Skip to main content
. 2022 Mar 2;2022:1381683. doi: 10.1155/2022/1381683

Table 2.

Hyperparameter configuration of machine learning methods.

Methods Optimized hyperparameter settings
LR Tolerance: 1e−4; solver:“Newton-cg”;
Iterated epochs:100.
RF No. of estimators:100; criterion = “gini”;
Max features: “Sqrt”.
SVM-linear kernel:“linear”; tolerance: 1e−3.
SVM-poly kernel:“poly”; tolerance: 1e−3; degree: 3.
SVM-RBF kernel:“rbf”; tolerance: 1e−3;
Gamma: “Scale”.