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A B S T R A C T   

Many countries in the world have been facing the rapid spread of COVID-19 since February 2020. There is a dire 
need for efficient and cheap automated diagnosis systems that can reduce the pressure on healthcare systems. 
Extensive research is being done on the use of image classification for the detection of COVID-19 through X-ray 
and CT-scan images of patients. Deep learning has been the most popular technique for image classification 
during the last decade. However, the performance of deep learning-based methods heavily depends on the ar-
chitecture of the deep neural network. Over the last few years, metaheuristics have gained popularity for 
optimizing the architecture of deep neural networks. Metaheuristics have been widely used to solve different 
complex non-linear optimization problems due to their flexibility, simplicity, and problem independence. This 
paper aims to study the different image classification techniques for chest images, including the applications of 
metaheuristics for optimization and feature selection of deep learning and machine learning models. The 
motivation of this study is to focus on applications of different types of metaheuristics for COVID-19 detection 
and to shed some light on future challenges in COVID-19 detection from medical images. The aim is to inspire 
researchers to focus their research on overlooked aspects of COVID-19 detection.   

1. Introduction 

Coronavirus is a type of virus that targets the human respiratory 
system. It is labeled as “Corona” due to the “crown-like spikes” on its 
surface. A few examples of this virus include Severe Acute Respiratory 
Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and the 
seasonal flu [1]. Coronavirus was first detected in 1937 in birds. This 
infectious disease caused bronchitis in birds. Later in 1960, scientists 
found a type of coronavirus in the human nose during observation of the 
common cold. This type of corona causes a mild illness that mostly oc-
curs in winter (cold season) [1]. 

COVID-19 was first discovered in Wuhan, China on December 1, 
2019 [1]. It started to spread rapidly to the rest of the world due to a 
large number of international flights connecting the entire world. 
Almost all continents were affected by this disease within months of its 
first case in China. Scientists claim that the virus originated from an 
animal with an acquired common infectious disease. Many researchers 
believe that COVID-19 first infected bats before spreading to other an-
imals and humans. Although this information is yet to be proven, sci-
entists are still searching its source and its spreading pattern [1]. The 
origin of this virus is yet to be discovered. The virus has evolved over the 
last few decades and was known as Severe Acute Respiratory Syndrome 

Coronavirus (SARS-CoV) and MERS in 2002 and 2012, respectively. 
However, the current form of this virus, which was discovered in 
Wuhan, is called the 2019 coronavirus (2019-nCoV). This particular 
virus can cause serious pneumonia [2]. In 2020, the International 
Committee on Taxonomy of Virus (ICTV) announced the 2019 corona-
virus as SARS-Cov-2, while the disease was named coronavirus disease 
2019. 

According to the World Health Organization statistics, there is a total 
of 349,641,119 confirmed cases of COVID-19, out of which 5,592,266 
have lost their lives, as reported on January 24, 2021. Among all 
countries, the United States is on top of the list, with total reported cases 
of 69,727,991. Fig. 1 shows the statistics of confirmed cases of COVID- 
19. 

COVID-19 virus exponentially spread around the globe. In March 
2020, the World Health Organization declared it a pandemic. The reason 
for its exponential growth is that it spreads through the touch, breath, or 
cough of a COVID-19 infected person. The cough of a COVID-19 patient 
emits droplets, which can enter the mouth or nose of a healthy person 
and cause the same infection. Therefore, it is important to maintain a 
distance of six feet from COVID-19 carriers [1]. If protective measures 
are being followed and a safe distance is being maintained, then this 
disease will stay within the carrier bodies only. 
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With the current situation where COVID-19 has been declared a 
pandemic and has no permanent cure, the only solution is to maintain a 
safe distance from infected people. In the absence of any reliable cure to 
this disease, early and accurate detection of COVID-19 positive cases is 
very important. This will help to separate infected populations from 
healthy individuals. There are multiple ways to identify COVID-19 pa-
tients, such as the standard confirmatory clinical test, including Reverse 
Transcription-Polymerase Chain Reaction (RT-PCR) and chest image 
screening [4]. Meanwhile, RT-PCR is a manual, complex, and 
time-consuming test. However, the limited availability of test kits, 
domain experts in the hospitals, and rapid increase in the number of 
infected people make it very difficult and expensive to perform these 
tests for the whole population repeatedly. On the other hand, chest 
scanning is relatively less time-consuming and less costly. In such cir-
cumstances, the detection of COVID-19 using chest X-rays can provide a 
major aid. However, there is a need to develop a system with high 
precision. Chest scan image classification lies in the domain of computer 
vision. Meanwhile, many studies have been carried out to classify im-
ages of the COVID-19 patients from other patients and healthy people. 
The majority of the research used machine learning and deep learning 
algorithms for image classification of chest scans. Fig. 2 presents basic 
steps of image processing. 

Deep Learning (DL) and Machine Learning (ML) have shown state-of- 
the-art performance on a wide range of image classification tasks. 
Hyper-parameter settings play a vital role in the performance of deep 
learning [5] and machine learning models. In DL, hyper-parameters 
include the number of layers, neurons per layer, activation function, 
learning rates, dropout rates, and batch size. There is no optimal generic 
configuration for hyper-parameter optimization for all image classifi-
cation tasks. These parameters can be optimized manually, but it is very 
time-consuming and require expert knowledge. Automatic optimization 
of hyper-parameters can be done using grid search or random search, 
but these methods are computationally expensive and take a long time to 
produce quality results. In the recent past, metaheuristics have been 
widely and successfully used for the optimization of hyper-parameters of 
ML and DL models to solve different COVID-19 detection and other 
computer vision tasks. Metaheuristics are search algorithms that can 
find near-optimal solutions in less time compared to random search. 
They have shown promising results for feature selection in both deep 
learning and machine learning models. Fig. 3 presents a series of steps 
when metaheuristic optimizers are applied in image processing. 

Since various metaheuristics have been applied for hyper-parameter 
optimization and feature selection in different COVID-19 detection- 
related tasks, there is a need to review the state-of-the-art work on 
metaheuristics-based COVID-19 detection using medical images. 

Previous literature is impoverished regarding the comprehensive and 
technical review of metaheuristics-based methods for diagnosing 
COVID-19 infected patients. Owing to this disadvantage, this paper 
presents a detailed review of state-of-the-art metaheuristics-based 
optimization solutions to reduce a large number of parameters and 
obtain high-quality results for chest image classification. The main ob-
jectives of this study are as follows:  

● Explore the applications of metaheuristics at different steps of 
COVID-19 medical image classification.  

● Present the type of available datasets for COVID-19 chest images and 
the pre-processing techniques used for these datasets.  

● Analyze different feature extraction, feature selection, and hyper- 
parameter optimization methods for COVID-19 medical image 
classification.  

● Discuss and compare the accuracy of existing approaches for the 
classification of COVID-19 medical images.  

● Present research gaps and limitations in existing applications of 
metaheuristics for COVID-19 images.  

● Present future research directions in the prediction of COVID-19 
from medical images for current researchers working in the 
domain of image classification. 

Fig. 4 shows the number of references for various use cases of nature- 
inspired algorithms in COVID-19 detection. Feature selection is the most 
common use case for nature-inspired algorithms in COVID-19 detection. 
Meanwhile, other sections of this paper are organized as follows. Section 
2 presents details of datasets used for image classification of chest im-
ages. Section 3 discusses the pre-processing techniques used in image 
classification. Section 4 discusses different feature extraction techniques 
used for COVID-19 image classification. Section 5 presents feature se-
lection techniques and description of various nature-inspired algorithms 
used for feature selection in COVID-19 detection. Section 6 presents 
applications of metaheuristics for parameter optimization of machine 
learning and deep learning algorithms. Section 7 presents different types 
of classification algorithms for COVID-19 chest image classification. 
Section 8 discusses the results of different approaches for COVID-19 
detection. Section 9 discusses future challenges, and section 10 dis-
cusses limitations in the task of image classification for COVID-19 
detection. Lastly, section 11 concludes the paper. 

2. Dataset analysis 

In this paper, there are two types of images used in COVID-19 
detection research: X-ray images and Computed Tomography (CT) 

Fig. 1. Statistics of confirmed cases of COVID-19 in some countries until October 18, 2021 [3].  
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scan images. X-ray is a grayscale two dimensional (2D) image that is 
used to capture dense tissues, while a CT scan is a more enriched 3D 
colored image that captures more details such as bones, soft tissues, and 
blood vessels at once. According to previous research, some studies used 
only X-ray images, while others used CT scans. In addition, some have 
used both types of images. In this study, the total number of datasets 
used is 22. The details of these datasets are shown in Table 1 and Fig. 5. 

2.1. Dataset references 

This section presents the total references or number of times the 
dataset was used in research. A commonly used dataset shows that the 
dataset is well defined and contains all features required for image 
classification. Fig. 6 shows that the dataset (COVID-chestxray-dataset) 
is at the top, with 16 citations. On the other hand, datasets 3, 5, and 6 are 
used in three studies each. 

2.2. Types of data 

As previously mentioned, there are two types of image datasets for 
COVID-19 research. This section presents the statistics about which type 
of dataset is more commonly used in previous research. These statistics 
are shown in Fig. 7. Meanwhile, X-ray images are the most common type 
of dataset used in past research. 

2.3. Classes of dataset 

Fig. 8 shows the details about the number of classes of each dataset. 

Most datasets have two to four classes. By considering the number of 
citations of these datasets as shown in Fig. 7, it can be observed that the 
dataset with the most citations is Dataset 2, which is comprised of six 
classes. The dataset with a maximum number of classes is Dataset 12, 
which has only one citation. This shows that the datasets with a smaller 
number of classes have been used more often in past research. One 
reason can be that, as the number of classes increases, it becomes more 
difficult to classify the images with the correct class. 

2.4. Count of COVID-19 images 

The major concern in each dataset is the count of COVID-19 images, 
as a reasonable number of COVID-19 images is very important to avoid 
class imbalance. Table 2 presents the class balance between COVID-19 
and other classes. Nonetheless, there is a class imbalance as most data-
sets have a small number of COVID-19 images compared to other im-
ages. There are few datasets with zero COVID-19 images, and there are 
some datasets with a zero count for other classes. Actually, these special 
datasets are added to control the class imbalance. From Table 2, we can 
observe that almost all researchers use more than one dataset for ex-
periments. However, this factor is not sufficient to remove the imbalance 
issue completely. Many papers propose some augmentation techniques 
to resolve this issue. These techniques are discussed in the preprocessing 
section. 

From the above discussion, it can be concluded that most of the 
research was conducted on an X-ray (2D gray-scaled images) dataset 
with three classes. Therefore, any new researcher can adopt this method 
to obtain good results. Meanwhile, there is a research gap for new 

Fig. 2. Image processing basic pipeline.  

Fig. 3. Metaheuristics use cases in image processing.  
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experiments on CT-scan images with more than three classes. 

3. Preprocessing techniques 

In some cases, raw images as input can be used, but it is often not 
feasible to directly apply classification algorithms to original datasets. 

There are some other anomalies, such as image imbalance issues, that 
can affect the performance of an algorithm. Therefore, it is very 
important to resolve these problems before applying the algorithms. A 
summary of preprocessing techniques is presented in Table 3. These 
techniques are discussed in the following sections. 

3.1. Normalization 

Image size and intensity of pixels play a vital role in describing the 
structure of the tissue and bones and help to specify important segments 
that should be examined [44]. The following section discusses the three 
main techniques of normalization, namely MinMax, Image Resizing, and 
Gray Scaling. 

3.1.1. Min-max 
MinMax is the simplest form of normalization. In this normalization, 

we convert the minimum value of data into zero and maximum to one 
[45]. All values are bounded in the range [0, 1]. This makes it easier to 
apply threshold-based algorithms after this normalization is performed 
on pixel values. 

x − min
max − min

(1) 

In equation (1), min is the minimum intensity value of the pixel, max 
is the maximum intensity value of the pixel, and x represents the pixel 
value we wish to convert. This formula is applied to all pixel values for 
normalization. One downside about this method is that it cannot handle 
outliers as it adds skewness to data, allowing all values to lie in a very 
close range. However, this is very rare in the case of image datasets. 

3.1.2. Image resizing 
Image resizing is an increase or decrease in the size of an image or a 

change in the number of pixels of an image. Neural networks are the 
most popular technique for image classification. Their input, however, 
must be a fixed length. The images are available in different sizes and 
thus it is necessary to resize the images before passing them as input to 

Fig. 4. Number of references for various use cases of nature-inspired algorithms in COVID-19 detection.  

Table 1 
Titles of datasets referred in papers.  

Datasets References Title 

Dataset1 [6,7] MH-CovidNet 
Dataset2 [8–34] COVID-chestxray-dataset 
Dataset3 [8,17,18,23,35] Chest X-Ray Images (Pneumonia) 
Dataset4 [8] COVID-19 Ultrasound 
Dataset5 [10,12,18,24, 

27,35,36] 
COVID-19 Radiography Database 

Dataset6 [10,15,18] Senza-COVID-19 
Dataset7 [11] A large dataset of real patients CT scans for 

COVID-19 identification 
Dataset8 [28,37,38] SARS-COV-2 Ct-Scan Dataset 
Dataset9 [12,13,26,32] Labeled Optical Coherence Tomography (OCT) 

and Chest X-Ray Images for Classification 
Dataset10 [12] COVID Data Gradient Crescent 
Dataset11 [14] COVID-19 Infection Presenting with CT Halo Sign 
Dataset12 [15] ChestX-ray14 
Dataset13 [15] ChestX-ray8 
Dataset14 [39] COVID-19 CT Lung and Infection Segmentation 

Dataset 
Dataset15 [18] Chest Imaging 
Dataset16 [18,24] Radiopaedia-COVID-19 
Dataset17 [19] Extensive COVID-19 X-Ray and CT Chest Images 

Dataset 
Dataset18 [19] Large Dataset of Labeled Optical Coherence 

Tomography (OCT) and Chest X-Ray Images 
Dataset19 [35] DeepCOVID 
Dataset20 [35] COVID-19-Chest-X-ray-Detection 
Dataset21 [8,25,28,40] COVID-CT 
Dataset22 [27] Novel COVID-19 Chest X-ray Repository 
Dataset23 [29] COVID-19 chest X-ray  

M. Riaz et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 144 (2022) 105344

5

the neural network. Interpolation is the most commonly used technique 
for this task. It takes averages of neighboring pixels and fills the values in 
a matrix template of a given size [46]. 

3.1.3. Gray scale image 
There are two main types of images: 2D X-ray images and 3D CT-scan 

images. 3D images are colored and have an extra layer or dimension for 
keeping color values. These color values are viewed as another feature 
and include some processing costs. In most cases, this extra layer does 
not play an important role in classification tasks. Therefore, it is advis-
able to ignore this extra dimension in the preprocessing step. The gray 
image intensity of RGB (Red Green Blue) is considered equal, and it is 
mostly stored in an eight-bit integer. Eight-bit integer can store up to 
256 possible different shades of gray from black to white [47]. After 
converting to grayscale, the intensity value of RGB lies in the range [0 −

− 255] scale. 

3.2. Augmentation 

Data augmentation fixes the class imbalance by creating synthetic 
examples of classes with fewer objects. Data imbalance is a common 
problem in image processing or computer vision, especially in the 
medical field. In most cases, the number of images of a particular disease 
class is less than those of other classes. This class imbalance can intro-
duce some biases in the model. It is therefore a good idea to perform 
augmentation before training the model. Many augmentation tech-
niques are used to generate synthetic images to balance the count of 
each class. Data augmentation is applied to all data. First, class labels are 
balanced, and then feature selection and classification are performed. 
The following section discusses the two main techniques used by 

Fig. 5. Datasets vs number of citations of the dataset for different use cases along with the reported accuracy scores.  
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research related to this study. 

3.2.1. Translation and rotation 
Translation or rotation of an image changes the shape of the image, 

which can be observed by the human eye. However, these operations 
also change the pixel values, making the newly generated image a new 
instance of training. 

Translation is a process of moving images around the x-axis, y-axis, 
or both axes. This augmentation technique is very simple and effective, 
as the major characteristics of images remain almost the same. The re-
sults are the same regardless of the distance from which the image was 
captured. 

x2 = x1 + x (2)  

y2 = y1 + y (3) 

Equations (2) and (3) show an example of image translation. 
Rotation of any image involves its movement around the axis at 

some angle. Rotation can generate many images with new pixel values 
representing the same class. However, the drawback of this method is 
that the image may lose information if it is not a square image. This issue 
can be resolved by using the image resizing technique. 

x2 = cos(θ) ∗ (x1 − x) − sin(θ) ∗ (y1 − y) + x (4) 

Fig. 6. Datasets vs number of citations of the dataset.  

Fig. 7. Types of datasets vs number of datasets.  
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y2 = sin(θ) ∗ (x1 − x) + cos(θ) ∗ (y1 − y) + y (5) 

Equations (4) and (5) show that rotation takes an angle θ, and then it 
will move both x and y axis around each pixel (x, y) with θ factor. The 
new place of the image is different from the original one after rotation. 
This can be perceived as a camera taking images from different angles, 
and this new image will still represent a realistic image. Therefore, 
image rotation can be used to add many images by using different values 

of angles. 

3.2.2. LSH-SMOTE (Locality Sensitive Hashing synthetic minority 
Oversampling technique) 

This algorithm is a mixture of two different algorithms, namely 
SMOTE and LSH (Locality Sensitive Hashing). 

SMOTE is an augmentation technique that uses statistical techniques 
to increase the minority class. This algorithm takes k-neighbors and then 
generates a new synthetic data point (image). The new point will not be 
the exact copy of any point from the input, but will rather represent a 
new point in class [48]. This algorithm works better for limited features 
except for datasets with large features. It uses k-neighbors, and thus 
there is a possibility that it will add some noisy points to the data. 

LSH is a hashing algorithm. It creates cases against each point and 
assigns similar cases to the points that are very close to each other ac-
cording to the similarity feature. In the case where two points lie in the 
same feature space, their locality will be similar as well. It is mostly used 
to identify the nearest neighbor [49]. 

LSH-SMOTE is a combination of both techniques. It deals with 
negative points raised in SMOTE by using K Nearest Neighbors (KNN) 
for the generation of new candidates. LSH always assigns low scores to 
the points that are from the majority class. Thus, the class imbalance will 
be resolved. Many factors need to be taken into account before inputting 
data to an algorithm, such as verifying all data points are the same size 
and checking if all classes are equally represented in the dataset, or some 
majority classes are dominant. These issues can be resolved by using 
different normalization techniques, such as image resizing, grayscale, 
min-max normalization, etc. [50]. In the case of imbalanced data, 
augmentation techniques can be used, such as rotation translation, 
LSH-SMOTE, etc. [51,52]. 

4. Feature extraction 

A machine learning or deep learning algorithm learns specific pat-
terns or repeated patterns that lie in data points (images) belonging to 
the targeted class. It is important to clean raw data to ensure mean-
ingless features are reduced. This phase of feature extraction contributes 
to extracting first-level features or upper-level features, such as edges, 
corners, or segments of image data. Furthermore, almost all papers 
report it as the first step after preprocessing. Convolution Neural 
Network (CNN) is the most popular approach for feature extraction in 
literature. The following sections present some details about the 

Fig. 8. Datasets Vs Total classes.  

Table 2 
Count of images from COVID-19 cases and other classes.  

Datasets Covid-cases Other Images 

Dataset1 364 0 
Dataset2 468 178 
Dataset3 0 5573 
Dataset4 8 24 
Dataset5 3616 17 549 
Dataset6 115 0 
Dataset7 2168 2005 
Dataset8 1252 1229 
Dataset9 0 NAN 
Dataset10 69 231 
Dataset11 2 0 
Dataset12 0 112 120 
Dataset13 0 108 948 
Dataset14 20 0 
Dataset15 132 0 
Dataset16 289 0 
Dataset17 9471 8128 
Dataset18 0 NAN 
Dataset19 520 5000 
Dataset20 76 17 
Dataset21 100 100 
Dataset22 752 3223 
Dataset23 357 0  

Table 3 
Preprocessing techniques used by different studies.  

Reference Preprocessing technique Name 

[8,37,41] Normalization MinMax 
[18] Normalization Image Resizing 
[20] Normalization Gray scaling 
[18,42] Augmentation Rotation, and Translation 
[43] Augmentation SMOTE and the LSH-SMOTE  
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different feature extraction methods used for COVID-19 detection from 
images. 

4.1. Convolution neural network (CNN) 

This neural network structure was designed specifically for the image 
data type. It resembles the connection pattern of nerve cells in the 
human brain and is inspired by the tissues of the visual cortex. It can 
capture spatial and temporal patterns, making it favorable for image 
processing. It requires very little preprocessing [53]. Feature extraction 
is composed of two types of layers, namely the convolution layer and 
pooling layer. 

Convolution layer is responsible for feature extraction, such as 
colors, edges, shapes. This layer works by convoluting a kernel or filter 
on an input image. In the first convolution, it extracts low-level features. 
By adding more convolution layers, this learning can be extended to 
high-level features such as objects and events. 

Pooling layer can reduce the number of parameters. After extracting 
the features, many pixels become less significant. This algorithm can 
perform well without including additional features. Therefore, this layer 
helps to reduce the size of features. It consists of three types of selections, 
namely max pooling, min pooling, and average pooling. Max pooling 
selects pixels with maximum value from the selected window. Unlike 
max pooling, min pooling selects pixels with minimum value. Average 
pooling takes the average of all pixels appearing in a window. 

Flatten Vector: After learning all features, the final matrix is used to 
convert into a flat vector, which is passed to the neural network. 

Fully Connected Layer: This layer consists of a fully connected 
neural network. This final layer assigns the class labels and it is used for 
classification. 

The architecture of CNN can be customized by changing the count 
and arrangement of layers based on the current issue. However, there 
are some popular CNN architectures tested on different datasets with 
good performance, e.g., VGGNet (Very Deep Convolutional Networks) 
[54], ResNet (Residual Network) [55], etc. Table 4 shows the perfor-
mance of different CNN architectures based on accuracies reported by 
different researchers for COVID-19 detection from images. Some re-
searchers used customized variants, while some used a combination of 
multiple architectures. For example, in Ref. [18], it uses both CheXNet 
(Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep 
Learning) [56] and DenseNet (Dense Convolutional Network) [57]. The 
maximum accuracy is reported by customized layers of Inception [58] 
and EfficientNet [59]. Therefore, these can be considered as best 

performers out of the listed CNN architectures. 
Fig. 9 shows CNN architectures and the count of research papers on 

COVID-19 detection, where these are mentioned as part of the proposed 
solution. ResNet and AlexNet are ranked first, while VGG and Effi-
cientNet are in second place. From these statistics, we can conclude that 
ResNet and AlexNet are more commonly used for COVID-19 related 
image processing. 

4.2. Generative adversarial networks (GAN) 

GAN is composed of two main parts of neural networks. One is a 
generator, and the other is a discriminator. The generator is used to 
generate synthetic data of the given classes, while the discriminator is 
used to classify the data. The discriminator assigns a label to the given 
record and, in case of misclassification, the discriminator will be 
penalized and will be forced to tune its weight according to the target. In 
the event the discriminator continues to generate accurate detections, 
then the generator model will be penalized for not producing diverse 
images. The goal of this model is to find a balance between these two 
networks. For image processing, this model can increase the size of the 
dataset, thus avoiding data deficiency problems. In the case of COVID-19 
datasets, it was observed that images of COVID-19 were less than those 
of other classes. 

A drawback of these algorithms is a large number of parameters, but 
this can be controlled by using some optimization algorithms. GAN was 
used for feature extraction and its parameter was reduced and optimized 
by incorporating Whale Optimization Algorithm (WOA) [38], achieving 
a 99.22% accuracy. 

4.3. Statistical algorithms 

Unlike ML, DL, and nature-inspired algorithms, statistical methods 
are based on fixed mathematical steps or equations, which do not 
change for any dataset. They require a specific shape of input and return 
values after passing through functions. In image processing, these kinds 
of algorithms are mostly used for feature engineering, or for highlighting 
specific patterns in pixels. Table 5 shows statistics of different studies 
that used statistical algorithms for feature extraction or feature reduc-
tion in COVID-19 detection. 

Albadr et al. [20] and Ali et al. [66] applied HOG and PCA for feature 
extraction and reduction. Albadr et al. [20] applied a variant of Cuckoo 
Search algorithm, while Ali et al. [66] applied an extreme learning 
machine approach, they were able to secure 84.67% and 97% accuracies 
respectively. Yousri et al. [15] applied discrete and gabor wave trans-
formations after preprocessing, and afterward gray level co-occurrence 
matrix (GLCM) was computed. They were able to achieve 84.67% on 
dataset1 and 98.95% on dataset2. Grid search and local binary patterns 
(LBP) are two very important feature extraction techniques. Irmak and 
Emrah [12] applied grid search to automatically determine hyper-
parameters of the CNN model. The best-achieved accuracy was 98.92%. 
Shankar et, al. [22] applied fusion-based feature extraction with a 
mixture of gray level run length matrix (GLRM), and local binary pat-
terns (LBP). The artificial neural network was used for classification and 
95.91% accuracy was reported. Satapathy et, al. [39] applied Otsu 
image thresholding technique, which separates the background and 
reduces the meaningless features. Feature selection was done using 
Cuckoo-Search-Algorithm (CSA) and segmentation evaluation was 
computed using Kapur Entropy. The overall accuracy of classification 
was 97.62%. 

5. Nature-inspired algorithms for feature selection 

A set of features from any dataset represents its behavior (pattern). 
Some features are very important for image datasets. The size, color 
values, intensity value, and existing shapes in the image play an 
important role in identifying the correct class. Image datasets have 

Table 4 
Accuracies reported by different CNN architectures in different references.  

CNN 
architecture 

CNN architecture 
variants 

Reference (Use case is 
COVID-19 detection) 

Accuracy % 

VGG [54] VGG19 [6,32] 99.38, 98.71 
VGG16 [23,27] 96.09, 94.17 

ResNet [55] ResNet18 [11] 99.44 
ResNet50 [13,32,36] 99.7, 94.17, 

99.86 
ResNet101 [17,36] 98.5, 99.86 

EfficientNet 
[59] 

EfficientNet-B0 [9] 99.69 
EfficientNet-B1 [16] 97.62 

AlexNet [60] AlexNet [8,43] 99.5, 99.36  
AlexNet Modifier [42] 98.55 

CheXNet [56] CheXNet [18] 97.94 
DenseNet [57] DenseNet201 [18] 97.94 
LeNet [61] LeNet-5 [35] 99.11 
GoogLeNet 

[62] 
GoogLeNet [14] 98.38 

Inception [58] Inception [63] 99.8 
InceptionV3 [27,32] 94.17, 98.71 

Customised 
layers 

Customised layers [37,64] 99.99, 97.78 

Xception [65] Xception [27] 94.17  
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thousands of features due to the vast number of pixels. The quality of the 
image is directly proportional to the number of pixels. This factor is the 
major reason for increasing computation complexity. Therefore, it is 
very important to reduce the number of features from image data before 
passing it to the classification algorithm. It is also important to retain the 
core pattern of the class when reducing the features of an image. During 
feature extraction, it is necessary to select representative features. 
Feature selection plays an important role not only in dimension reduc-
tion but also in improving accuracy. Owing to a large number of fea-
tures, the problem of feature selection can be viewed as an optimization 
problem. Hence, many metaheuristic-based optimizers have proven 
effective for this task. Details of nature-inspired algorithms used for 
feature selection in COVID-19 image classification are given in the 
following section. 

Fig. 10 shows that 72% of researchers used nature-inspired algo-
rithms for feature selection, 24% used Convolution Neural Network 
(CNN), and only 4% used statistical methods. Nature-inspired algo-
rithms and statistical methods are discussed as follows. Details of CNN 
for image classification are discussed in section 4.1. 

More detailed information about nature-inspired algorithms for 
feature selection is provided in Fig. 11. 

Nature-inspired algorithms are those algorithms that are similar to or 
follow the steps of some natural phenomena. These kinds of algorithms 
are mostly used to resolve optimization problems. Feature selection can 
also be formulated as an optimization problem. Therefore, many re-
searchers have adopted these algorithms for feature selection. Details of 
different nature-inspired algorithms used for feature selection and some 
other tasks in the context of COVID-19 detection from images are given 
below. 

5.1. Genetic algorithm (GA) 

This algorithm is based on Darwin’s theory of evolution, which states 
that “the fittest will survive and the rest of the generation will be 
destroyed” [69]. This algorithm is categorized in the following main 
steps: initialize population, create initial solutions (here, any function 
according to the problem can be defined), select the best members, 
perform crossover and mutation, and then select members for the next 
generation. These steps should be repeated until the desired population 
is created [40,67,69]. Fig. 12 shows a flowchart of the genetic algorithm. 

Besides feature selection, GA has been used for some optimization 
tasks in image classification, which include hyper-parameter 

Fig. 9. CNN architectures vs. references count.  

Table 5 
Statistical algorithms.  

Name Algorithm 

Histogram of Oriented 
Gradients (HOG) 

It is used to mark the boundary of an object’s image, 
which it performs by taking gradient of image [20, 
66] 

Principal component 
analysis (PCA) 

PCA is used for reducing dataset dimensions, by 
representing it with eigenvalues and eigenvectors 
[20,31,66] 

Entropy Entropy can store patterns of features with respect to 
the target class [67]. 

Wavelet Transform (WT) This soft and hard threshold based signal processing 
approach is used to remove noise from image [15]. 

Discrete Wavelet Transform 
(DWT) 

This form of WT discretizes signals by dividing it into 
sets. This optimized method reduced computational 
time overhead [68]. 

Gabor Wavelet Transform 
(GW) 

Wavelet transformation with Gabor function that 
converts image to its eigen version [15]. 

Skewness This method is used to figure out the distribution of 
image pixels [68]. 

Gray-level difference 
method (GLDM) 

GLDM is mostly used for extracting texture features 
from images on the basis of partial derivatives of 
image pixels [23]. 

Gray Level Co-Occurrence 
Matrix (GLCM) 

GLDM is mostly used for extracting texture features 
from images on the basis of correlation of image 
pixels [15,22] 

Gray Level Run Length 
Matrix (GLRLM) 

GLRLM can extract high order texture features, like 
short-run emphasis, long-run emphasis, etc. [40]. 

SFTA This texture feature extraction technique consists of 
two steps, creating image stacks and analysis of each 
binary image based on boundaries, pixel count, mean 
gray level [67]. 

Grid Search This hyper parameter tuning algorithm evaluates the 
model for each combination of parameters defined in 
grid [12]. 

local binary patterns (LBP) LBP computes behaviors of each pixel with respect to 
the central pixel [22]. 

two-dimensional curvelet 
transformation 

This transformation is used to highlight different 
shapes along with its direction [9]. 

Wiener filtering (WF) It is used to remove image noise by using standard 
deviation and mean values of image [22]. 

Kapur Entropy This image segmentation based method is used to 
evaluate the algorithm performance [39]. 

Otsu Image Thresholding Automatic image thresholding technique used to 
separate foreground from background [39].  
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optimization of deep learning models. A variant of GA called a multi- 
objective genetic algorithm (MOGA) is used for problems with a wide 
range of variables and a diverse set of possible solutions. Shukla et al. 
[14] used MOGA for hyper-parameter optimization of CNN. Another 
study [20] used GA with a combination of extreme learning machines 
and called it Optimized Genetic Algorithm-Extreme Learning Machine 
(OGA-ELM). ELM equipped GA with the power to avoid overfitting. Its 
neural network-like structure works like a kernel-based support vector 
machine (SVM), which helps to achieve the best performance. 

COVID-19 detection from images has been reported in five studies 
with variants of GA. In Table 6, it can be observed that most of the 
studies used this algorithm for selecting features and they all have ac-
curacy values above 90%, making it a good choice for optimization. 

5.2. Whale Optimization Algorithm (WOA) 

This nature-inspired algorithm [71] is similar to the hunting pattern 
of humpback whales. It involves three main steps: encircling prey, 
bubble-net attack, and searching for prey. 

Encircling prey: In real-life scenarios, whales can find the location 
of its prey and then encircle it. However, in search space, the optimal 
location is unknown during its first step. In WOA, the current optimal or 

selected location is encircled as the optimal location or prey. 
Bubble net attack: After marking the target’s location, the algo-

rithm tries to encircle the place near the optimal solution, which is 
known as “shrinking encircling”. The distance between the current 
location and new encircled points is calculated and used to update the 
location. This is known as “spiral updating position”. 

Search for prey: Whales continue exploration even during preying. 
Meanwhile, individual whales search its prey on the basis of the location 
of other fellow whales [72]. In algorithmic form, the first step is to 
initialize the whale population, then find the whale with the highest 
fitness value, and repeat it until desired results are achieved or the 
iteration limit is exceeded. 

Some researchers use this algorithm with some additional steps to 
create new variants, such as Particle Swarm Optimization (PSO) guided 
WOA or PSO-WOA. In this modified form, another step is added after 
updating the solution by using WOA. It passes these solutions to PSO and 
then gets a newly optimized solution set. Then it updates the solutions 
again [43]. 

Table 7 shows studies that used WOA, their use cases, and their 
respective accuracy. It is evident from this table that WOA is mostly used 
in feature selection and achieved remarkable results. 

Fig. 10. Feature selection techniques used in image classification for COVID-19 detection.  

Fig. 11. Relationship between nature-inspired algorithms and applications of feature selection in image classification for COVID-19 detection.  
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5.3. Cuckoo Search algorithm (CSA) 

This algorithm [74] is inspired by the egg-laying strategy of cuckoo 
birds. They keep their eggs in the host’s nest for hatching. For this 
purpose, they search for the best host. They also destroy the host’s eggs 
to increase the probability of hatching. In terms of optimization prob-
lem, the eggs can be considered as the optimization problem and the 
place of eggs can sever as the solution vectors. The similarity in solutions 
can be measured by finding the difference between the two vectors [75]. 

Hanon et al. [15] used a modified version of this algorithm with the 
addition of Fractional Order calculus (FO), known as Fractional Order 
Cuckoo Search optimizer (FO-CS). This version adds the capability of 
storing four previous searches of cuckoos, which can help out in 
improving globally optimized solutions. Table 8 shows that the modified 
form of CS outperformed the original CS. 

5.4. Differential evolution (DE) 

This algorithm [76] is very similar to the GA and consists of two 
different steps. First, it performs mutation before crossover. Secondly, its 
solution searching includes information from all individuals of the 
population to complete the search process [77]. It consists of three steps: 
mutation, crossover, and selection [5]. The initial population is mostly 
selected randomly or by following some distribution. 

DE has a variant named Multi-Objective Differential Evolution 
(MODE). MODE selects multiple best options. It also controls parameters 
such as magnification and crossover rate. MODE is more powerful than 
the original DE [5,78]. Another variation in Binary Differential Evolu-
tion (BDE) is that this version helps to create a map from continuous 
space to binary space [7]. 

Table 9 shows that BED performs best as compared to MODE, but it 
includes other factors too, e.g. main architecture, etc. 

5.5. Salp swarm algorithm (SSA) 

This algorithm [76] is very similar to the GA and consists of two 
different steps. First, it performs mutation before crossover. Secondly, its 
solution searching includes information from all individuals of the 
population to complete the search process [77]. It consists of three steps: 
mutation, crossover, and selection [5]. The initial population is mostly 
selected randomly or by following some distribution. 

DE has a variant named Multi-Objective Differential Evolution 
(MODE). MODE selects multiple best options. It also controls parameters 
such as magnification and crossover rate. MODE is more powerful than 
the original DE [5,78]. Another variation in Binary Differential Evolu-
tion (BDE) is that this version helps to create a map from continuous 
space to binary space [7]. 

Table 10 shows the variants of SSA and respective accuracy reports 
by different studies on COIVD-19 detection. This algorithm and its 
variants are used for feature selection and hyper-parameter optimization 
in COVID-19 detection. 

5.6. Marine predators algorithm (MPA) 

This is another nature-inspired algorithm that follows the natural 
hunting strategy between predator and prey in marine ecosystems [79]. 

Fig. 12. Flowchart of genetic algorithm [70].  

Table 6 
GA variants reported in different studies.  

Algorithm Reference Use Case Accuracy Measure (testing 
accuracy)% 

GA [40,68, 
69] 

Feature selection 92.6, 100, 96 

MOGA [14] Tune hyper 
parameter 

94 

OGA-ELM [20] Feature selection 100  

Table 7 
Accuracy of WOA’s variants reported in different studies.  

Algorithm Reference Use Case Accuracy Measure (testing 
accuracy)% 

WOA [38,73] Feature 
Selection 

NA, 99.22 

PSO-WOA [43] Feature 
selection 

99.5  
Table 8 
CS’s variants reported in different studies.  

Algorithm Reference Use Case Accuracy Measure (testing 
accuracy)% 

CS [39] Feature 
Selection 

96.72 

FO-CS [15] Feature 
selection 

98.95  
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Similar to most of the nature-inspired algorithms, it initializes the first 
population randomly in a range of 0–1. Afterward, the fitness of all 
candidates is calculated, and the fittest one is selected (top predator). As 
a result, a matrix of predators is formed in this way. Another matrix of 
the same dimension named “prey”, is used by predators to update the 
position. Predators try to find the best location to search for their food 
[67]. 

Its variant Fractional Order Marine Predators Algorithm (FO-MPA), 
combines the memory storage support of fractional order methods to 
store previous location information [63]. Another variant is the 
Improved Marine Predators Algorithm (IMPA), which includes a 
Ranking-based Diversity Reduction Technique for improving the search. 
This technique keeps track of consecutive iterations where no particle 
can find the best solution [67]. 

Table 11 shows different versions of MPA and its reported accuracy. 
This algorithm has been used for feature selection in COVID-19 image 
datasets. The accuracy value is written as “NA” in Table 11 for IMPA, as 
this study [67] did not classify the images but only applied image 
segmentation. 

5.7. Flower pollination algorithm (FPA) 

This algorithm [80] is modeled after the pollination process of 
flowers. Meanwhile, the position of a pollen particle can be considered 
as a solution vector. It has two parts, namely local pollination and global 
pollination. Chakraborty et al. [81] proposed a modified form of FPA by 
mixing type 2 fuzzy system and named it Superpixel based Fuzzy 
Modified Flower Pollination Algorithm (SuFMoFPA). This modification 
improves the computation by selecting and processing the most relevant 
pixel of the image and ignoring the irrelevant pixels. It can be used for 
feature selection in COVID-19 detection. 

5.8. Slime mold algorithm (SMA) 

This algorithm [82] is inspired by the food collection pattern of 
yellow-colored slime mold. The micro-organism is used to create con-
nectivity from the current position to food or host by making an optimal 
link. Searching for the best path for food can be mapped to solution 

vectors. This solution can be computed by calculating the positive and 
negative feedback of the progress toward the destination. Compared to 
other algorithms, this algorithm has been used for feature selection [73] 
and has achieved the highest Kapur’s entropy. 

5.9. Social group optimization (SGO) 

It is a very common behavior observed in humans that their problem- 
solving skills improve when working in groups compared to their indi-
vidual performance. The social group optimization algorithm [83] is 
based on the social behavior of problem-solving. Their population 
consists of feature vectors, and each feature vector presents a unique 
person. Each feature vector needs to be optimized to get the best solu-
tion. Additionally, this algorithm has a variant called Hybrid Social 
Group Optimization (HSGO). To improve the SGO, this variant adds a 
wrapper-based approach. This algorithm includes six main steps: pop-
ulation initialization, calculating fitness of each member, separating 
best and worst candidates, performing mutation, an improving phase 
where each person learns from previous experience, and an acquiring 
phase used to acquire knowledge from other individuals. 

According to the reported results, HSGO outperformed the original 
SGO that was used for feature selection [10]. 

5.10. Emperor penguin optimizer (EPO) 

This metaheuristic-based optimizer [84] is inspired by the huddling 
behavior of emperor penguins, which they show during forging. They 
move in groups with the help of fast movers of the swarm. Therefore, in a 
mathematical model, this algorithm aims to find the quickest mover. Its 
modified version [17], called Multi-Objective Emperor Penguin Opti-
mizer (MOEPO) includes archive and grid mechanisms. In addition, it 
also performs an update step at the group level, which makes it more 
efficient than the simple EPO. MOEPO [17] has been used for feature 
selection in COVID-19 detection. 

5.11. Gray wolf optimization (GWO) 

This algorithm [85] is inspired by the gray wolf’s hunting policies 
and the leadership role. Gray wolves divide the population into four 
levels: alpha, beta, delta, and omega. Alphas are the leaders that make 
decisions about hunting, living and moving from one place to another. 
Beta assists the alpha group, while Delta can simply rule the omega. 
Omega is the last class that has to obey leaders (Alphas). They follow 
four steps: hunting, searching, encircling, and then attacking the prey. 
The searching task is done by following the location of alpha, beta, and 
delta. This algorithm [85] has been used for feature selection in 
COVID-19 detection. 

5.12. Squirrel search optimization algorithm (SSOA) 

This algorithm is inspired by the food search mechanism of squirrels. 
Squirrels divide all trees into three types, namely normal, oak, and 
hickory. Normal trees are not useful to them, while, oak and hickory are 
used for food and making nests. Mathematically, it considers search 
space as a matrix of squirrels that are flying to search for food. They 
search for hickory trees and oak trees. A modified version of the algo-
rithm [13] assumes that squirrels search for one suitable hickory tree 
and three suitable oak trees. It also expands the movement space. This is 
known as Advanced Squirrel Search Optimization Algorithm (ASSOA). 
This was used for the feature selection step and provided better results 
compared to the original SSOA. 

6. Nature-inspired algorithms for parameters and architectural 
optimization 

The computational cost for image classification is very high, as the 

Table 9 
DE’s variants reported in different studies.  

Algorithm Reference Use Case Accuracy Measure 
(testing accuracy)% 

BDE [7] Feature selection 99.43 
MODE [5,78] Tune hyper parameters, 

Feature selection 
94.0, 93.0  

Table 10 
SSA’s variants reported in different studies.  

Algorithm Reference Use Case Accuracy Measure 
(testing accuracy)% 

SSA [22] Feature selection 95.91 
CSSA (Chaotic Salp 

Swarm 
Algorithm) 

[21] Tune hyper 
parameters + Feature 
selection 

99.69  

Table 11 
MPA’s variants reported in different studies. NA mean Not applicable.  

Algorithm Reference Use Case Accuracy Measure (testing 
accuracy)% 

IMPA [67] Feature 
selection 

NA 

FO-MPA [63] Feature 
selection 

99.8  
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feature set of images is usually very large compared to the text data. This 
can be optimized using nature-inspired algorithms at different stages. It 
is mostly considered as part of feature selection (feature reduction). A 
few researchers have improved the results by optimizing hyper- 
parameters or weights of the main algorithm. The following sub-
sections talk about how nature-inspired algorithms are used for the 
optimization of parameters of machine learning and deep learning 
models. 

6.1. Parameter optimization of machine learning algorithms 

Chimp Optimization Algorithm (ChOA) [86] is inspired by the 
hunting procedure of chimps. Chimps can be categorized into four types: 
driver, chaser, barrier, and attackers. The chimps’ population can be 
presented as all possible solution vectors are divided into four cate-
gories. Each solution will act according to the properties of the category 
associated with it. All four types will mark the position of the prey or the 
best solution. A deep convolution neural network (CNN) is used to 
extract the features, and the ChOA is applied to optimize weights and 
biases for extreme learning machines (ELM) classification [35]. 

Support vector machine (SVM) is a machine learning algorithm (also 
called a maximum margin classifier). SVM uses kernel functions for 
solving non-linear classification problems. The performance of the SVM 
classifier heavily depends on the selection of kernel parameters. Due to 
the huge search space, the optimal selection of these parameters is time- 
consuming. Hanon et al. [34] proposed a whale optimizer-based 
improved partial swarm optimization algorithm (WO–IPSO) to opti-
mize the parameters of SVM. 

6.2. Architecture (hyper-parameters) optimization of deep learning 
models 

CNN is the most commonly used method for feature extraction in 
image classification tasks, and about 54% of studies reported in this 
survey have adopted CNN. CNN has millions of parameters that can 
increase the computational cost. This cost can be reduced by using 
metaheuristic optimization algorithms. Three studies by Hamdy et al. 
[30], Júnior et al. [32], Hanon et al. [34] used PSO for parameter 
optimization. 

The first CNN-based solution for COVID classification was reported 
by Irmak et al. [12]. The main contribution of this paper was to use a 
large dataset of COVID with 1524 COVID-19 images and also deal with a 
large number of hyperparameters associated with CNN architecture 
using grid search. Irmak et al. adopted two different models to classify 
the images. In the first stage, a model was used to detect whether the 
image is COVID or non-COVID. In the second stage, the specific class of 
the image was determined. This paper deals with a three-class classifi-
cation problem and achieves a 98.27% average accuracy. 

According to Kaur et al./cite [bib28], although CNN is widely used 
for image processing, it suffers from hyper-parameter tuning issues due 
to a large number of parameters. The authors considered the following 
four classes: COVID, healthy, pneumonia, and tuberculosis, and pro-
posed a modified approach. The AlexNet architecture was adopted, and 
hyper-parameters of this network were tuned using Strength Pareto 
Evolutionary Algorithm-II (SPEA-II). The final layer of architecture was 
used as a classifier. Meanwhile, the proposed solution was able to ach-
ieve an accuracy of 99.97%. 

Singh et al. [5] focused on the same issue of hyper-parameter tuning 
of CNN using the same pipeline. However, this study worked with a 
binary class (COVID, non-COVID) classification problem and used 
multi-objective adaptive differential evolution (MADE) for tuning. The 
experimental results were compared to a set of machine learning algo-
rithms. The proposed approach outperformed all other algorithms and 
obtained an accuracy of 94.48%. 

Shukla et al. [14] dealt with a four-class classification problem and 
followed a very similar pipeline as discussed above. However, this paper 

used the GoogLeNet architecture of CNN and tuned the 
hyper-parameters of this model using a multi-objective genetic algo-
rithm (MOGA). The experimental results using 20-fold cross-validation 
were presented and discussed. The proposed GA-based method was 
able to obtain results with a 94.93% accuracy. 

Dhiman et al. [17] applied eleven deep learning architectures 
(AlexNet, VGG16, VGG19, GoogleNet, ResNet18, ResNet500, 
ResNet101, InceptionV3, InceptionResNetV2, DenseNet201 and Xcep-
tionNet) and performed binary class classification. Furthermore, this 
study optimizes parameters (weights) of CNN using multi-objective 
emperor penguin optimizer (MOEPO). The best accuracy is reported 
with ResNet101. 

Hamdy et al. [30] and Júnior et al. [32] have used particle swarm 
optimization (PSO) to solve image classification problem for COVID-19 
diagnosis. Hamdy et al. [30] worked with CT images, and solved a bi-
nary class problem by taking into account 1050 COVID-19 and 1500 
normal images. The CNN’s hyper-parameters were tuned using PSO and 
obtained an accuracy of 98.04%. Júnior et al. [32] also experimented 
with a binary classification problem. However, an X-ray dataset was 
used with only 206 COVID images, which were very few compared to 
Ref. [30]. Unlike [30], Júnior et al. proposed a different algorithm for 
classification called eXtreme Gradient Boosting (XGBoost). The hyper-
parameters of this suggested that the algorithms were tuned using PSO. 
The reported accuracy of this method was 98.71%. Although the nature 
of images was different in both studies, the approaches are quite similar 
(both use PSO for hyper-parameter tuning), hence the reported accu-
racies are very close. 

Goel et al. [64] suggest Gray Wolf Optimizer (GWO) for the 
COVID-19 detection using medical images. The proposed study handles 
a three-class classification problem of X-ray images. A CNN was used 
with a customized architecture. In this study, the hyper-parameter of 
CNN was tuned using GWO and the last layer was used as a classifier. 
This suggested method reported results with an accuracy of 97.78%. 
Another research work conducted by Goel et al. [38] provides a solution 
for a binary classification problem for COVID-19. The suggested model 
was trained on CT images using a generative adversarial network (GAN), 
and the hyper-parameters were optimized by Whale Optimization Al-
gorithm (WOA). 

More detailed information about meta-heuristics algorithms for 
hyper-parameter optimization of deep learning architectures is provided 
in Fig. 13. 

7. Classification 

Classification of images into different classes is the last step after 
preprocessing, feature extraction, and feature selection. There are two 
types of classification problems: (i) binary class classification and (ii) 
multi-class classification. According to Fig. 14, 30 studies used binary 
class classification, 14 studies used three classes, and only two studies 
used four classes. There is a bar in Fig. 14 with label zero, which shows 
the count of papers that used metaheuristics for only feature selection. 
Binary classification is simpler than multi-class classification. As a 
result, most studies have only dealt with binary classification tasks. 

Unlike the statistical model, machine learning (ML) algorithms learn 
from data. These algorithms extract patterns from data and yield a 
function that represents the behavior of the dataset. The learning is 
evolved by increasing learning examples. The following section dis-
cusses the different classification methods used in literature for COVID- 
19 detection from images. 

7.1. Fully connected neural networks 

Neural Network (NN) structure is inspired by biological neurons of 
the brain. It consists of connections of units and has two main layers, 
namely input, and output. In deep neural networks, many hidden layers 
are added to enhance the performance. For each unit, it needs to find a 
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suitable weight vector. The forward pass is used to make the prediction, 
a loss is calculated for the training set, and backpropagation is used to 
update the weights to minimize loss or error. A popular approach for 
optimizing weights in backpropagation is a gradient descent algorithm 
[87]. Several hidden layers can be added and this version of NN is called 
Multi-Layer Neural Network (MLNN) or Multi-Layer Perceptron (MLP). 
Many studies [9,12,13,18,22,27] have used fully connected neural 

networks for classification and have achieved more than 90% accuracy 
on test data. 

Kaur et al. [42] adopted the fully connected layer as a classifier. In 
this study, AlexNet was used and hyper-parameters were optimized 
using SPEA-II. This paper solved a four-class problem with an accuracy 
of 99.75%. Singh et al. [5] optimized the parameters of CNN using a 
nature-inspired algorithm MADE. This paper focuses on the binary class 

Fig. 13. Relationship between meta-heuristics algorithms and applications of hyper-parameter optimization in image classification for COVID-19 detection.  

Fig. 14. Number of class VS Number references.  
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problem and achieves a 94% accuracy. Hamdy et al. [30] suggest PSO 
for optimizing the hyper-parameters of CNN. The X-ray image data with 
binary classification is adopted. 

Irmak and Emrah [12] used a CNN to solve the COVID-19 binary 
class classification problem using X-ray images. A set of experiments 
were performed using a mixture of datasets 2, 5, 9, and 10. The feature 
extraction and selection were performed using CNN, while the param-
eters (mini-batch size, learning rate, momentum, and regularization) 
were optimized with help of GS. The classification was done using a fully 
connected layer. This proposed method was able to achieve maximum 
accuracy of 98.92%. Shukla et al. [14] suggested that (CNN-GoogLeNet) 
the hyper-parameters were optimized with MOGA. It worked on a binary 
classification problem. The mixture of datasets 2 and 11 with X-ray 
images was adopted. Test train split was 70%–30% and this method 
produced results with an accuracy of 94.93%. 

Chowdhury et al. [18] suggested CNN with CheXNet and Dense-
Net201 for feature extraction and selection steps. Image normalization 
was performed using image resizing, and image augmentation was done 
using rotation and translation. The final experiment was performed for 
both augmented and original data. This study deals with the three-class 
problem. The proposed solution was investigated with a mixture of six 
X-ray datasets (datasets 2, 3, 5, 6, 15, and 16). The classification was 
performed with a fully connected layer of neural network. The reported 
accuracies with and without augmentation were 97.94%, and 97.74%, 
respectively. Goel et al. [38] proposed CNN-ResNet50, and its 
hyper-parameters were optimized using WOA. It was used to perform 
binary classification for CT images (dataset 8). Feature extraction was 
performed using GAN, and a three-class COVID-19 classification prob-
lem was solved. Meanwhile, the reported accuracy was 99.22%. Bhowal 
et al. [27] investigated three different deep learning architectures, 
namely VGG16, Xception, and InceptionV3. This work performed ex-
periments using X-ray images from datasets 2, 5, and 22. The feature 
selection step was completed using a metaheuristic-based Two--
Tier–FS–Coalition game. The last fully-connected layer performed a 
three-class classification with a 94.27% accuracy. 

Altan et al. [9] worked with the EfficientNet-B0 architecture of CNN 
and used Chaotic Salp Swarm Algorithm (CSSA) for feature selection. 
This proposed method was benchmarked against the X-ray image 
dataset (dataset 2). The suggested approach was able to achieve 99.69% 
accuracy for the three-class problem. Goel et al. [23] worked on X-ray 
images and a mixture of two datasets 2 and 3 were adopted. Neverthe-
less, the VGG16 architecture of CNN was suggested. Feature extraction 
and selection were performed using the gray-level difference method, 
while a fully connected layer of neural network was used for the clas-
sification. The maximum reported testing accuracy was 96.09%. 

7.2. Naive Bayes (NB) 

This probabilistic algorithm is based on Bayes’ theorem. It creates 
the assumption of independence (i.e., the behavior of any feature is 
independent of all other features). Due to this assumption, it is called 
Naive Bayes. This algorithm calculates probabilities of attributes given 
in a class (e.g., the probability of occurring urgency words in spam email 
is high compared to the normal email). Tallha et al. [68] worked on a 
binary class detection problem and experimented with an X-ray dataset. 
Feature extraction was performed using discrete wavelet transform 
(DWT) and segmentation-based fractal texture analysis (SFTA), while 
feature selection was performed using a metaheuristic-based optimized 
genetic algorithm (OGA). The last step of classification was performed 
using NB, achieving a 92.6% accuracy. 

7.3. Support vector machine (SVM) 

It is a supervised algorithm that performs regression analysis and 
tries to find a vector or line that can separate two classes. The record 
(example vector) that decides the boundary between two classes is 

called a support vector. It performs best for the linearly separable binary 
class dataset. It can be improved for non-linear datasets by applying a 
kernel function, which attempts to transform the data into a linearly 
separable form. This algorithm not only finds a separating line but also 
searches for it by maintaining the maximum margin between two 
classes. 

Twelve studies [6,43,10, 11,16,7,26,28,29,38,33,36], and [34] 
applied SVM for classification. These papers adopt metaheuristic algo-
rithm MH-CovidNet, PSO-WOA, HSGO, CGRO, BDE, BD, DF, PSO, PSO, 
DE-PSO, PSO-ACO, and WO-IPSO for feature selection step, respectively. 
For the last classification step, they prefer to use SVM. Among all [6,7, 
26], and [36] work with multi-class, while [10,11,28,29,31,33,34,43] 
deal with binary class classification problem. All studies report accuracy 
above 90%. 

Canayaz and Murat [6] have adopted X-ray images of three classes 
labeled as normal, COVID, and pneumonia patients. The main algorithm 
was CNN (VGG19) and in the classification pipeline, binary PSO and 
binary GWO were used for feature selection. These selected features 
were classified using SVM. It was able to achieve an accuracy of 99.38%. 

El-Kenawy et al. [43] proposed a binary classification system build 
on CT chest images. AlexNet architecture of CNN was used as the main 
method. CNN’s first layer was used as a feature extractor. Afterward, 
guided WO based on Stochastic Fractal Search (SFS-Guided WOA) was 
used as a feature selector. These selected features were passed to the 
SVM classifier. The best-reported testing accuracy was 99.5%. Singh 
et al. [10] also provided a binary class classifier trained on chest X-rays, 
of which HSGO worked as a feature selector. These selected features 
were tried with multiple classifiers, and SVM outperformed with an 
accuracy of 99.65%. 

Chattopadhyay et al. [11] adopted ResNet18 (CNN) for feature 
extraction and then the extracted features were passed to the CGRO for 
selecting the most relevant features. After selecting a subset of the 
important features, SVM was used to perform the classification. This 
model was tested on both X-ray and CT images. The experiments were 
performed on SARS-COV-2 dataset, Chest X-Ray, and CT-dataset and 
obtained results with 98.65%, 99.44%, and 99.31% accuracies, 
respectively. 

Iraji et al. [7] applied CNN and extracted deep features from X-ray 
images, and then the feature selection was performed using BDE. The 
final features were classified using SVM, and this three-class system was 
able to achieve a 99.43% accuracy. Iraji et al. [26] modified their pre-
vious work for new datasets. They used a very similar pipeline to Ref. [7] 
and dealt with a three-class classification problem. Features were 
extracted using CNN, then BD was used for the selection step, and the 
final set of the feature was sent to SVM for classification. The main 
difference in both approaches was the datasets [7] has worked with 
dataset 1, while [26] has worked with datasets 2 and 9. 

Sen et al. [28] worked with CT images for binary classification. 
Feature extraction was performed using CNN, and selection was done 
using DF. These feature vectors were classified using SVM. This 
approach was tested on datasets 8 and 21, and thus the reported accu-
racies were 98.39% and 90.0%, respectively. 

Mohammed et al. [29] adopted PSO for both feature extraction and 
feature selection. Then the final feature set was passed to SVM, which 
performed binary classification on the chest X-ray dataset with a 98.04% 
average accuracy. Asghar et al. [31] also used PSO for both feature 
extraction and feature selection and then performed binary classifica-
tion using SVM. The experiments were performed on X-ray dataset 2 and 
the reported accuracy of this system was 99.81%. Narin and Ali [36] also 
used PSO, but it only worked with CNN. Meanwhile, PSO served as a 
feature selector, and SVM was trained for classification. The three-class 
classification was performed on X-ray images. It was implemented on 
dataset 2 and was able to yield a 99.83% accuracy. 

Dixit et al. [33] suggested a different pipeline by adding K-mean 
clustering as a preprocessing step. Moreover, PSO and DE are used for 
feature selection and an SVM classifier is trained. The proposed method 
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was benchmarked against X-ray dataset 2 and achieved a 99.34% 
accuracy. 

Hanon et al. [34] proposed an improved PSO (IPSO) in order to 
optimize the parameters of an SVM kernel function. The experiments 
were performed on X-ray images and the trained binary-class classifier 
outperformed other compared approaches with an accuracy of 94.26%. 

7.4. K-nearest neighbor (KNN) 

This data-driven nonparametric classifier is best known for its ability 
to handle multi-class classification problems. It is very simple, yet very 
effective. This algorithm finds k to be the closest objects to a given test 
set object and assigns the test set object to the majority of class out of its 
neighbors. The main drawback of KNN is its high memory consumption 
and its sensitivity toward outliers. Few studies by Afify et al. [40] and 
Shaban et al. [69] have used it as the last step of the classification 
pipeline (COVID-19 classification), and also adopted nature-inspired 
algorithm GA for feature selection. One study [69] tried to reduce the 
drawback of sensitivity toward outliers by introducing a heuristic-based 
approach to decide. This new variant is called Enhanced K-Nearest 
Neighbor (EKNN). EKNN [69] not only decides on the basis of voting of 
neighbors but also adds the degree of membership of points with its 
class. Meanwhile, both studies [40,69] have reported accuracies above 
95%. 

7.5. K-means 

This unsupervised algorithm assigns points to a cluster on the basis of 
its closeness with the center of the cluster. The center of each cluster 
mainly represents its cluster. This non-parametric algorithm simply 
takes the value of k (number of clusters) as its input based on the 
following steps. Select k random points as centers, then compute the 
difference between all data points and centers. Each point is assigned to 
its closest cluster center. The cluster centers are recomputed for each 
iteration. This process is repeated until the cluster centers stop changing. 
Mittal et al. [8] and Chakraborty et al. [81] adopted this process for the 
classification of COVID-19 images. The work [8] improved the perfor-
mance of K-mean by adding gravitational search optimizer and applied 
K-mean after completing the pipeline of CNN. This solution reported a 
64% and 99.36% accuracy for CT scans and Ultrasounds, respectively. 
Chakraborty and Mali [81] proposed a superpixel-based fuzzy modified 
flower pollination algorithm for better feature selection and K-means for 
classification. The proposed method outperformed other compared 
methods. 

7.6. Decision tree (DT) 

DT is a supervised classifier that works on the basis of rules that are 
created using data patterns. It contains a root node that is population- 
representative, a decision node that divides the next nodes, and a leaf 
node (the last node or class label). Initially, DT considers all the features 
as roots and finds the best attribute of the dataset by computing some 
measures, and then takes a decision of partition. This process ends after 
reaching leaf nodes. One of its versions, J48 [78], adds some extra 
features, such as pruning trees of less value and derivation of rules, thus 
reducing the impurity of data. This study J48 was used at the end of 
CNN’s pipeline, and the parameter of this CNN was tuned using MOEPO. 
The proposed method classified the test data with an accuracy of 
98.50%. 

8. Discussion 

In this survey, we have performed a detailed review of 
metaheuristics-based image classification specific to the COVID-19 
classification task. Several perspectives have been discussed in the 
published literature, ranging from feature extraction to feature 

reduction, as well as feature selection and hyperparameter tuning and 
classification techniques. Although all studies cited in this survey have 
adopted metaheuristics in their research, different studies used these 
algorithms at different stages of image classification. Two major use 
cases of metaheuristics for COVID-19 image classification are feature 
selection and hyperparameter optimization. Most studies used 23 pub-
licly available datasets discussed in this survey. The following sub-
sections talk about the results on different datasets and use cases of 
metaheuristic-based algorithms. 

8.1. Datasets and reported accuracies 

In this survey, the following three types of datasets were observed: (i) 
X-ray images, (ii) CT scans, and (iii) Ultrasounds. Moreover, some 
studies also use both X-rays and CT scans. The following paragraphs talk 
about the accuracy scores on different datasets and the experimentation 
behind them. 

Table shows the accuracies and number of studies on different 
datasets for COVID-19 image classification. According to the table, 
Dataset 2 is very popular among researchers and was adopted in 25 
studies. This dataset contains 468 COVID-19 images, while 178 belong 
to other 19 diseases, including 59 unknown images. Albadr et al. [20] 
reported the highest accuracy on this dataset as 100%. The accuracy is 
perfect, but they used less than 200 X-ray images. The model was trained 
using Optimized Genetic Algorithm-Extreme Learning Machine 
(OGA-ELM), and the data was preprocessed by PCA and HOG feature 
extraction methods. Since the majority of images belong to the 
COVID-19 class, this accuracy can be a result of an over-fitted model. 

The second most popular dataset is Dataset 5, which was used in six 
studies. The highest accuracy for this dataset is 99.86% [36]. CNN ar-
chitecture was used along with PSO-ACO for feature selection. This 
dataset has 219 COVID-19 images, 1345 normal, and 1341 images from 
pneumonia patients. The COVID-19 images have a smaller count 
compared to the other classes. 

Table 12 shows odd results, as reported by Mittal et al. [8]. They 
experimented with four different datasets, namely Dataset 2, Dataset 3, 
Dataset 4, and Dataset 21. Out of these four datasets, two were X-rays, 
while Dataset 4 and Dataset 21 were was CT scans and ultrasounds, 
respectively. The approach used by this paper was CNN and improved 
KIGSA-C for classification. This paper reported accuracies of 98.30% for 
the mixture of Dataset 2 and Dataset 3, while 99.36% for Dataset 21 and 
only 64.41% on Dataset 4 (CT-scan images). These results show that, 
although the approach proposed by this research is useful for X-rays and 
ultrasounds, it is not effective for CT chest images. 

A number of studies have experimented with diverse datasets. One 
study [10] experimented with three datasets, some ([12,15]) used four 
datasets, and one study [18] used six different datasets in their experi-
ments. Muhammad et al. [18] used a mixture of six datasets and trained 
the model with 423 COVID-19, 1579 normal chest X-rays, and 1485 viral 
pneumonia images. They also used data augmentation techniques to 
remove the problem causing COVID-19 class imbalance. The reported 
accuracy was 97%þ. Although many studies have used imbalanced 
datasets, some have used a mixture of multiple datasets as shown in the 
table. Therefore, we can conclude that there is still room for improve-
ment with balanced datasets (balancing the COVID-19 class by mixing 
multiple datasets). 

8.2. Use cases of metaheuristic-based algorithms 

The selection of important features not only plays a critical role in 
achieving high accuracy in image classification but also helps to reduce 
the computational cost. Metaheuristics have shown to be very useful for 
feature selection tasks in the literature. Table 13 shows the use case of 
nature-inspired algorithms for feature selection and parameter optimi-
zation in COVID-19 image classification. It is evident from Table 13 that 
most of the researchers prefer to perform feature selection using nature- 
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inspired metaheuristic algorithms. In the use case of feature selection 
(FS), the highest accuracy was 100% [40]. The work [40] performed the 
image segmentation step, and then selected 64 most relevant features 
using GA. After performing high-level filtering, the data is classified 
using KNN. KNN all yields accuracy, precision, recall, and F-score of 
100%, while the decision tree is classified with an accuracy of 95%. 
These accuracy scores are very impressive, but they used a very small 
amount of data. As mentioned in the datasets section, they used only 200 
CT images. Therefore, we can infer that this accuracy might be due to the 

over-fitting of the model on a small dataset. 
The second highest accuracy of 99.5% with 99% F-score was re-

ported by Ref. [63]. The proposed study used fractional-order and ma-
rine predators (FO-MPA) for feature selection. Meanwhile, the 
experiments were performed on two different datasets. One of the 
datasets was the X-ray images published by Kaggle, which is comprised 
of 200 COVID-19 images and 1675 negative images. The second dataset 
was collected from Qatar University and the University of Dhaka, 
including collaborators from Pakistan. This data consists of 219 positive 
X-ray images and 1341 X-ray images. The proposed method was 
compared with WOA, HGSO, SCA, SMA, PSO, GWO, HHO, GA, and 
MPA. The proposed algorithm outperforms all others on both datasets. 
Therefore, it can be concluded that the feature selection algorithm in 
this paper seems to be the most suitable for this task. 

The second most common use case of metaheuristics is hyper-
parameter tuning. The best result was reported by Emrah [12] using GS 
for tuning the hyperparameter of CNN. This research used 1524 X-ray 
images of COVID-19, pneumonia, and normal patients. 

Many studies ([13,15,30], and [39]) in Table 13 have reported very 
high accuracy scores. However, they did not mention the other mea-
sures, such as precision, recall, and F-score. There are high chances that 
these high accuracy scores are due to class bias or model bias. 

Nature-inspired algorithms are computationally expensive; there-
fore, it is very important to decide which step addition of these opti-
mizing algorithms can provide a good aid. This survey can help 
researchers in making these kinds of decisions. Further details about use 
cases of metaheuristics in the context of COVID-19 image classification 
can be explored in the references reported in Table 13. 

9. Future directions 

This survey has performed an extensive review of metaheuristic 
approaches for COVID-19 image classification. Although the reported 
accuracies are high, there are still some research gaps. The following 
subsection discusses some future research directions in COVID-19 image 
classification research. 

9.1. Multi-class classification 

Binary classification is easier to handle. This is the major reason why 
almost 60% of studies dealt with the binary classification problem. 
Therefore, a research gap exists for multi-class classification. Selecting 
multiple classes of viral lungs diseases along with COVID-19 images can 
be a very interesting and useful topic of research. 

9.2. Dataset difficulty 

The reported accuracies of the reviewed studies are very high and are 
above 95%. The reason for such high accuracies is the nature of the 
dataset. Most datasets have two classes, where one class has COVID-19 
affected lung images and another has lung images of healthy people. 
While it is relatively easy to determine the health of COVID-19 infected 
lungs, it is a more challenging and useful task to identify if the lung 
images are healthy or if there is another lung disease, such as pneu-
monia. A possible future research direction is the creation of challenging 
datasets that are more helpful for building useful classifiers in the 
medical domain. 

9.3. Feature enriched images 

In medical image processing, especially for COVID-19 chest images, 
there are two major types of datasets. One is x-ray images (a grayscaled, 
2D image with lesser number of features), and the other is CT-Scan (a 
colored, 3D image with 360 views, covering all minor details). CT scans 
are very clear and feature-enriched data sources. However, it can be 
observed from previous studies that only 20% of studies had explored 

Table 12 
Datasets and reported testing accuracies.  

Dataset DataType References Accuracy % 

Dataset1 X-ray [6] 99.38 
[7] 99.43 

Dataset2 X-ray and CT-Scan [8] 99.36 
[9] 99.69 
[10] 99.65 
[11] 99.44 
[12] 98.92 
[13] 99.7 
[14] 94.93 
[15] 84.67 
[16] 98 
[17] 98.5 
[18] 97.74 
[19] 97.6 
[20] 100 
[22] 95.91 
[23] 96.09 
[70] 98.7 
[71] 99.43 
[75] 94.17 
[30] 98.04 
[31] 99.81 
[32] 98.71 
[33] 99.34 
[36] 94.26 

Dataset3 X-ray [8] 99.36 
[17] 98.5 
[18] 97.94 

Dataset4 CT-Scans [8] 64.41 
Dataset5 X-ray [10] 99.65 

[12] 98.92 
[18] 97.94 
[24] 98.7 
[27] 94.17 
[36] 99.86 

Dataset6 X-ray and CT-Scan [10] 99.65 
[15] 84.67 
[18] 97.94 

Dataset7 CT-Scan [11] 99.44 
Dataset8 CT-Scan [37] 99.99 

[38] 99.22 
[28] 98.39 

Dataset9 X-ray [12] 98.92 
[13] 99.7 
[26] 99.43 
[32] 98.71 

Dataset10 X-ray [12] 98.92 
Dataset11 CT-Scan [14] 94.93 
Dataset12 X-ray [15] 84.67 
Dataset13 X-ray [15] 84.67 
Dataset14 CT-Scan [39] 97.62 
Dataset15 X-ray [18] 97.94 
Dataset16 X-ray and CT-Scan [18] 97.94 
Dataset17 X-ray and CT-Scan [19] 97.6 
Dataset18 X-ray [19] 97.6 

[33] 99.34 
Dataset19 X-ray [35] 99.11 
Dataset20 X-ray [35] 98.25 
Dataset21 CT-Scan [8] 99.36 

[40] 100 
[28] 90 

Dataset22 X-ray [75] 94.17 
Dataset23 X-ray [29] 98.04  
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CT-scan images, while the rest of the studies focused on X-ray data or 
experimented with both types. The CT images are very feature-enriched, 
and thus they require more processing to train any model. A possible 
future direction is by reducing the image parameters at different levels 
of image processing. Metaheuristics can be useful for reducing image 
features at different levels. 

9.4. Noisy data handling 

The X-ray screening process passes some radiation through the 
human body. Some of the radiations are scattered during this process, 
and this sometimes produces noise on X-ray images. Three types of 
noises are observed, namely Poisson noise, salt and pepper noise, and 
speckle noise. The Poisson noise is due to the uneven spread of X-rays on 
the surface, while salt and pepper noise appears as white and black noisy 
pixels. It forms due to sharp and sudden rays on the surface. Speckle 
noise is a result of some external fluctuations in X-rays when it returns 
from an object or human body. It appears as more intense gray pixels on 
an image [88]. Dealing with such noisy data is very important, but none 
of the studies reviewed in this survey tackle this problem. All the used 
datasets were clear versions of X-rays. Therefore, this can be a very 
useful contribution to remove such noise by passing data through suit-
able filters. For more details, you can explore the different types of filters 
from image processing, such as Gaussian filters or blurry filters. By 
improving accuracy over noisy datasets, we can create a model appli-
cable to the real-time system. 

9.5. Computational cost reduction 

According to our literature review, almost 70% of papers used 
nature-inspired algorithms as feature selectors. Feature selection is very 
important and has a huge impact on the performance of the model. 
Image datasets have thousands of features that take a large amount of 
processing time. Despite producing highly accurate results using meta-
heuristic algorithms, the research on reducing the computational cost 
will remain an open problem, and thus future research can focus on 
addressing this issue. 

9.6. Metaheuristic approach for other medical images 

In this survey, we have reviewed the work done for COVID-19 chest 
images, but these findings can be useful for any other kind of medical 
image. Therefore, the researchers can use these methodologies and 
research to diagnose different disease images, such as cancer. 

9.7. Other metaheuristic approaches 

There are hundreds of nature-inspired algorithms that have been 
proposed in the last decade. This survey shows that only a few of them 
have been tested for feature selection in COVID-19 images. Many state- 
of-the-art optimization algorithms such as political optimizer [89] and 
heap base optimizer [90] can also be tested for feature selection in 
COVID-19 images. 

Table 13 
Use cases of Nature Inspired Algorithms and Reported Accuracies.  

Ref. Nature Inspired Algorithm Use case Accuracy % Precision % Recall % F-Score % 

[6] MH-CovidNet Feature Selection 99.38 100 – 99.07 
[43] PSO-Guided-WOA  99.5 100 100 – 
[63] FO-MPA  99.8 – – 99 
[8] KIGSA-C  99.36 100 100 99.37 
[9] CSSA  99.69 99.62 99.44 99.53 
[10] HSGO  99.65 99.66 99.65 99.65 
[11] CGRO  99.31 99 100 98 
[13] ASSOA  99.7 – – – 
[7] BDE  99.43 99.16 99.57 – 
[68] OGA  92.6 92.5 92.5 – 
[38] WOA  99.22 97.78 99.78 98.79 
[78] MODE  93 91 90.5 90 
[22] SSA  95.91 95.97 95.1 95.29 
[23] GA  96.09 93.85 91.54 90 
[40] GA  100 100 100 100 
[69] GA  96 76 64 – 
[26] BD  99.43 99.57 99.16 – 
[27] Two-Tier-FS -Coalition game  94.17 87 98 – 
[41] AOA  86 96 96 96 
[28] DA  98.39 98.21 97.78 98 
[66] PSO  97 95.44 100 – 
[33] DE-PSO  99.34 – – 99.3 
[36] PSO-ACO  99.86 100 98.17 99.08 
[16] MV Classification 98 100 100 100 
[42] SPEA-II Tune Hyper-parameters 99.75 99.97 99.89 99.89 
[5] MADE  94 93.41 94.86 95.37 
[12] GS  98.92 98.72 98.72 – 
[14] MOGA  94.93 98.29 97.64 98.31 
[17] MOEPO  98.5 100 100 98.4 
[30] PSO  98.04 – – – 
[32] PSO  98.71 98.89 99.63 99.25 
[34] WO-IPSO  94.26 85.91 84.9 85.4 
[64] GWO  97.78 96.25 97.75 92.88 
[15] FO-CS Feature Extraction, Feature Selection 98.95 – – – 
[29] PSO  98.04 91.67 100 – 
[31] PSO  99.81 – 88 98 
[20] OGA-ELM Feature Selection, Classification 100 100 97.37 98.67 
[21] CSSA  99.69 99.62 99.44 99.53 
[39] CSA Feature Extraction, Feature Selection, Classification 97.62 – – – 
[24] GNRCS  98.70 97.6 97.9 97.8  
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9.8. Parameter optimization 

A few studies have used metaheuristics for parameter optimization 
and architectural optimization of deep learning models. There are many 
recent studies that are developing the deep learning models [91] in 
order to learn better features and reduce the number of network pa-
rameters. These can also be tested for COVID-19 image classification. 

9.9. Scalability 

Machine learning and deep learning approaches learn patterns from 
the given dataset. A large number of training data guarantees a more 
realistic and informative model. However, this advantage comes with 
the drawback of more processing and more memory consumption. This 
is the reason why there are no research studies that used a big size of 
data in this survey. Therefore, this research gap can be covered by 
processing big COVID-19 datasets using distributed systems, such as 
Hadoop and Spark. 

9.10. Detect new variant of COVID-19 (delta and omicron) 

Current trends of COVID-19 spread show that it not only spreads very 
fast but also changes its shape, and the variants can be more fatal. The 
most recent variant is Omicron, which was discovered for the first time 
in November 2021 in South Africa. Omicron has been spreading at a very 
fast rate (double as compared to COVID-19). This survey provides a base 
study for the research community that wants to work on the detection of 
COVID variants using meta-heuristics and deep learning. 

10. Limitations 

Although many studies have been published on COVID-19 detection 
using meta-heuristics and deep learning, the research in this domain is 
still limited. Many limitations need to be addressed for more fruitful 
research in COVID-19 detection. The following are the major 
limitations. 

10.1. Size of dataset 

As observed in the discussion section 8.1, promising accuracies are 
reported on several datasets. However, on the other hand, the number of 
images in these datasets is very low. Dataset 2 is the most widely used 
dataset among all datasets reported in this survey, as shown in Table 1. 
Albadr et al. [20] reported a 100% accuracy for this dataset, but the 
experiments were conducted only on 200 images. Similarly, Dataset 5 
has only 219 images [36]. The experiments performed on these datasets 
used deep learning models, which can produce biased results if only 
given limited data. These deep learning models might fail on new kinds 
of examples since they are trained on a limited number of images. To 
date, there is no large size annotated image dataset available for 
COVID-19 detection. A major challenge in creating a large dataset is the 
manual annotation of the images, which is time-consuming and involves 
human effort. 

10.2. Class imbalance 

Most of the datasets used for COVID-19 detection have a serious 
problem with class imbalance, as shown in Table 2. It is relatively easy to 
obtain positive examples for another lung disease since the disease is not 
new and there is plenty of published work available for those diseases. 
However, COVID-19 is a very recent pandemic that emerged in late 
2019. The collection of positive examples for COVID-19 is still an 
ongoing task and more data is needed for deep learning models to 
function effectively. Due to the lack of positive examples, the deep 
learning models will not be able to learn the best features for the ac-
curate classification of new images. 

10.3. Noisy data 

Some of the X-ray datasets used in COVID-19 studies are very noisy 
and it is difficult to detect any problem in those images, even with the 
human eye. There is a need for clear images of the lungs of COVID-19 
patients as well as patients suffering from other lung diseases such as 
pneumonia. While it is relatively easy to detect COVID-19 affected lungs 
from healthy lungs, it is more difficult to differentiate between two 
unhealthy lung images suffering from different diseases. The negative 
examples must include lung images of pneumonia patients. This is to 
ensure that the deep learning models can learn features specific to 
COVID-19 affected lungs. 

10.4. Time complexity of meta-heuristics 

Metaheuristic algorithms tried to find the global optimal solution by 
searching for a large space for solutions. In every iteration, the fitness of 
each solution is evaluated, which makes these algorithms very time- 
consuming. Using meta-heuristics on large-size datasets will be a chal-
lenging task. 

10.5. Lack of interdisciplinary knowledge 

COVID-19 detection using metaheuristics and deep learning requires 
knowledge from the field of computer science, biology, virology, and 
medical imaging. There is a lack of interaction between computer sci-
ence researchers and biologists, virologists, and medical imaging 
personnel. AI experts need in-depth biological and medical imaging 
knowledge about COVID-19 in order to apply their tools to solve this 
problem. It is necessary to coordinate the efforts being made in all of 
these domains in order to make progress in COVID-19 detection. 

11. Conclusion 

COVID-19 is an exponentially spreading disease that is now declared 
a pandemic. Since there is no permanent cure for this disease yet, the 
only option is to prevent it by keeping the affected person in isolation. It 
is very important to detect the patient at the early stages. This can be 
done by conducting medical tests that are costly, time-consuming, and 
not possible to perform at a large level. Automated classification of chest 
images can help in the early detection of COVID-19. Although deep 
learning algorithms are a popular choice for image classification, they 
have a large number of parameters to train, and this increases the 
computational cost. The computational cost can be reduced by opti-
mizing these parameters using nature-inspired algorithms. In this study, 
we have conducted a detailed review of metaheuristic-based methods 
and their use cases in COVID-19 image classification. This is the first 
study on use case of metaheuristics for COVID-19 detection. Meta-
heuristics have been mostly used in feature selection and hyper-
parameter optimization of deep learning models. This study presents the 
statistics of different types of datasets used in COVID-19 image classi-
fication. Details of different nature-inspired algorithms and their use 
cases are also reported in this study. It can be concluded from the survey 
that most researchers focused on the binary classification of X-ray 
datasets. CNN is the most common choice for feature extraction, while 
nature-inspired algorithms are the most popular for feature selection. 
For the task of classification, machine learning algorithms are a popular 
choice. Finally, we present several future research directions in the field 
of image classification for medical diseases. Some of the future research 
directions include increasing the size of the COVID-19 datasets, reducing 
the computational cost of deep learning methods, improving parameter 
optimization using new metaheuristics, and detection of new COVID-19 
variants, etc. We firmly believe, this survey will inspire researchers to 
tackle the remaining challenges in COVID-19 image classification. 
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