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CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA
cleavage'*, and the underlying mechanisms by which Cas9 recognizes mismatches
are poorly understood*>”. Although Cas9 variants with greater discrimination against
mismatches have been designed®°, these suffer from substantially reduced rates of

on-target DNA cleavage

S Here we used kinetics-guided cryo-electron microscopy to

determine the structure of Cas9 at different stages of mismatch cleavage. We
observed a distinct, linear conformation of the guide RNA-DNA duplex formedin the
presence of mismatches, which prevents Cas9 activation. Although the canonical
kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe
that substrates that contain mismatches distal to the protospacer adjacent motif are
stabilized by reorganization of aloop in the RuvC domain. Mutagenesis of
mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid
on-target DNA cleavage. By targeting regions that are exclusively involved in
mismatch tolerance, we provide a proof of concept for the design of next-generation
high-fidelity Cas9 variants.

For therapeutic applications of CRISPR-Cas9, off-target DNA cleavage
must be minimized' . Although a variety of high-fidelity Cas9 variants
with improved mismatch discrimination have been developed™, their
enhanced specificity comes at the cost of severely reduced rates of
on-target DNA cleavage®". Mismatches induce alternative Cas9 con-
formations'"; however, the structures used to guide rational redesign
of such variants were bound to on-target DNA and in inactive confor-
mations™*®, To understand the molecular mechanisms that govern
off-target recognition, here we used kinetic analysis to guide sample
preparation for cryo-electron microscopy (cryo-EM) and obtained
structural snapshots of Cas9 pre-cleavage activation intermediates
in the presence of various guide RNA-DNA target strand (gRNA-TS)
mismatches.

Kinetics of Cas9 on mismatched DNA

We measured the rates of target strand cleavage by Cas9 in the pres-
ence of contiguous triple nucleotide mismatches at different posi-
tions along the gRNA-TS duplex (Extended Data Fig. 1a, Extended
Data Table 1). Compared to rapid on-target cleavage (around 1.0 s™)
the well-characterized protospacer adjacent motif (PAM)-distal
18-20 MM>*213 (three mismatches 18-20 bp distal from the PAM)
caused a reduction in rate of around 40-fold. Other mismatches
(6-8 MM, 9-11 MM and 15-17 MM) resulted in a greater-than-2,000-fold
reductionincleavage rates, with only 20% of the DNA cleaved after2 h
of incubation (Extended Data Fig. 1b).

Notably, the 12-14 MM allowed Cas9 activation but with rates around
10-fold slower than those of the 18-20 MM. Although Cas9 cleavage is

markedly slower for both 12-14 MM-and 18-20 MM-containing DNA
than for on-target DNA, more than 80% of either substrate was cleaved
within an hour of incubation with Cas9. This time frame for off-target
cleavage poses problems for genome-editing applications, which typi-
cally occur on the time scale of days to weeks™.

Structures of Cas9 with mismatched DNA

Tounderstand the structural basis for Cas9 activation of mismatched
DNA, we vitrified Cas9 with 12-14 MM DNA after a 5-min reaction,
in which only around 10% of DNA was cleaved (Extended Data
Table 2). We determined a cryo-EM structure at a global resolution
of 3.6 A (Fig. 1a, Extended Data Fig. 2, Extended Data Table 3).
The target-strand-cleaving HNH endonuclease domain was not
observed, indicating conformational heterogeneity before activa-
tion', Of note, the distal end of the gRNA-TS duplex was in a linear
conformation relative to the PAM-proximal DNA-DNA duplex—astate
that differs from previously determined on-target DNA-bound Cas9
structures that depict a kinked duplex (around 70°)***, although this
state is reminiscent of early R-loop formation intermediates®.

We then vitrified samples of Cas9 with 12-14 MM DNA after al-h
incubation in which around 80% of the DNA was cleaved (Fig. 1b).
Two distinct conformations were observed: alinear duplex conforma-
tion consistent with the 5-min structure of 12-14 MM and the kinked
duplex conformation described above (Fig. 1a, c). The Cas9 confor-
mations in the two 12-14 MM structures are identical (Fig. 2), but
the PAM-distal gRNA-TS duplex end was shifted by around 30 A and
stably docked with REC3 (Fig. 2c). We propose that the linear duplex
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a 12-14 MM 5 min
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Fig.1|Mismatch-induced Cas9 conformational intermediates. a, Cryo-EM
reconstructions of Cas9 in complex with various partially mismatched DNA
substrates, determined at nominal resolutions ranging from 2.8 t0 3.6 A.
Cryo-EMstructures are coloured according to the domain map for Cas9.
Nucleotides are coloured: target strand (TS), green; NTS, pink; and gRNA, red.
Thefraction of target strand DNA cleaved by Cas9 containing contiguous triple
mismatches at the positionand time point used for structural determinationis
shown above eachstructure. b, Domain organization of SpCas9. CTD,
C-terminal domain. ¢, Models of Cas9 in complex with mismatched DNA
substrates shown asisosurface representations. Theangle between
PAM-proximaland PAM-distal duplexes () is shown. fis equivalent to around
25°for alllinear conformations observed.

conformation corresponds to an early intermediate of Cas9, before
HNH rearrangement and docking to cleave the DNA*®, Thisis supported
by recent structural analyses of catalytically dead Cas9 in complex
with various R-loop formation intermediates, several of which exhibit
linear gRNA-TS duplex conformations that are similar to our linear
duplex structures®.

Notably, positions 12-14 of the gRNA-TS make no direct contacts
with the REC3 domain of Cas9 (Fig. 2). Although positions 9-11and
15-17 make considerable contacts with REC3, the alignment of the
gRNA-TS duplex leaves positions 12-14 without any engagement
with this domain (Fig. 2d, e). Because REC3 has a critical role in
sensing PAM-distal mismatches’, the 12-14 MM is likely to be able to
evade mismatch discrimination by REC3 as it is positioned inablind
spot.

Wereasoned that mismatches that prevent the PAM-distal gRNA-TS
duplex from docking on REC3 would be unable to assume the kinked
conformation, leading to considerably reduced DNA cleavage. To test
this hypothesis, we determined a structure of Cas9 with 15-17 MM
double-stranded DNA (dsDNA) substrate after 1 h of incubation with
the enzyme (Fig.1b). This mismatchinhibits cleavage by Cas9, but still
permits DNA binding as measured by high-throughput profiling?.
We observed only the linear duplex conformation (Fig. 1a, c). These
structures support a model in which a linear duplex conformation
precedes the canonical kinked duplex conformation that is required
for activation, and mismatches that block formation of the kinked
conformation escape DNA cleavage by Cas9.
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Fig.2|Positions 12-14 of the gRNA-TS duplex occupy ablind spot for REC3
mismatchdetection. a,b, Structures of12-14 MM at 5 min (a) and1h (b) in
linear and kinked conformations, respectively. The position of the 12-14 MM is
shownaslightgreenandlight pink for the gRNA and the target strand,
respectively. Models are shown asisosurface representations. ¢, Conformational
change of the PAM-distal gRNA-TS duplex. The Cas9 proteinstructureis
largely unchanged (root-mean-square deviation (RMSD) of less than 2 A for
equivalent C-alphaatoms), but the PAM-distal gRNA-TS duplex end undergoes
a30 A conformational change, docking with REC3. d, Close-up view of
positions12-14, showing that because of the phase of the gRNA-TS duplex,
REC3 makes no contacts with these base pairs. e, Schematic of interactions
between REC3 and positions 9-17 of the gRNA-TS duplex. Nointeractions
occurbetween Cas9 REC3 and positions 12-14 MM. Position 1of the duplex is
thefirstbase of the target strand that hybridizes with the gRNA spacer.

The 18-20 mismatch supports Cas9 activation

We nextsought tounderstand how certain mismatches canevade Cas9
discrimination to allow more efficient Cas9 activation and DNA cleav-
agerelative to other mismatches. We examined Cas9 after incubation
with 18-20 MM DNA at the 1-min time point at which around 65% of
the DNA was cleaved (Extended Data Fig. 1b), to determine whether
this more tolerated mismatch undergoes the same structural transi-
tion as that of 12-14 MM DNA. Consistent with the fraction of product
formation, we observed a mixed population of particles including the
linear (Fig. 1a, c¢) and the kinked duplex conformation. In the kinked
duplex structure, we observed HNH docked at the target site scissile
phosphate, indicating the fully active conformation. This arrangement
of HNH is entirely consistent with the previously observed active Cas9
conformation'>*®, These results suggest that the population of parti-
cles showing a linear conformation represents an early intermediate
in the pathway, and that the kinking of the gRNA-TS duplex is linked
to HNH docking.

We observed target strand cleavage between nucleotides 3 and 4
(Fig. 3, Extended Data Fig. 3) and non-target strand (NTS) cleavage
at the canonical site three bases upstream from the PAM. We report
adirect observation of an RuvC active site with the non-target strand
boundinthe productstate (Fig.3, Extended Data Fig.3).R986isin the
‘down’ conformation, stabilizing the two magnesiumions as predicted
by molecular dynamics simulations® (Fig. 3), whereas F916 wedges
between the -2 and -3 bases through stacking interactions and posi-
tions the -3 position within the RuvC active site. These observations
areinagreement with previous structural and mutagenesis studies®*,
Our structure suggests a histidine-mediated catalytic mechanism,
consistent with two-metal-ion-dependent catalysis® and supported
by quantum-classical simulations?. Furthermore, our product state
reveals that the two Mg?* ions are around 4.2 A from each other, in agree-
ment with the product state of the histidine-mediated mechanism
(Extended DataFig. 3).



The fully active configuration requires marked conformational
rearrangements, including an approximately 140° rotation of the
HNH domain from the inactive state. Furthermore, our structures
reveal the molecular mechanisms that underlie this rearrange-
ment. The L1 and L2 linker domains tether HNH to the rest of Cas9
and are often missing from crystal structures, presumably owing
to their intrinsic flexibility. However, in our active structure, we
observe high-quality density for both L1 and L2. Notably, the L1
helix docks against the minor groove of the PAM-distal gRNA-TS
duplex and forms an extended network of interactions, including
multiple water-mediated hydrogen bonds with both strands (Fig. 3).
As L1 docks on the minor groove, these interactions are gRNA-TS
structure-specific rather than sequence-specific and can only occur
when the PAM-distal duplex end isin the kinked conformation. This
providesastructural basis for our observation that the kinked duplex
conformationis anintermediate that precedes Cas9 activation and
DNA cleavage. Comparisons of our model with Cas9 structures in
inactive (Electron Microscopy Data Bank (EMDB) code EMD-3276)
and active (EMD-0584) conformations confirmed that L1 docking
againstthe gRNA-TS duplexis correlated with HNH rearrangement
and Cas9 activation (Extended Data Fig. 4). Furthermore, our obser-
vation of L1and L2 ‘locking’ HNH in an active conformation is sup-
ported by the slow rate of dissociation of Cas9 from target DNA
after cleavage?.

Residue F916 stabilizes the NTS and is within the L2 linker domain;
however, withinthe inactive Cas9 conformation, L2is positioned more
than 20 A away from the RuvC active site. L1-facilitated positioning
of HNH on the target strand enables relocation of L2, which in turn
enables positioning of the NTS within the RuvC active site (Extended
DataFig.4). Thismechanism provides a structural explanation for the
observed coupling of target strand and NTS cleavage, in which HNH
docking precedes alignment of the NTS at the RuvCsite for cleavage®*.
The HNH and RuvC cleavage reactions appear to occur simultaneously
because the alignment is rate-limiting.

Although previous studies have noted theimportance of L1docking
onto the gRNA-TS duplex for HNH repositioning®?, our observation

that alinear gRNA-TS duplex conformation induced by PAM-distal
mismatches precludes L1 docking provides a structural explanation
for why certain PAM-distal mismatched substrates are able to bind
Cas9, while not triggering rapid DNA cleavage®.

The 18-20 mismatch reorders an RuvCloop

The 18-20 MM contains an unusual duplex conformation at the
site of the mismatch. The C:C mismatch at position 18 on the target
strand, TS(18), is stabilized by stacking interactions with adjacent
Watson-Crick base pairs. However, the gRNA is otherwise distorted
with gRNA position 2 (gRNA(2)) flipped out by around 180° so that
gRNA(1) then intercalates between TS(19) and TS(20). TS(19) partici-
patesinwater-mediated hydrogen bonds to Q1027,and TS(20) resumes
base-pairing with NTS (Fig. 4, Extended Data Fig. 5).

This unusual nucleic acid conformation is stabilized by RuvC and
appearsto facilitate the binding of this mismatch. The residues within
RuvCthat contact and stabilize this distorted configuration are absent
in previous on-target structures*'>#3° (Extended DataFig. 6), despite
the overall similarity between our model and a previously determined
active on-target Cas9 (Extended Data Fig. 7). This indicates that these
resolved RuvCresidues areinvolved only in mismatch binding and not
in on-target activation (Fig. 4). Although this mechanism to accom-
modate certain mismatches may provide an essential mechanism for
bacteriatorestrict phage variants, it is counterproductive for the use
of Cas9 ingene editing.

Previous rationally engineered variants ‘hyper-accurate Cas9’
(HypaCas9; N692A, M694A, Q695A and H698A mutations) and
‘high-fidelity Cas9’ (Cas9-HF1;N467A,R661A, Q695A and Q926A muta-
tions) achieve somewhat higher fidelity at the expense of up to100-fold
reduced efficiency of on-target DNA cleavage>®®. The mutated residues
are mainly located within the REC3 domain and make numerousinterac-
tions only with the kinked duplex end. Therefore, by abolishinginter-
actions between REC3 and the PAM-distal duplex, these high-fidelity
variants reduce the capacity of Cas9 to stabilize the kinked duplex
configuration thatis required for the docking of L1, and thereby reduce

Fig.3|LinkersL1and L2 mediate the structural transition to theactive
state.a, Overview of the 18-20 MM active conformation. b, ¢, Detailed view of
HNH (b) and RuvC (c) active sites. d, Docking of the L1linker helix against

the PAM-distal gRNA-TS duplex, shown as anisosurface representation.

e, Interactionsof L1and L2 regions with the minor groove of the gRNA-TS
duplex. HNH extending from L1and L2 linkers has been removed for clarity and
doesnotinteract with thisregion of the gRNA-TS duplex.
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Fig.4|Stabilization of distorted 18-20 MM by the RuvC domainand
improved fidelity of SuperFi-Cas9. a, Overall structure of the 18-20 MM
active conformation viewed from the back. b, ¢, Magnified views of Cas9
interacting with the distal end of the duplex. Flipped gRNA base position 2 is
accommodated by stacking interactions and hydrogen bonding with RuvC
tyrosine side-chains, whereas anetwork of interactions (including a
water-mediated hydrogen bond) stabilizes the stretched target strand
configuration, which allows TS(20) to resume base-pairing with the NTS.

HNH repositioning and cleavage activity. Our data provide a struc-
tural explanation for why these high-fidelity Cas9 variants reduce the
activation of Cas9° by off-target substrates, but also reduce on-target
Cas9 activity.

Totest therole of this loop for mismatch stabilization, we designed
a7-D mutant (in which all seven of the stabilizing residues in Fig. 4b
are mutated to aspartic acid) and tested the effects of this mutant
on DNA cleavage. Although this 7-D mutant cleaved on-target DNA

HHG

L1andL2

®© © O ©

R-loop completion R-loop completion HNH repositioning TS and NTS cleavage
(linear conformation)  (kinked conformation)  through L1 and L2 (product state)

TS
! 9

®
©

R-loop formation

Fig.5|Model for Cas9 activation. During R-loop propagation (step 1), the
gRNA-TSduplex adoptsalinear conformation. After R-loop completion, the
PAM-distal end of the linear duplexis captured by REC3 (steps 2and 3).
Mismatchesin the PAM-distal region appear to prevent REC3 docking and
thereby block subsequent steps of Cas9 activation. Once the kinked R-loop
conformation has been formed, L1and L2 linkers use the gRNA-TS duplex as a
scaffold to position the HNH domain at the scissile phosphate of the target
strand and to position the NTS in the RuvCsite (step 4), which enables Cas9 to
make adouble-strand break (step 5). According to this model, mutationsin the
RuvCloop (corresponding to SuperFi-Cas9) inhibit formation of the kinked
conformation and subsequent cleavage of the gRNA-TS duplex with
mismatches at the PAM-distal end.
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d, Schematic of distorted PAM-distal gRNA-TS duplex. Red circles correspond
towater molecules. e, Kinetics of on-target and off-target (18-20 MM)
Mg*-initiated cleavage by the 7-D Cas9 mutant (SuperFi-Cas9).f, g, Cleavage
competitionassay for wild-type Cas9 (f) and SuperFi-Cas9 (g). 25 nM of either
Cas9 variant was mixed with 50 nM of each substrate and the cleaved DNA
product was monitored. Discriminationin favour ofthe on-target DNAis
defined by the ratio of amplitudes for on-target and off-target product formed.

at a similar rate to wild-type Streptococcus pyogenes Cas9 (SpCas9)
(2s™), we observed that cleavage of 18-20 MM DNA was 500-fold
slower (0.004 s™) (Fig. 4e). Thisindicates that this loop is critical for
stabilizing the distorted mismatch-induced PAM-distal duplex con-
formation, thereby allowing the duplex to adopt the kinked conforma-
tionthatis prerequisite for Cas9 activation. We refer to our designed
high-fidelity variant that retains wild-type on-target cleavage rates
as ‘SuperFi-Cas9'.

Because enzyme specificity is akinetic phenomenon thatis not deter-
mined solely by the rates of the chemical reaction, we performed a
direct competition assay, in which on-target and off-target (18-20 MM)
dsDNA substrates were mixed simultaneously with enzyme and cleav-
age was monitored over time. Although wild-type Cas9 showed some
preference for on-target substrates (a1.55-fold specificity ratio favour-
ing the on-target over 18-20 MM off-target DNA), SuperFi-Cas9 showed
rapid cleavage of on-target DNA and minimal cleavage of 18-20 MM
DNA (6.3-fold preference for on-target DNA) (Fig. 4f, g). The ability
to discriminate between on- and off-target DNA substrates without
compromising DNA cleavage efficiency appears to be unique to
SuperFi-Cas9". Although further studies are needed to fully define
the kinetic basis for the change in discrimination, our current data
constitute a proof of concept and provide a rationale for engineering
improved variants of Cas9 using our structure.

Discussion

Throughkinetics-guided structural determination, we have described
agRNA-TS duplex conformational intermediate that precedes Cas9



activation (Fig. 5). Notably, we observe that the well-characterized
and widespread off-target cleavage of DNA containing mismatches
at the extreme PAM-distal end (positions 18-20 (refs.>*'**'2)) is attrib-
uted to a unique mechanism that stabilizes a highly distorted duplex
conformation, involving a domain loop in RuvC that penetrates the
duplex. This region is missing in previously determined structures of
Cas9, which suggests that it has a role solely in mismatch tolerance at
these positions. Our results provide molecular insights into the under-
lying structural mechanisms that govern off-target effects of Cas9,
and provide a molecular blueprint for the design of next-generation
high-fidelity Cas9 variants that reduce off-target DNA cleavage while
retaining efficient cleavage of on-target DNA.
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Methods

Protein expression and purification
SpCas9 was expressed and purified as described previously®.

Nucleicacid preparation

DNA duplexes (55 nt) were prepared from PAGE-purified oligonucleo-
tides synthesized by Integrated DNA Technologies. DNA duplexes used
in cleavage assays were prepared by mixing 6-FAM- or Cy3-labelled
target strands withunlabelled non-target strands at al:1.15 molar ratio
inannealing buffer (10 mM Tris-HCIpH 8,50 mM NaCland 1 mM EDTA),
heating to 95 °C for 5 min, then cooling to room temperature over the
course of 1 h. The sgRNA was purchased from Synthego and annealed
in annealing buffer using the same protocol as for the duplex DNA
substrates. The sequences of the synthesized oligonucleotides, includ-
ing the positions of mismatches, are listed in Extended Data Table 1.

Kinetics

Buffer composition for kinetic reactions. Cleavage reactions were
performed in 1x cleavage buffer (20 mM Tris-Cl, pH 7.5,100 mM KClI,
5% glyceroland1 mM DTT) at 37 °C.

DNA cleavage kinetics. Thereaction of Cas9 with on-and off-target DNA
was performed by preincubating Cas9.gRNA (28 nM active-site concen-
tration of Cas9,100 nM gRNA) with10 nM DNA with a 6-FAM label on the
targetstrand inthe absence of Mg?". The reaction was initiated by adding
Mg? to10 mM, thenstopped at various times by mixing with 0.3 MEDTA
(Extended DataFig.1). Products of the reaction were resolved and quanti-
fied usingan Applied Biosystems DNA sequencer (ABI 3130xI)**. Datawere
fitusingeither asingle or adouble-exponential equation, as shown below.
Single exponential equation:

Y=Ae M+ C o))

in which Yrepresents the concentration of the cleavage product, A,
represents the amplitude and A, represents the observed decay rate
(eigenvalue). The half-life was calculated as ¢, = In(2)/A,.

Double exponential equation:

Y=Ae ™M A, e+ C (2)

in which Yrepresents the concentration of the cleavage product, A,
represents the amplitude and A, represents the observed rate for the
first phase. A, representsthe amplitude and A, represents the observed
rate for the second phase.

Kinetic competition assay

Enzyme specificity is a kinetic phenomenon that is a function of all
steps leading up to and including the first largely irreversible step in
the pathway and it is common for mutants to introduce a change in
specificity determining steps>‘. Therefore, we designed an assay to
monitor relative rates of cleavage for on- and off-target DNA when the
enzyme was presented with both substrates simultaneously. The com-
petition assay was performed by mixing a solution of 25 nM (active site
concentration) Cas9 and 100 nMsgRNA, in the presence of 10 mM Mg?*,
with 50 nM on-target DNA and 50 nM off-target DNA, inwhich the DNA
contained a 5’-6-FAM label or a 5’-Cy3 label on the target or off-target
DNA, respectively. Time points were collected by mixing with 0.3 M
EDTA and reaction products were resolved and quantified by capillary
electrophoresis, as described above. On-target cleavage datawerefitto
asingle exponential function and off-target cleavage datawerefittoa
double exponential function. Discrimination was calculated as the ratio
of the total amplitude of on-target cleavage divided by the amplitude
for off-target cleavage to derive the relative specificity constants for
the on-target DNA compared to the off-target DNA.

Cryo-EM sample preparation, data collection and processing
Cas9in complex with various mismatched DNA substrates was frozen
atdifferent time points, onthe basis of kinetic analysis (Extended Data
Fig.1). Anon-productive mismatch complex (15-17 MM, 1 h); a slow
productive mismatch (12-14) at early (5 min) and late (1 h) time points;
and afast productive mismatch (18-20,1 min) were chosen. MDCC-Cas9
was used for structure determination to couple structural analysis
with ongoing kinetic studies monitoring changes in fluorescence.
Ithas previously been shown that the kinetics of MDCC-Cas9 were indis-
tinguishable from those of wild-type enzyme’. The cleavage reaction
was triggered by mixing 10 uM DNA duplex preincubated with10 mM
MgCl, and 8 uM MDCC-labelled Cas9: 8 uM gRNA was preincubated
with 10 mM MgCl,, in reaction buffer (19 mM Tris-Cl, pH 7.5, 95 mM
KCl, 4.75% glycerol and 5 mM DTT) at a 1:1ratio. Four microlitres of
sample was applied to glow-discharged holey carbon grids (C-flat 2/2,
Protochips), blotted for 1 s with a blot force of 4 and rapidly plunged
intoliquid nitrogen-cooled ethane using an FEI Vitrobot MarkIV. Reac-
tions were quenched through vitrification.

Datawere collected on an FEI Titan Krios cryo-electron microscope
equipped with a K3 Summit direct electron detector (Gatan). Images
were recorded with SerialEM* with a pixel size of 1.1 A for 12-14 MM
datasets, and 0.81 A for18-20 MM and 15-17 MM datasets, over a defo-
cus range of —1.5to 2.5 pm. During collection of the 12-14 MM 5-min
time-point dataset, a preferred orientation was observed. To ameliorate
this, asecond dataset was collected at 30° tilt. Movies were recorded at
13.3 electrons per pixel per s for 6 s (80 frames) to give a total dose of
80electrons per pixel. CTF correction, motion correction and particle
picking were performed in real-time using cryoSPARC Live. Further
data processing was performed with cryoSPARC v.3.2%,

Multiple rounds of 3D classification within cryoSPARC yielded recon-
structions of six distinct Cas9 complexes at resolutions ranging from
2.7t03.6 A (Extended Data Table 3). To aid the separation of multiple
Cas9 conformational states from within the same dataset, 3D vari-
ability analysis was performed within CryoSPARC. First and last frames
fromsuitable eigenvector trajectory were then used as references for
heterogeneous refinement (that s, reference-based 3D classification),
and particles from resulting classes were refined using non-uniform
refinement and used for final reconstructions®. Active Cas9 (Protein
DataBank (PDB) code: 600X) wasrigid-body fitted into each map using
ChimeraX?®. Regions of the model not present in a given map were trun-
cated, and flexible fitting was performed using Namdinator®. Further
modelling was performed using Isolde*’, and the models were ulti-
mately subjected toreal-space refinement asimplemented in PHENIX.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|Kinetic basis for mismatch discriminationby Cas9.

a, Schematic representation of mismatch constructs used for kinetic analysis.
b, Time course of cleavage of on-target and mismatched DNA (10 nM) by Cas9.
Magentaarrows correspond to time-points used to prepare cryo-EM samples.

Aqps corresponds to amplitude of product formed (i.e. total cleavage).

Time (minutes) Time (minutes)

For12-14 MM, target strand cleavage is shown with larger filled circles, while
NTScleavage is given with smaller open circles. For other mismatches we only
show target strand cleavage. We previously reported NTS cleavage data for
on-target*®and 18-20 MM substrates”.
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Extended DataFig. 3 |Representative cryo-EM densities for 18-20 MM
1-minkinked (product) structure. a, HNH active site, showing cleaved target
strand. b, L1linker docked on PAM-distal kinked gRNA-TS duplex. Two water
moleculesare involved within the network of interactions that stabilize the L1
helix conformation. ¢, RuvC active site, showing cleaved NTS, and positioning

3
D

I

.

¥ —
.ﬁ Ho82)
e N

oftwoMg?* ions.d, RuvC DNA cleavage mechanism. Thisis a typical
two-metal-ion mechanismas described in? and agrees with QM/MM
simulations for histidine-mediated activation?, and the proposed mechanisms
of Casl12jand Casl12i**,
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Extended DataFig. 4 |See next page for caption.
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Extended DataFig. 4 | Structural analysis of Cas9. a, Left, comparison of
Cas9 proteinonly between 12-14 MM 60 minlinear (colour) and 12-14 MM 1-h
kinked (grey) models. Right, comparison of Cas9 protein only active
conformation (18-20 MM 1 minlinear, colour) and kinked pre-active (12-14 MM
60 minkinked, grey) models. While there is no significant conformational
change associated between transition fromlinear to kinked pre-active (root-
mean standard deviation (RMSD) between equivalent Cx atoms 0f1.904 A), the
change from kinked pre-active to active conformationsis associated with a
larger conformational change (4.647 A, most of which occurs within the REC3
domain). b, Close-up view of REC3 conformational changes that occur upon
activation, as viewed from one angle. REC3 moves forwards towards the kinked
duplex by -15 Auponactivation and HNH repositioning. ¢, Schematic
representation of Cas9-nucleicacid contactsin the context of 18-20 MM.
Residues mutated in SuperFi-Cas9 are denoted by an asterisk. d, Conformations
of HNH domain (green) and L1 (gold) and L2 (purple) linkers in the context of

Cas9 binary complex (i.e. with gRNA, PDB 4ZT0), Cas9-gRNA complex bound
todsDNAinaninactive conformation (PDB 5F9R), and inthe active Cas918-20 MM
structure presented in this work. Upon activation, HNHis repositioned at the
targetstrand cleavagesite, driven by large conformational changesin the
LlandL2linkers. e, Comparisonwith theactive Cas918-20 MM sstructure
presentedinthis work and previously determined cryo-EM maps (transparent
grey) of inactive (left, EMD-3276™) and active (right, EMD-0584'%) Cas9 bound
toon-target dsDNA. The inactive Cas9 has no density for L1 helix at the kinked
distal-docked gRNA-TSssite, whereas thereis clear density for L1at thissitein
the active Cas9 cryo-EM map. f, Mapping of residues mutated to alaninein
selected high-fidelity Cas9 variants. EvoCas9 (yellow) - M495, Y515,R661,K526.
Cas9-HF1(red) - N497,R661,Q695,Q926.HypaCas9 (blue) -N692, M694,
Q695,H698. Residues shared between Cas9-HF-1and either EvoCas9 or
HypaCas9 are shown as orange and purple, respectively.



Sharpened

Extended DataFig.5|Representative cryo-EM density for the RuvCloop. Two different views are shown (a, b). Unsharpened and B-factor sharpened maps are
shown for each view with the RuvCloop shown as dark magenta. Key residues involved in stabilizing this distorted conformation are labelled.
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Extended DataFig.6|RuvCloopinon-target SpCas9 structures.

a, On-targetinactive Cas9 bound to dsDNA (PDB 4UN3)". RuvCloop is missing
between1013-1029.b, On-targetinactive (primed - HNH rearranged and
adjacenttotarget strand scissile phosphate) Cas9 bound to dsDNA (PDB
5F9R)™. RuvC loop has been built primarily as alanine ‘stub’ residues, but
electrondensity is very poor and diffuse for this region. ¢, On-target inactive

Cas9bound to dsDNA (PDB4008)*. RuvCloop is missing between1017-1028.

d, On-target active Cas9 bound to dsDNA in postcatalysis state'®. RuvCloop is
missing between1001-1077. e, On-target active Cas9 bound to dsDNA in
productstate'®. RuvC loop is missing between 1000-1075. Ina-c, electron
densityis displayed asagrey surface,andind, e cryo-EM density isshownas a
greysurface.Inallstructures, missing residues are depicted as ared dashed
line with the RuvCloop inbshown as magenta. Position of RuvCloop is denoted
by ablack dashed boxintheleft panel for each model.
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Extended DataFig.7| Comparison of Cas9 with previous structures. presented here (transparent grey) and the previously determined
a, Comparison of18-20 MM kinked product state Cas9 with aselection of ‘post-catalysis’state (PDB 600Y). The catalytically competent HNH
previously determined structures. RMSD between equivalent C-alphaatomsis conformation between these two structures is highly similar.
shown.b, Alignment of HNH from the 18-20 MM kinked product state
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Extended Data Table 1] List of nucleotide sequences used in the study

Name Sequence (5’-3’) Source

On-target TS /6-FAM/agc tga cgt ttg tac tcc agc gtc tca tct | IDT
tta tgc gtc agc aga gat ttc tgc t

()nqargeth{rs agc aga aat ctc tgc tga cgc ata aag atg aga cgc | IDT
tgg agt aca aac gtc agc t

6-8 MM TS /6-FAM/agc tga cgt ttg tac tcc agc gtc agt tect | IDT
tta tgc gtc agc aga gat ttc tgc t

6-8 MM NTS agc aga aat ctc tgc tga cgc ata aag aac tga cgc | IDT
tgg agt aca aac gtc agc tct cg

9-11 MM TS /6-FAM/agc tga cgt ttg tac tcc agc gtc tca aga | IDT
tta tgc gtc agc aga gat ttc tgc t

9-11 MM NTS agc aga aat ctc tgc tga cgc ata atc ttg aga cgc | IDT
tgg agt aca aac gtc agc tct cg

12-14 MM TS /6-FAM/agc tga cgt ttg tac tcc agc gtc tca tct | IDT
aat tgc gtc agc aga gat ttc tgc t

12-14 MM NTS | agc aga aat ctc tgc tga cgc aat tag atg aga cgc | IDT
tgg agt aca aac gtc agc tct cg

15-17 MM TS /6-FAM/agc tga cgt ttg tac tcc agc gtc tca tct | IDT
tta acg gtc agc aga gat ttc tgc t

15-17 MM NTS | agc aga aat ctc tgc tga ccg tta aag atg aga cgc | IDT
tgg agt aca aac gtc agc tct cg

18-20 MM TS /6-FAM or Cy3/agc tga cgt ttg tac tcc agc gtc tca | IDT
tct tta tgc cag agc aga gat ttc tgc t

18-20 MM NTS | agc aga aat ctc tgc tct ggc ata aag atg aga cgc | IDT
tgg agt aca aac gtc agc t

SgFﬁVA GACGCAUAAAGAUGAGACGC + 80-mer SpCas9 scaffold Synthego




Extended Data Table 2 | Correlation between fraction of DNA cleaved and fraction of cryo-EM particles in linear or kinked
duplex conformations

% of particles in
Mismatch Timepoint % DNA cleaved linear/kinked
conformation
12-14 5 min 9 100/0
12-14 60 min 82 42/58
15-17 60 min 19 100/0
18-20 1 min 63 61/39
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Extended Data Table 3 | Cryo-EM data collection, refinement and validation statistics

12-14 MM 5 12-14 MM 12-14 MM 60 15-17 MM 18-20 18-20 MM 1
min (linear) 60 min min (kinked 60 min MM 1 min (kinked)
(EMD-24833) (linear) pre-active) (linear) min (EMD-24838)
(PDB 7S4U) (EMD- (EMD-24835) (EMD- (linear)  (PDB 7S4X)
24834) (PDB 7S4V) 24836) (EMD-
24837)
Data collection and
processing
Magnification 22,500 22,500 22,500 29,000 29,000 29,000
Voltage (kV) 300 kV
Electron exposure (e— 80 80 80 70 70 70
1A2)
Defocus range (um) -1.5t0-2.5
Pixel size (A) 1.1 1.1 1.1 0.81 0.81 0.81
Symmetry imposed C1
Initial particle images 1,546,987 1,185,683 1,185,683 1,200,112 997,043 997,043
(no.)
Final particle images 376,601 139,113 198,005 222,693 163,647 104,658
(no.)
Map resolution (A) 3.57 3.47 3.28 3.33 2.87 2.76
FSC threshold
Map resolution range 3-7 2-6
(A)
Refinement
Initial model used (PDB 600X N/A 600X N/A N/A 600X
code)
Model resolution (A) 3.7 N/A 3.4 N/A N/A 3.0
FSC threshold
0.5 0.5 0.5 0.5
Map sharpening B factor 202.1 92.0 96.8 111.7 59.3 68.8
(A%)
Model composition
Non-hydrogen atoms 11934 N/A 12221 N/A N/A 14495
Protein residues 1092 1122 1354
Nucleotides 142 145 161
Ligands 0 0 5 Mg2+, 7 H20
Mean B factors (A2)
Protein 43.8 N/A 30.98 N/A N/A 54.68
Nucleotides 88.68 53.58 80.66
R.m.s. deviations
Bond lengths (A) 0.004 N/A 0.004 N/A N/A 0.006
Bond angles (°) 0.75 0.555 0.588
Validation
MolProbity score 1.55 N/A 1.58 N/A N/A 1.66
Clashscore 6.11 4.66 6.97
Poor rotamers (%) 0 0 0
Ramachandran plot
Favored (%) 96.65 N/A 95.05 N/A N/A 95.99
Allowed (%) 3.35 4.95 4.01
Disallowed (%) 0 0 0
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection  Data was collected on a Titan Krios equipped with a K3 direct electron detector. SerialEM 3.8 (ref 38) was used for automated cryo-EM data
collection.

Data analysis Cryo-EM data acquisition was monitored by on-the-fly pre-processing in cryoSPARC Live. Data were further processed using cryoSPARC v3.2
(ref 39). Model building and refinement of the structures were performed using Map to Model in PHENIX v1.18rc5 as well as Namdinator (ref
42). Models were also manually built in Isolde (ref 43). Model validation was performed using MolProbity as implemented within PHENIX.
Visualization was performed using ChimeraX v1.0 (ref 41).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The structures of 12-14MM 5 min, 12-14MM 60 min linear and 18-20MM 1 min kinked active have been and their associated atomic coordinates have been
deposited into the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB) with accession codes EMD-24833, EMD-24835, EMD-24838 and PDB codes
7S4U, 754V and 754X, respectively. Maps of 12-14MM 60 min linear, 15-17MM 60 min linear and 18-20 1 min linear have been deposited into the Electron
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Microscopy Data Bank (EMDB) with accession codes EMD-23834, EMD-24836 and EMD-24837, respectively. All materials are available upon request from Kenneth
A. Johnson and David W. Taylor.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

>
QU
Q.
c
@
5o,
e}
=
o
=
@
5o,
e}
=
)
Q@
w
C
3
3
Q
2

Sample size A total of between 1,848 - 2,172 micrographs were collected for each dataset. Each dataset contained at least 997,043 particles, and at least
104,658 were used for the final reconstruction. These are typical image numbers for cryo-EM datasets to obtain high resolution
reconstructions.

Data exclusions 2D and 3D classification procedures were used to exclude damaged and ‘bad’ particles. This is standard practice in cryo-EM and is necessary in
order to obtain homogeneous high resolution cryoEM structures.

Replication Cryo-EM datasets were collected with multiple samples in separate imaging sessions. Linear gRNA:TS conformations present within all 4
datasets were nearly identical.

Randomization  No randomization was performed. Randomization is not relevant to this study because the work did not involve human subjects or live
animals.

Blinding No blinding was performed. Blinding is not relevant to this study because the work did not involve human subjects or live animals.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
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