacked CNN (DLS-CNN) model for COVID-19 diagnosis. 
First, different sub-models are deployed from the VGG19 and the 
Xception models during the training and then ensembled together using 

Fig. 6. Samples from the used datasets.  

Table 5 
Two-classes specific experiments Configurations.  

Configuration Specifications 

Dataset Sources COVID-19 Lung CT Scans [33] and Covid 19 CT Scan 
Dataset [34] 

Number of Classes 2 
Classes (‘COVID’ and ‘NonCOVID’) 
Dataset Size before Data 

Balancing 
“COVID”: 7,593 and “NonCOVID”: 6,893 

Dataset Size after Data 
Balancing 

“COVID”: 7,593 and “NonCOVID”: 7,593  

Table 6 
Confusion matrix results concerning the two-classes dataset.  

Model Name TP TN FP FN 

SeresNext50 15,022 15,022 158 158 
SeresNext101 15,064 15,064 104 104 
SeNet154 14,966 14,966 214 214 
MobileNet 15,141 15,141 39 39 
MobileNetV2 15,088 15,088 72 72 
MobileNetV3Small 14,282 14,282 898 898 
MobileNetV3Large 14,768 14,768 392 392  
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a softmax classifier. An available public data set of 3,040 CXR images 
were used for multiclass classification. They used 4,645 CCT images for 
binary classification. As a result, the DLS-CNN model achieved an ac-
curacy of 97.27% and 98.30% for multiclass and binary classification, 
respectively. 

Murugan et al. [25] proposed an optimized DL network (WOANet) 
for feature extraction and binary classification of COVID-19. They used 
the ResNet-50 CNN network to diagnose the COVID-19 through CCT 
images. They used backpropagation and WOA algorithms for hyper-
parameter optimization to ensure maximum performance. The proposed 
method doesn’t need preprocessing and ROI extraction. They used the 
COVID-CT dataset contains 2,700 CCT images. The Proposed WOANet 
achieved Accuracy, Sensitivity, Specificity, Precision, and F1 score of 
98.78%, 98.37%, 99.19%, 99.18%, and 98.37% respectively. 

Gayathri et al. [26] proposed a CNN-based CAD system for the 
COVID-19 binary classification of using CXR images. The proposed 
model used (i) feature extraction from several combinations of 
pre-trained networks, (ii) dimensionality reduction for extracted fea-
tures with Sparse autoencoder, and (iii) classification using a 
Feed-Forward Neural Network (FFNN). Two CXR image datasets con-
sisting of 1046 scans were used. The InceptionResnetV2 and Xception 
models achieved an accuracy of 0.9578 and an AUC of 0.9821. Tripti 
Goel et al. [27] presented a new model made up of pre-trained networks 
InceptionV3 and ResNet50. In addition, they proposed an optimized, 
fully automated dual-stage DL (Multi-COVID-Net) architecture based on 
CXR to classify COVID-19 patients into normal, COVID-19, and Pneu-
monia. The first stage concerns automatic feature extraction, and the 
second stage is multiclass classification. They introduced a 
Multi-Objective Grasshopper Optimization Algorithm (MOGOA) for 
hyperparameters optimization. A dataset consisting of 2,700 CXR im-
ages was used. An extensive experimental analysis proved the efficiency 
of the proposed model (accuracy of 98.27%). However, decreasing 
computational complexity due to using two DL networks is required. 

Guoqing et al. [28] introduced a multitask learning (MTL) frame-
work for COVID-19 automated diagnosis. Unsupervised lung segmen-
tation, Shift3D, and a novel random-weighted loss function are used. 
The MTL framework achieved vulnerable COVID-19 tasks prioritization, 
convergence acceleration, and joint learning performance improvement. 
The MTL framework detected COVID-19 Pneumonia using 3D CNN and 
auxiliary FNN against CCT scans and RT-PCR. A dataset of 1,329 CCT 
images was used as an input. The MTL achieved accuracies of 90.23% 
and 79.20% for detecting COVID-19 based on CT and RT-PCR. Shaik and 
Cherukuri [29] introduced a novel ensemble DNN strategy that used 
various TL-based pre-trained models for COVID-19 diagnosis based on 
CCT images. The strategy steps are as follows: preprocessing the CT 
images, feature extraction using the deep pre-trained models, 
fine-tuning the obtained features on a three-layered DNN, and classifi-
cation via ensemble classifier. Two benchmark datasets containing 3, 
228 CT images were used. The proposed strategy achieved an accuracy 
of 93.33% and minimized misclassifications. 

The innovation of DL techniques enables accurate image classifica-
tion without manual feature engineering. Deep learning models 
outperform on larger datasets. Therefore, a larger dataset is essential to 
strengthen the classification model and expand the investigation. 
Different data sources, including X-ray and CT images from various 
countries, should be used to generate a sophisticated tool to assist ra-
diologists in diagnosing COVID-19. CNN’s hyper-parameter optimiza-
tion has a significant impact on performance. On the other hand, the 
selection of hyperparameters is application-dependent and may result in 
low-performance metrics. As a result, application-specific values 
derived from an optimization methodology should be used rather than 
selecting hyperparameter values at random. 

To summarize, the COVID-19 classification has been the subject of 
considerable literature. However, most of these studies suffer from 
limited data sets, low accuracy, and high computational complexity. 
With all these challenges at hand, there is still debate about how best to Ta
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classify COVID-19. Many questions have been raised regarding the 
transfer of knowledge from one application to another, how to reduce 
the learning time for the model, and how to avoid affecting the model 
results due to hyperparameter settings. 

3. Background 

The artificial intelligence (AI) industry has focused on intense media 
coverage over the past few years. In a nutshell, AI is the field that in-
volves automating intellectual tasks normally performed by humans. 
Thus, AI is a general field that includes machine learning, deep learning, 
and a variety of other approaches that do not require learning. Machine 
Learning is the science and art of programming computers to learn from 
data. A popular area of research in artificial intelligence is deep learning. 
Models can be run end-to-end using input data without extracting fea-
tures manually [17]. Machine learning has recently become a popular 
diagnostic tool for doctors, providing them with a complementary tool. 

As Deep Learning learns the best features and contributes to the 
overall result, it performs feature engineering. Deep Learning partially 
replaces feature engineering or creating better predictive features by 
hand. Deep Learning is also known as representation learning. Deep 
networks can be thought of as multistage distillation operations where 
information goes through successive filters and becomes increasingly 
purified. By developing deep learning techniques, advanced image 
classification is possible without manual feature engineering [14]. 

The Convolution neural networks (CNN) model ranks among the 
most prominent and important deep learning models, demonstrating 
advantages in computer vision, speech recognition, and medical diag-
nosis. CNN Deep Learning Models extract relevant features through a 
sequence of convolutional layers followed by fully connected neural 
networks. Convolution neural networks (CNN) and recurrent neural 
networks (RNN) are among the various types of deep learning algo-
rithms [16]. As with image processing applications, CNNs could be 
applied when retrieved data from these solutions reside in a spatial 
domain. The RNN, on the other hand, works on the concept of reusing 
the output of each layer as the input for the next layer. Moreover, RNNs 
are compatible with applications that get sequential data, such as those 
that get text or readings from signals. 

Deep CNN architecture named AlexNet demonstrated excellent per-
formance on high-challenge datasets in the ImageNet LSVRC-2012 
competition [14]. In this study, Alex et al. developed a wide range of 
network settings and training skills, including dropouts, pooling, and 
local response normalization, which enabled deeper CNN training more 
effectively and improved performance. In recent years, several networks 
have been created based on AlexNet, such as VGG, GoogleNet, ResNet, 
DenseNet, MobileNet, SqueezeNet, etc. 

Learning from abstract representations enables CNNs to analyze the 
images with a high level of semantics. For example, a CNN uses filter 
banks to exploit the texture in the images, rather than handcrafted filter 
banks. It is widely acknowledged that the availability of huge amounts 
of data is one of the bottlenecks in the literature [20]. 

In medical imaging, deep learning methods are extensively used. 
Especially, convolutional neural networks (CNNs) have been used to 
solve classification and segmentation problems in CT images, among 
other problems. There are only a few COVID-19 datasets available, and 
of those that are available, they contain a limited number of CT images. 
Thus, during the training phase, there is a need to avoid/reduce over-
fitting that is, if the CNN does not learn the discriminant features of the 
COVID-19 CT scans but rather memorizes them) [15]. CNN inference is 
also a computationally-intensive process. 

Despite the success of reported applications, current studies on 
COVID-19 classification also disclose some limitations [14]. Since there 
are limited available training data, there is much literature about data 
imbalances between classes. The unbalanced data makes deep-learning 
models unlikely to be trained well, and the high accuracy in such cir-
cumstances cannot guarantee COVID-19 detection effectiveness. 

Deep learning has received great praise in artificial intelligence, but 
it requires considerable time and data. However, another method has 
been developed that can overcome the limitations of deep learning: 
transfer learning [16]. Training a large DNN from scratch is generally 
not a good idea: instead, you should look for an existing neural network 
that accomplishes a similar task to the one you are attempting. Transfer 
learning is the process of reusing a pretrained network and transferring 
the learned model into a new model. Additional training data and 
modified neural layers can also be incorporated into the new model. 

In order to achieve good results with limited available training data 
when using a CNN, it is crucial to optimize the training phase. The 
training phase of a CNN is strongly influenced by the hyperparameter 
settings [20]. The hyperparameters differ from the model weights. The 
former is calculated before the training phase, while the latter is opti-
mized during training. There are several ways to set hyperparameters, 
and different strategies can be adopted. Using the manual selection 
method would be the first option, though avoiding it is preferable due to 
many different configurations. 

Similarly, grid search (GS) is a conventional and popular approch for 
the hyperparameters optimization of DL networks. The combination 
which gives the best results from the grid will be selected hyper-
parameters. However, the main drawback is the increase in the number 
of iterations exponentially with the insertion of each hyperparameter 
[27]. Another drawback is that GS do not use past evaluations and hence 
much time has to be spent evaluating bad hyperparameter configura-
tions. Applying the above-reported methods in clinical scenarios lacks 
reliability because deep learning models perform better with larger 
datasets. Further, these models are developed using standard parame-
ters. It is the hyperparameters chosen and the dataset that influence the 
classification performance of a CNN. Hyperparameter selection is an 
application-dependent process that may result in low-performance 
metrics. In place of choosing hyperparameter values randomly, 
application-specific values are selected through a method of 
optimization. 

An exact optimization algorithm cannot provide an optimal solution 
to a high-dimensional search space problem. Because of the exponential 
growth of the search space with the size of the problem, a comprehen-
sive search is not possible. Near-optimal solutions can be found for 
difficult optimization problems Using population-based optimization 
algorithms. Therefore, the population is shifted towards better solutions 
in the search space [30]. 

The number of layers, the size, shape, type, number of neurons, in-
termediate processing elements, and other structural characteristics can 
cover a large solution space, requiring search heuristics for efficient 
exploration. Neural Architecture Search (NAS) has been coined to 
describe all the techniques that aim to automate the design of neural 
networks. One of the most studied branches of Artificial Intelligence is 
bio-inspired computation. Nature-inspired metaheuristic algorithms 
have gained huge popularity in recent years because they have 
demonstrated promising results in solving tough optimization problems 
[31]. 

Bio-inspired algorithms do not impose any requirement on the 
objective function to be optimized, nor do they require it to be differ-
entiable. The advantage of using metaheuristics over calculus-based 
methods, or simple heuristics, is their capability to search over large 
sets of feasible solutions with less computational effort than calculus- 
based methods or simple heuristics. SI has recently become the most 
rapidly growing of the bio-inspired computing fields. Swarm Intelli-
gence is a branch of bio-inspired computation based on the development 
of collective intelligence from large populations of agents with simple 
communication and interaction patterns. Swarm-based algorithms take 
their cues from social organisms like ants, termites, birds, and fishes. 
Swarm-based systems can self-organize and have decentralized control, 
as in nature, which allows them to produce emergent behavior. How-
ever, no system components can act alone to achieve emergent behavior, 
which arises through local interactions between components [30]. 
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Based on the characteristics of inspiration, several optimization al-
gorithms have been proposed. Ant Colony Optimization (ACO), Particle 
Swarm Optimization (PSO), Cuckoo Search (CSA), Elephant Herding 
Optimization (EHO), Whale Optimization Algorithm (WOA) are exam-
ples of SI algorithms. Based on the Barnacles Mating Optimizer (BMO), 
an optimization algorithm mimics barnacles’ mating behavior in nature. 
In Search and Rescue (SAR), an optimization algorithm mimics the 
exploration behavior of humans. The Lévy flight distribution algorithm 
(LFD) uses a distribution similar to that used in Lévy flight random walks 
to explore large search spaces. Slime mould algorithm (SMA), Student 
psychology-based optimization (SPBO), Wingsuit Flying Search (WFS), 
Political Optimizer (PO), Aquila Optimizer (AO), The Equilibrium 
Optimizer (EO), Learner performance-based behavior algorithm (LPB), 
The Sine Cosine Algorithm (SCA), The Honey Badger Algorithm (HBA) 
To name a few [30]. There is an excellent classification of natural 
optimization algorithms, and 132 are listed [31]. A review of evolu-
tionary algorithms and their applications to engineering problems is 
provided [32]. 

In contrast to other swarm meta-heuristic algorithms, the Sparrow 
optimization algorithm (SpaSA) [20] is used in this case. Furthermore, 
the Sparrow reaches global optimum solutions without any structural 
reformation and avoids local optimum strategies. The SpaSA is used to 
select the best-pretrained model among all recommended models, 
optimizing the CNN and TL hyperparameters to figure out the best 

configuration for each used pre-trained model. The sparrows are 
generally gregarious birds with various species [13]. Almost everywhere 
in the world, they live around where humans live. They primarily feed 
on seeds of grains and weeds. The Sparrow is a well-known resident bird. 
The captive house sparrow has two types, both producers and 
scroungers. Producers actively seek out food sources, while scroungers 
obtain food from the producers. It has also been shown that the birds 
generally switch between producing and scrounging. Sparrows usually 
use the strategies of both the producers and the scroungers to find food. 

In studies, it has been found that individuals in groups monitor the 
behavior of their colleagues. Moreover, the predators in the flock, which 
want to increase their predation rate, use high intakes of food to 
compete for food resources with the companions. Additionally, sparrows 
may modulate their foraging strategies based on their energy reserves, 
with sparrows with low energy reserves scrounging more. The birds at 
the perimeter of the population are also to be noted, as they are more 
likely to be attacked by predators and continuously attempt to get better 
positions. In order to minimize their danger domain, the animals located 
in the center may move closer to their neighbors. The sparrows have also 
been shown to be very curious and always vigilant. One or more birds 
chirp when the group spots a predator approaches, for instance, and the 
entire flock flies away [13]. In light of the previous description of 
sparrows, here are the rules that describe the behavior of sparrows as 
idealized for simplicity: 

Table 8 
The two-classes dataset experiments with the maxmimized metrics.  

Model Name Accuracy F1 Precision Recall Specificity Sensitivity AUC IoU Dice Cosine Similarity 

SeresNext50 98.96% 98.96% 98.96% 98.96% 98.96% 98.96% 99.89% 98.40% 98.72% 99.09% 
SeresNext101 97.41% 97.41% 97.41% 97.41% 97.41% 97.41% 99.68% 96.61% 97.25% 97.84% 
SeNet154 99.31% 99.31% 99.31% 99.31% 99.31% 99.31% 99.87% 99.18% 99.32% 99.40% 
MobileNet 98.59% 98.59% 98.59% 98.59% 98.59% 98.59% 99.83% 97.66% 98.13% 98.68% 
MobileNetV2 94.08% 94.08% 94.08% 94.08% 94.08% 94.08% 97.81% 95.01% 95.52% 94.78% 
MobileNetV3Small 99.53% 99.53% 99.53% 99.53% 99.53% 99.53% 99.96% 98.89% 99.15% 99.54% 
MobileNetV3Large 99.74% 99.74% 99.74% 99.74% 99.74% 99.74% 99.97% 99.69% 99.74% 99.78%  

Table 9 
The two-classes dataset experiments with the minimized metrics.  

Model Name Categorical 
Crossentropy 

KLDivergence Categorical 
Hinge 

Hinge Squared 
Hinge 

Poisson Logcosh 
Error 

Mean 
Absolute 
Error 

Mean 
Squared 
Error 

Mean Squared 
Logarithmic 
Error 

Root 
Mean 
Squared 
Error 

SeresNext50 0.033 0.033 0.038 0.519 0.528 0.517 0.004 0.019 0.009 0.004 0.092 
SeresNext101 0.069 0.069 0.083 0.541 0.561 0.534 0.009 0.041 0.020 0.010 0.140 
SeNet154 0.024 0.024 0.021 0.510 0.516 0.512 0.003 0.010 0.006 0.003 0.075 
MobileNet 0.047 0.047 0.056 0.528 0.540 0.523 0.006 0.028 0.012 0.006 0.111 
MobileNetV2 0.229 0.229 0.134 0.567 0.616 0.614 0.022 0.067 0.049 0.024 0.221 
MobileNetV3Small 0.019 0.019 0.026 0.513 0.517 0.510 0.002 0.013 0.004 0.002 0.067 
MobileNetV3Large 0.008 0.008 0.008 0.504 0.506 0.504 0.001 0.004 0.002 0.001 0.045  

Table 10 
Three-classes specific experiments Configurations.  

Configuration Specifications 

Dataset Source Large COVID-19 CT scan slice dataset [35] 
Number of Classes 3 
Classes (‘COVID’, ‘NonCOVID’, and ‘CAP’) 
Dataset Size before Data 

Balancing 
“COVID”: 7,593, “NonCOVID”: 6,893, and “CAP”: 
2,618 

Dataset Size after Data 
Balancing 

“COVID”: 7,593, “NonCOVID”: 7,593, and “CAP”: 
7,593  

Table 11 
Confusion matrix results concerning the three-classes dataset.  

Model Name TP TN FP FN 

SeresNext50 22,200 44,956 540 548 
SeresNext101 21,585 44,554 966 1,175 
SeNet154 21,312 44,136 1,384 1,448 
MobileNet 22,299 45,074 446 461 
MobileNetV2 21,574 44,364 1,172 1,194 
MobileNetV3Small 16,961 40,707 4,845 5,815 
MobileNetV3Large 21,318 44,088 1,416 1,434  
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● Scroungers are offered directions or areas of foraging by producers 
who usually have high energy reserves. Producers are responsible for 
identifying areas that contain rich food sources. An assessment of the 
fitness values of each individual determines their energy reserves.  

● The sparrows begin chirping once they detect the predator. If the 
alarm value exceeds the safety threshold, the producers should lead 
all scroungers to the safe area.  

● Each Sparrow can become a producer as long as it seeks out the best 
food sources, but the proportion of producers and scroungers re-
mains constant within the population.  

● Producers would be those sparrows that have the highest energy. 
Starving scroungers will fly to other places, searching for food to gain 
more energy.  

● Scroungers hunt for food by following producers who can provide 
the best food. In the meantime, some scroungers track the producers 
constantly, keeping tabs on the food supply and competing with 
them.  

● As soon as they see danger approaching, the sparrows on the edge of 
the group move toward a safe area to get a better position. In 
contrast, the center’s sparrows wander randomly to be near other 
sparrows. 

4. Methodology 

As mentioned, the current study proposes an empirical quantitative 
framework to perform automatic and classification of COVID-19 based 
on the CT lung images with the help of CNN, TL, and the SpaSA Algo-
rithm for parameters and hyperparameters optimization. The suggested 
framework is shown in Fig. 5. 

4.1. Dataset acquisition phase 

The dataset are acquired from three public datasets from Kaggle. The 
details are discussed in Section 5.1. 

4.2. Dataset pre-processing phase 

In the pre-processing phase, each image is entered to a pipeline that 
consists of two operations: resizing and scaling. After that, each indi-
vidual dataset is up-balanced to equalize the number of images per 
category. 

4.2.1. Dataset resizing 
The dataset are resized to the size of (100, 100, 3) in the RGB color 

mode. The reason behind this is the limited capacity of the memory and 
GPU and to avoid overflow crashes. 

4.2.2. Dataset scaling 
The dataset in the current study faces four different sclaing tech-

niques: normalization, standardization, min-max, and max-abs. One of 
the target of using the SpaSA is to find the best scaler technique. The 
equations behind them are shown in Equation (1), Equation (2), Equa-
tion (3), and Equation (4). 

Xscaled =
X

max(X)
(1)  

Xscaled =
X − μ

σ (2)  

Xscaled =
X − min(X)

max(X) − min(X)
(3)  

Xscaled =
X

|max(X)|
(4)  

where X is the input image, μ is the mean, σ is the standard deviation. Ta
bl
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4.2.3. Dataset balancing 
Each used dataset in the current study is imbalanced. To overcome 

this issue, the data augmentation approach is used. The current study 
uses the rotation, shifting in the width and height, shearing, zooming, 
flipping in the horizontal and vertical axes, and brightness changing 
augmentation techniques. Table 1 shows the configurations used for the 
different augmentation techniques to balance the datasets. 

4.3. Training and learning phase using TL and SpaSA 

The current study uses SpaSA to optimize the different CNN and TL 
hyperparameters aiming to find the best configurations for each used 
pre-trained model. The working process inherits the working mecha-
nism of the metaheuristic population-based optimizers. It is combined of 
the population generation, fitness score (i.e., function) evaluation, 
population sorting, and population updating. The last three steps are 
iteratively repeated for a number of iterations M. 

4.3.1. Initial population generation 
Initially, the population is numerically generated randomly where 

the number of solutions is n. Each solution is in the range of [0, 1] and 
the size of each is D. Each element is the solution reflects a specific 
hyperparameter. Table 2 shows the corresponding hyperparameter for 
each element in the solution. 

From Table 2, we can deduce that D = 15 if data augmentation 
during training is applied and D = 7 if not. 

4.3.2. Fitness score evaluator 
In the current step, the fitness score of each solution is calculated 

iteratively. It consists of inner steps: 
Hyperparameters Converter: This step converts the numerically 

generated random values to the corresponding value of the specified 
hyperparameter. How does this happen? For the first element, as an 
example, it should reflect the loss function as mentioned in Table 2. So, 
we need to map from the range [0, 1] to the corresponding loss function. 
The used loss functions in the current study are Categorical Cross-
entropy, Categorical Hinge, KLDivergence, Poisson, Squared Hinge, and 
Hinge (Table 4). If the value of the element is 0, it should refer to the 
Categorical Crossentropy loss function, if it is 1, it should refer to the 
Hinge loss function, and so on. 

TL Pre-trained Model Creator and Injector: After converting each 
element in the solution to the corresponding hyperparameter, the target 
pre-trained model will be initialized and the hyperparameters will be 
injected in it. The used pre-trained CNN models in the current study are 
SeresNext50, SeresNext101, SeNet154, MobileNet, MobileNetV2, 
MobileNetV3Small, and MobileNetV3Large with the ImageNet pre- 
trained weights. 

TL Pre-trained Model Training: The pre-trained TL after that will 
start the training and learning process using the specified hyper-
parameters. In this process, the dataset is split into training, testing, and 
validation subsets. 

TL Pre-trained Model Evaluation: After the training and learning 
process, the model is evaluated on the whole entered dataset. Different 
performance metrics are evaluated such as accuracy, precision, and 
recall. 

The different used performance metrics in the current study are ac-
curacy (Equation (5)), precision (Equation (6)), specificity (Equation 
(7)), recall (i.e., sensitivity) (Equation (8)), F1-score (Equation (10)), 
AUC, IoU, Dice coef. (Equation (9)), and cosine similarity. 

Accuracy =
TP + TN

TP + TN + FP + FN
(5)  

Precision =
TP

TP + FP
(6)  

Specificity =
TN

TN + FP
(7)  

Recall = Sensitivity =
TP

TP + FN
(8)  

Dice =
2 × TP

2 × TP + FP + FN
(9)  

F1 − score =
2 × Precision × Recall

Precision + Recall
(10)  

4.3.3. Population sorting 
In this step, the population is sorted in descending order concerning 

the fitness score so that the best solution is placed at the top while the 
worst solution is placed at the bottom. 

4.3.4. Population updating using SpaSA 
The population is updated using SpaSA equations in this step. 

Equation (11) represents the discoverer location update formula. The 
followers’ positional update is presented in Equation (12). The anti- 
predation behavior is described in Equation (13). 

Xt+1 =

⎧
⎪⎨

⎪⎩
Xt × exp

(

− h
α×Mh

)

, if  (R2 < ST)

Xt + Q × L, Otherwise

(11)  

Xt+1 =

⎧
⎪⎨

⎪⎩

Q × exp

(
Xt

worst − Xt

i2

)

, if 
(

i >
n
2

)

Xt+1
P + |Xt − Xt+1

P | × A+ × L, Otherwise

(12)  

Xt+1 =

⎧
⎪⎨

⎪⎩

Xt
best + β × |Xt − Xt

best|, if  (fi ∕= fg)

Xt + K ×

(
|Xt − Xt

worst|

(fi − fw) + ϵ

)

, Otherwise
(13) 

From Equation (11), Xt is the current solution at iteration t, h is the 
current iterations number, M is the maximal iterations number, α is a 
random number ∈ [0, 1], Q is a random number from the normal dis-
tribution. L represents a 1 × D matrix containing all 1 element, R2 and ST 
are the warning and safety values respectively, R2 ∈ [0, 1], and ST ∈
[0.5, 1]. 

From Equation (12), Xt+1
P is the currently optimal discoverer position 

at iteration t, Xt
worst indicates the current worst position at iteration t, A is 

a 1 × D matrix, and A+ = AT × (A × AT)
− 1. 

From Equation (13), Xbest is the global optimum solution. β is the 
control step-size parameter and is a random number obeying a normal 
distribution, K is a random number ∈ [ − 1, 1] and it represents the 
direction of movement and the sparrow and also controls the moving 
step size, fi denotes the current sparrow individual fitness value, fg and fw 
are the optimal and worst fitness values respectively, and ϵ is the 
smallest real number that is used to avoid the division by zeros. 

Algorithm 1 summarizes the population updating sub-phase using 
SpaSA. n is the number of sparrows (i.e., population size). 
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Algorithm 1. The population updating sub-phase pesudocode  

4.4. Evaluation and prediction phase 

After the learning and optimization iterations are completed, the best 
combination can be used in the production systems. 

4.5. Exporting phase 

The models are exported to be used in further phases, the results are 
exported in suitable files such as Excel and CSV files, and the graphs are 

Table 13 
The three-classes dataset experiments with the maxmimized metrics.  

Model Name Accuracy F1 Precision Recall Specificity Sensitivity AUC IoU Dice Cosine Similarity 

SeresNext50 95.25% 95.21% 95.65% 94.84% 97.88% 94.84% 99.54% 94.55% 95.44% 96.12% 
SeresNext101 97.61% 97.61% 97.63% 97.59% 98.81% 97.59% 99.83% 97.31% 97.75% 98.02% 
SeNet154 98.00% 98.00% 98.04% 97.97% 99.02% 97.97% 99.92% 96.94% 97.57% 98.36% 
MobileNet 94.80% 94.80% 94.85% 94.76% 97.43% 94.76% 98.07% 95.43% 95.88% 95.19% 
MobileNetV2 76.15% 75.92% 77.90% 74.47% 89.36% 74.47% 88.59% 76.67% 79.68% 79.66% 
MobileNetV3Small 93.70% 93.76% 93.89% 93.64% 96.96% 93.64% 97.43% 94.31% 94.92% 94.29% 
MobileNetV3Large 93.73% 93.73% 93.77% 93.70% 96.89% 93.70% 98.20% 94.71% 95.25% 94.47%  

Table 14 
The three-classes dataset experiments with the minimized metrics.  

Model Name Categorical 
Crossentropy 

KLDivergence Categorical 
Hinge 

Hinge Squared 
Hinge 

Poisson Logcosh 
Error 

Mean 
Absolute 
Error 

Mean 
Squared 
Error 

Mean Squared 
Logarithmic 
Error 

Root 
Mean 
Squared 
Error 

SeresNext50 0.123 0.123 0.129 0.712 0.735 0.374 0.011 0.046 0.023 0.011 0.151 
SeresNext101 0.065 0.065 0.067 0.689 0.701 0.355 0.006 0.022 0.012 0.006 0.110 
SeNet154 0.054 0.054 0.072 0.691 0.701 0.351 0.005 0.024 0.010 0.005 0.100 
MobileNet 0.279 0.278 0.122 0.708 0.738 0.426 0.014 0.041 0.031 0.015 0.175 
MobileNetV2 0.793 0.793 0.567 0.870 0.989 0.598 0.054 0.203 0.119 0.059 0.345 
MobileNetV3Small 0.398 0.386 0.148 0.717 0.753 0.461 0.016 0.051 0.036 0.017 0.189 
MobileNetV3Large 0.294 0.285 0.141 0.714 0.749 0.428 0.015 0.048 0.035 0.017 0.186  
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displayed and stored. 

4.6. The suggested framework pseudocode 

The steps are iteratively computed for a number of iterations. Al-
gorithm 2 summarizes the proposed learning and optimization 
approach. 

Algorithm 2. The suggested framework pesudocode   

5. Experiments and discussions 

5.1. Datasets 

The experiments are performed on two different datasets. The first 
dataset is partitioned into two classes while the second one is partitioned 
into three classes. For the first dataset, the authors combined two public 
COVID-19 datasets namely COVID-19 Lung CT Scans and COVID 19 CT 
Scan Dataset. The number of overall images is 14, 486. For the second 
dataset, the authors used Large COVID-19 CT scan slice dataset which 
contained 17, 104 images. 

For both datasets, data augmentation is used before the learning 
process to equalize (i.e., balance) the number of images per class. After 
equalization, the first dataset contained 15, 186 images where each class 
contained 7, 593 images. Also, the second dataset contained 22, 779 
images after equalization where each class contained 7, 593 images. 
Table 3 summarizes the specifications of the used datasets. 

Samples from the used datasets are displayed in Fig. 6. 

5.2. Experiments configurations 

Table 4 summarizes the common configurations of all experiments. 

5.3. Two-classes dataset experiments 

Table 5 summarizes the configurations related to the two-classes 

dataset. 
Table 6 shows the TP, TN, FP, and FN of the best solutions after the 

learning and optimization processes on each pre-trained model con-
cerning the two-classes dataset. It shows that MobileNet pre-trained 
model has the lowest FP and FN values. On the other hand, Mobile-
NetV3Small has the highest FP and FN values. 

The best solutions combinations concerning each model are reported 
in Table 7. It shows that the KLDivergence loss is recommended by four 
models. The SGD parameters optimizer and applying data augmentation 
are recommended by seven models. The standardization and min-max 

scaler are recommended by three models each. Data augmentation is 
recommended by five models where horizontal and vertical flipping are 
recommended to be 60% turned off. 

From the values reported in Table 6 and the learning history, we can 
report different performance metrics. The reported metrics are parti-
tioned into two types. The first reflects the metrics that are required to 
be maximized (i.e., Accuracy, F1, Precision, Recall, Specificity, Sensi-
tivity, AUC, IoU, Dice, and Cosine Similarity). The second reflects the 
metrics that are required to be minimized (i.e., Categorical Cross-
entropy, KLDivergence, Categorical Hinge, Hinge, SquaredHinge, Pois-
son, Logcosh Error, Mean Absolute Error, Mean IoU, Mean Squared 
Error, Mean Squared Logarithmic Error, and Root Mean Squared Error). 
The first category metrics are reported in Table 8 while the second is in 
Table 9. 

From them, we can report that the MobileNetV3Large pre-trained 
model is the best model compared to others concerning the two- 
classes dataset. It is worth noting that the Sensitivity and Recall reflect 
the same results and formulas. 

5.4. Three-classes dataset experiments 

Table 10 summarizes the configurations related to the three-classes 
dataset. 

Table 11 shows the TP, TN, FP, and FN of the best solutions after the 
learning and optimization processes on each pre-trained model con-
cerning the thee-classes dataset. It shows that MobileNet pre-trained 
model has the lowest FP and FN values. On the other hand, Mobile-
NetV3Small has the highest FP and FN values. 
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The best solutions combinations concerning each model are reported 
in Table 12. It shows that the Squared Hinge loss and AdaMax param-
eters optimizer are recommended by three models. The MinMax scaler 

and neglecting data augmentation are recommended by four models. 
The three models that recommended applying data augmentation, rec-
ommended also to apply horizontal flipping by 100% and ignoring 

Fig. 7. Hyperparameters selection and best combinations graphical summarization.  

Fig. 8. Summarization of the learning and optimization experiments related to the two-classes dataset.  
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vertical flipping by 66.67%. 
From the values reported in Table 11 and the learning history, we 

can report different performance metrics. The reported metrics are 
partitioned into two types. The first reflects the metrics that are required 
to be maximized (i.e., Accuracy, F1, Precision, Recall, Specificity, 
Sensitivity, AUC, IoU, Dice, and Cosine Similarity). The second reflects 
the metrics that are required to be minimized (i.e., Categorical Cross-
entropy, KLDivergence, Categorical Hinge, Hinge, SquaredHinge, Pois-
son, Logcosh Error, Mean Absolute Error, Mean IoU, Mean Squared 
Error, Mean Squared Logarithmic Error, and Root Mean Squared Error). 
The first category metrics are reported in Table 13 while the second is in 
Table 14. 

From them, we can report that the SeNet154 pre-trained model is the 
best model compared to others concerning the three-classes dataset. It is 
worth noting that the Sensitivity and Recall reflect the same results and 
formulas. 

5.5. Graphical summarizations 

From the experiments applied on the suggested approach, we can 
summarize the best combination of different alternatives in Fig. 7. 

Fig. 8 and Fig. 9 present graphical summarizations of the reported 
learning and optimization results using the two-classes and three-classes 
datasets respectively. 

5.6. Cross-validation comparison 

An experiment is applied using cross-validation (i.e., without data 
augmentation) on the “MobileNetV3Large” CNN model using the 
following configurations: K-folds of 5, Epochs of 7, batch size of 32, 10% 
dropout, Adam parameters optimizer, Categorical Crossentropy loss 
function, SoftMax output activation function, and 10% TL learning ratio. 
The “MobileNetV3Large” model is selected as it reported the best met-
rics using the data augmentation and train-to-test splitting approach. 
The reported average metrics after 5-fold cross-validation are: 0.421 
loss, 2,581 TP, 2,581 TN, 455 FP, 455 FN, 84.99% accuracy, 84.99% 
precision, 84.99% recall, 87.72% cosine similarity, and 0.926 AUC. The 
training took 4,484 s. 

The reported metrics are lower than the reported metrics using the 
data augmentation and train-to-test splitting approach. Also, it took 
longer as it performs the training and evaluation 5 times. The latter 
approach concerning the used datasets is recommended. Table 15 shows 
a tabular comparison between the two approaches. 

5.7. Optimized vs. non-optimized approaches comparison 

Suppose the authors decided to formulate the problem as non- 
optimized CNN. In that case, we have to face challenges like a limited 
dataset and the low performance of a deep learning model with a limited 
dataset. Moreover, manual trial and error of hyperparameter settings 
must be addressed. In addition, we are not sure about the reported 

Fig. 9. Summarization of the learning and optimization experiments related to the three-classes dataset.  

Table 15 
A comparison between the data augmentation and train-to-test splitting approach and cross-validation approach.  

Approach Accuracy AUC Cosine Similarity TP TN FP FN 

Data augmentation and train-to-test splitting approach 99.74% 99.97% 99.78% 14,768 14,768 392 392 
Cross-validation approach 84.99% 92.60% 87.72% 2,581 2,581 455 455  

Table 16 
A comparison between the optimized and non-optimized approaches.  

Approach Accuracy AUC Cosine Similarity TP TN FP FN 

Optimized Approach 99.74% 99.97% 99.78% 14,768 14,768 392 392 
Non-optimized Approach 83.33% 91.70% 86.60% 3,164 3,164 633 633  

Table 17 
A comparison between the existence and non-existence of transfer learning.  

Approach Accuracy AUC Cosine Similarity TP TN FP FN 

With Transfer Learning 99.74% 99.97% 99.78% 14,768 14,768 392 392 
Without Transfer Learning 49.67% 70.70% 49.70% 1,886 1,886 1,911 1,911  
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accuracy of this model against the variability of these datasets. 
The authors conduct an experiment with the best recommended 

hyperparameters settings to compare between the optimized and non- 
optimized networks to rest assured about the feasibility of the pro-
posed framework. The experiment is applied without the meta-heuristic 
optimizer (i.e., SpaSA) on the “MobileNetV3Large” CNN model using the 
following configurations: Epochs of 7, batch size of 32, 10% dropout, 
Adam parameters optimizer, Categorical Crossentropy loss function, 
SoftMax output activation function, and 10% TL learning ratio. Data 
augmentation is applied with the configurations presented in Table 1. 
The reported metrics are: 0.4096 loss, 3,164 TP, 3,164 TN, 633 FP, 633 
FN, 83.33% accuracy, 83.33% precision, 83.33% recall, 86.60% cosine 
similarity, and 0.917 AUC. The training took 1,238 s. 

Table 16 shows a tabular comparison between the two approaches. 
The reported metrics are lower than the reported metrics using the 
SpaSA optimization approach. 

5.8. Transfer learning existence comparison 

The usage of transfer learning in the current study is to map the 
knowledge of detection of the objects and learning the patterns from the 
ImageNet that consists of more than 16 M images to the current dataset 
that consists of 15K images approximately. Without transfer learning, 
the number of epochs would be more than 5 epochs to reach approxi-
mately similar performance metrics. 

To be more concise, an experiment is applied without using the 
ImageNet pretrained weights (i.e., without transfer learning) on the 
“MobileNetV3Large” CNN model using the following configurations: 
Epochs of 7, batch size of 32, 10% dropout, Adam parameters optimizer, 
Categorical Crossentropy loss function, SoftMax output activation 
function, and 10% TL learning ratio. Data augmentation is applied with 
the configurations presented in Table 1. The reported metrics are: 
0.6933 loss, 1,886 TP, 1,886 TN, 1,911 FP, 1,911 FN, 49.67% accuracy, 
49.67% precision, 49.67% recall, 70.70% cosine similarity, and 0.497 
AUC. 

Table 17 shows a tabular comparison between the two approaches. 
The experiment without transfer learning reported poor performance 
metrics. 

5.9. Related studies comparisons 

Table 18 shows a comparison between the suggested approach and 
related studies. It shows that the current study outperforms most of the 
related studies. 

6. Conclusions and future work 

As a complementary and enhanced method for early detection of 
COVID-19, CNN Deep Learning and pre-trained models have been 
heavily used to analyze CT image datasets. However, pre-trained CNN 
models are crucial for obtaining good results with a limited dataset. In 
addition, the hyperparameter settings strongly influence CNNs during 
the training phase. Therefore, CNN performs best when their hyper-
parameters are chosen in conjunction with their dataset. With SpaSA, we 
optimize the various CNN and TL hyperparameters to find the best 
configuration for each used pre-trained model in the current study. A 
pre-trained model will be initialized, and the hyperparameters will be 
injected. The models used in this study were SeresNext50, Ser-
esNext101, SeNet154, MobileNet, MobileNetV2, MobileNetV3Small, 
and MobileNetV3Large with the weights pre-trained from ImageNet. 
The experiments were performed using two datasets. In the first dataset, 
there are two classes, while in the second, there are three. COVID-19 
lung CT scans and COVID-19 CT scans are the two publicly available 
datasets used as the first dataset by the authors. Overall, 14,486 images 
were included in this study. In the second dataset, which included 
17,104 images, the authors analyzed the Large COVID-19 CT scan slice 
dataset. According to the results, the pre-trained CNN models for 
MobileNetV3Large and SeNet154 deliver optimal or near-optimal re-
sults to a binary classification classifier and multiclassification classifier, 
respectively. Various metaheuristics will be used in future work to tweak 
the classifier and optimizer hyperparameters in order to validate and 
confirm the superiority of the Sparrow algorithm. Our ongoing work 
includes the combination of classifiers, as well as optimizations and 
adaptations to allow deployment on a smartphone or similar mobile 
platform. 
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Table 18 
Comparison between the suggested approach and related studies.  

Study Year Dataset Approach Best Accuracy 

Islam et al. [18] 2020 CCT LeNet-5 CNN 86.06% 
Shibly et al. [17] 2020 CXR COVID faster R–CNN 97.36% 
Polsinelli et al. [15] 2020 CCT Light CNN 85.03% 
Tripti Goel et al. [12] 2020 CCT CNN + GAN 99.22% 
Huang et al. [21] 2020 CCT MCSL 98.03% 
Abraham and Nair [22] 2020 CCT CNN + KSVM 91.60% 
Kundu et al. [19] 2021 CCT Fuzzy + CNN 98.93% and 98.80% 
Jia et al. [14] 2021 CXR and CCT Dynamic CNN 99.6% (CXR) and 99.3% (CCT) 
Maghdid et al. [16] 2021 CXR and CCT CNN 98% 
Pathan et al. [20] 2021 CCT Optimized CNN 98% 
R. Murugan and Tripti Goel [23] 2021 CXR E-DiCoNet 94.07% 
Goura and Jain [24] 2022 CCT + CXR DLS-CNN 98.78% 
Gayathri et al. [26] 2022 CXR FFNN 95.78% 
Tripti Goel et al. [27] 2022 CXR MOGOA 98.27% 
Guoqing et al. [28] 2022 CCT + CXR COVID-MTL 98.78% 
Shaik and Cherukuri [29] 2022 CCT DNN 93.33% 

Current Study 2022 CT Hybrid (SpaSA and CNN) 99.74% (two-classes) and 98% (three-classes)  
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