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Automated analysis of activity, 
sleep, and rhythmic behaviour 
in various animal species 
with the Rtivity software
Rui F. O. Silva1,2, Brígida R. Pinho1,2, Nuno M. Monteiro3,4, Miguel M. Santos4,5 & 
Jorge M. A. Oliveira1,2,6*

Behavioural studies provide insights into normal and disrupted biological mechanisms. In many 
research areas, a growing spectrum of animal models—particularly small organisms—is used for 
high-throughput studies with infrared-based activity monitors, generating counts per time data. The 
freely available software to analyse such data, however, are primarily optimized for drosophila and 
circadian analysis. Researchers investigating other species or non-circadian behaviour would thus 
benefit from a more versatile software. Here we report the development of a free and open-source 
software—Rtivity—allowing customisation of species-specific parameters, and offering a versatile 
analysis of behavioural patterns, biological rhythms, stimulus responses, and survival. Rtivity is 
based on the R language and uses Shiny and the recently developed Rethomics package for a user-
friendly graphical interface without requiring coding skills. Rtivity automatically assesses survival, 
computes various activity, sleep, and rhythmicity parameters, and performs fractal analysis of activity 
fluctuations. Rtivity generates multiple informative graphs, and exports structured data for efficient 
interoperability with common statistical software. In summary, Rtivity facilitates and enhances the 
versatility of the behavioural analysis of diverse animal species (e.g. drosophila, zebrafish, daphnia, 
ants). It is thus suitable for a broad range of researchers from multidisciplinary fields such as ecology, 
neurobiology, toxicology, and pharmacology.

The study of animal behaviour provides insights on normal and disrupted biological mechanisms. Neurological 
diseases, exposure to chemicals (e.g. neuroactive compounds or contaminants), environmental stressors (i.e., 
temperature, pH, hypoxia), and changes in light conditions may translate into behavioural alterations, which can 
be studied in different animal models1–4. Animal activity is usually monitored by video recordings or by infrared 
(IR)-based activity monitors. While video recordings usually require large data storages and image processing 
steps before data analysis5, IR-based activity monitors supply low-storage numerical data that can be directly 
analysed, thus being particularly useful for prolonged studies, detecting activity in either light or dark stages6–9.

The Drosophila Activity Monitor (DAM) and the Locomotor Activity Monitor (LAM) are IR-based activity 
monitors developed by Trikinetics (TriKinetics, Waltham, MA), which automatically count the number of IR 
beam crossings by small organisms. DAM and LAM can monitor animal activity for long periods of time, even 
in the absence of light. They have been successfully used to study the activity of different small organisms, such 
as flies10, bees and wasps11, ants6, spiders7, or even aquatic organisms, such as Daphnia magna and Eurydice 
pulchra9,12, and the small vertebrate Danio rerio (zebrafish; present study).
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Most freely-available software for the analysis of the data from IR-based activity monitors focus on the evalu-
ation of specific behaviour parameters such as circadian activity13,14 or sleep15. A recently developed software, 
called ShinyR-DAM, specifically created to analyse drosophila locomotor activity, greatly decreased the complex-
ity of the analysis of data generated by the DAM, thereby making the simultaneous analysis of activity, sleep and 
circadian parameters accessible to novice users16. Since most of these software, including ShinyR-DAM, were 
optimized to study activity, sleep and circadian rhythmicity in drosophila, there is still a need for more versatile 
software. Namely, one that allows analyses customised to the behavioural specificities of distinct animal species, 
while also covering more diverse aspects of biological rhythmicity and transient behaviours.

In this work, we developed Rtivity, a freely available open-source software that allows a versatile and auto-
mated analysis of behavioural data obtained from IR-based activity monitors, or other sources (inc. manual or 
automated counting) as long as they are in a counts per time format. Rtivity allows: (i) the customization of 
behavioural parameters to different species, and survival analysis; (ii) the analysis of diverse biological rhythms 
and transient responses; (iii) the integrated analysis of multiple experiments, while also structuring data export 
to optimize software interoperability. Rtivity can be used either online or offline, exhibits a user-friendly interface 
and presents a high graphical versatility, creating publication-ready graphs.

In summary, Rtivity facilitates and enhances the versatility of behavioural data analysis, being customisable 
to a diverse array of animal species and experimental protocols (e.g. different light-cycles), thus being suitable 
to a broad range of investigators working in multidisciplinary fields of research.

The Rtivity software
The Rtivity (R + acTIVITY) software is based on the R programming language17, using Shiny and the recently 
published Rethomics packages18,19. We primarily developed Rtivity to analyse the data exported by LAM and 
DAM, and it accepts their standard 42 column text files, called monitor files. However, Rtivity can also analyse 
other data as long as they are first converted into the monitor files format, as we detail in the user guide (see 
“Software availability and user guide”).

Rtivity presents a user-friendly interface (Fig. 1), evaluates parameters related with activity, sleep, survival, 
and biological rhythms, performs customisable time-continuous and column graphical representations and 
calculates statistics from the represented data (Table 1). In the following sections, we detail the major advantages 
of Rtivity, namely: (1) Data pre-processing to check file format and missing values, allowing their imputation; (2) 
the customization of activity and sleep parameters to different species, and survival analysis; (3) the analysis of 
diverse biological rhythms and transient responses; and (4) the integrated analysis of multiple experiments and 
software interoperability. Lastly, we explain how researchers can freely access the open-source Rtivity software, 
demonstration video, and user guide.

Data pre‑processing.  First, Rtivity checks if the uploaded files have the required format (*.txt monitor file). 
Rtivity reports an error when files contain missing values (empty or non-numeric data) in the columns repre-
senting activity channels. In LAM and DAM data, missing values or noise are rare (given the continuous moni-
toring in a closed system20) but may potentially occur due to IR sensor malfunction. However, Rtivity can also 
analyse data from other sources where noise or missing values are more common (e.g. actigraphy with wearable 
sensors, which can be temporarily removed or misplaced)21. Thus, common data pre-processing steps involve 
data filtering (to minimize the noise influence over the analysis22) and missing value imputation (to avoid wast-
ing valuable experiments due to minor missing data21,23). If required, data filtering can be performed prior to 
uploading data into Rtivity (a commonly used method is the Kalman filter22, which is available in R packages24). 
Missing value imputation can be done by Rtivity, which creates a new monitor file containing interpolated values 
(Fig. 1B). These are computed by the Copy Mean method, which was shown to be robust for different types of 
missing data25.

Customization of behavioural parameters to different species.  IR-based activity monitors gener-
ate data from which researchers can evaluate animal activity patterns. However, inactivity-related parameters 
can also be useful to evaluate normal or disrupted animal behaviour. The method used to monitor activity largely 
influences both activity- and inactivity-related parameters26. Since animal species can markedly differ in their 
activity levels6,7,10, it is advantageous to have the software capability to adjust the time threshold used to consider 
an animal inactive (i.e. time without IR-beam crossings). Animal inactivity can be transient (stops), temporary 
(e.g. sleep) or definitive (e.g. death), thus, Rtivity allows the user selection of three different inactivity-related 
thresholds:

Stops.  Animals with similar mean activity levels may differ substantially in the number of stops or duration of 
continuous movement. In Rtivity, the user can select the minimum period of time without detected activity to 
define movement stops (Fig. 2Ai). Rtivity uses the analysis of stops to extend the evaluation of activity to unin-
terrupted movement intervals—activity bouts (Fig. 2Aii)—calculating their mean activity and mean duration 
(Table 1).

Sleep.  Detailed characterization of sleep can be performed in humans, rats, and mice27,28 using complex data 
(e.g. brain waves) or simpler data (e.g. activity and heart beat) analysed with mathematical models29,30. In small 
organisms, animal sleep can be generally characterized as a prolonged quiescent state, whose duration varies 
across species31. Since Rtivity was primarily developed for small organisms, we used the prolonged quiescent 
state definition to identify sleep31. Previous software defined 5  min as the minimum period of time to con-
sider that an animal is asleep15,16. Although this definition suits drosophila32, different species have diverse sleep 
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behaviours31 (e.g. zebrafish larvae: 10 min sleep threshold33). Hence, Rtivity allows users to adjust the minimum 
inactivity period required to consider that an animal is asleep (Fig. 2Bi). This allows species-specific evaluation 
of sleep-related parameters: sleep ratio, duration of sleep bouts (uninterrupted periods of sleep; Fig. 2Bii), sleep 
latency, total sleep time, and wake after sleep onset (Table 1).

Death (and sustained paralysis or experimental anomalies).  Animal inactivity can be definitive when animals 
become unable to move or die. In research areas such as toxicology death is viewed as an experimental result, 
since it may be a consequence of the exposure to exogenous compounds or to disruptive conditions. Recently 
developed software significantly improved the speed and efficiency of detection of dead animals by introducing 
a daily locomotor activity threshold, thereby allowing the automatic exclusion of dead animal data16. In some 
experiments, however, researchers may be particularly interested in the time of death, or in the behavioural 

Figure 1.   Rtivity interface. (A) Selection of files and analysis parameters: (1) file import; (2) file selection; (3) 
import metadata; (4) start date; (5) finish date; (6) light-onset time (zeitgeber time zero; ZT0); (7) light–dark 
(LD) cycle period and light hours per cycle; (8) display of files selected for analysis and their corresponding ZT0. 
(B) Missing values imputation. Users can upload the file, check the status message for missing values, select the 
option to interpolate, and save as a new monitor file. (C) Channel selection and grouping into experimental 
conditions: (left) each of the 32 channels of a LAM or DAM system can be freely selected into a user-labelled 
condition; (right) display of the metadata for each condition (original filename, dates, channels, condition 
labels, and order of conditions in the graphs), which will be imported to the Rethomics libraries for downstream 
analysis. Images in Figure contain screenshots of the Rtivity software developed in this study (https://​ruisi​lva.​
shiny​apps.​io/​rtivi​ty/), assembled and illustrated by co-authors RS and JMAO using version 2.8.22 of the free 
image editor GIMP (https://​www.​gimp.​org).

https://ruisilva.shinyapps.io/rtivity/
https://ruisilva.shinyapps.io/rtivity/
https://www.gimp.org
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Table 1.   Behavioural parameters, graphs, and statistics automatically computed by Rtivity.

Behavioural parameters

Activity Sum of IR-beam crossings (counts) per time-window (bin size)

Cumulative activity Cumulative sum of IR-beam crossings since the beginning of the 
analysis

Activity bout

A time interval of activity occurring between 2 consecutive move-
ment stops (stops are time intervals with zero activity that exceed a 
user-defined inactivity threshold, in minutes)
Rtivity computes the mean activity and mean duration, in minutes, of 
all bouts in a specified time interval (e.g. per day, custom)

Activity period Period (in hours) corresponding to the highest peak (power) of an 
activity periodogram

Activity phase Temporal difference between the lights-on time and the activity peak 
time (acrophase)

Inter-daily stability The variance of the average 24-h pattern of activity divided by the 
total variance

Intra-daily variability The sum of the variance between consecutive hours divided by the 
total variance

Relative amplitude The difference between the most active 10 h period (M10) and the 
least active 5 h period (L5), divided by the sum of M10 and L5

Scaling exponent Slope of the correlation between the amplitude of activity fluctuations 
and the time-scales

Sleep Time intervals of prolonged inactivity (zero IR-beam crossings) that 
exceed a user-defined threshold in minutes

Sleep ratio Proportion of sleep in a specified time interval (e.g. per day, custom)

Sleep bout duration Duration, in minutes, of sleep bouts (time interval of uninterrupted 
sleep)

Sleep latency Time interval, in minutes, since lights are turned off until the start of 
a sleep bout

Total sleep time Number of hours that animals were considered asleep during dark-
ness

Wake after sleep onset Number of hours that animals were awake during darkness, after the 
first sleep bout

Time of death
Last timepoint (day and time hh:mm:ss) with non-zero activity, before 
an animal is considered dead (time of inactivity above the death 
threshold)

Graphs

Kaplan Meier Rtivity plots survival % (y axis) over time (x axis) using the Kaplan–
Meier representation

Chronograms

Rtivity chronograms are line graphs representing activity or sleep 
ratio (y axis) over time (x axis). Rtivity chronograms can represent the 
entire experimental period (Full chronogram) or only one light–dark 
cycle (Average LD cycle chronogram), where each time point is the 
average of the same time point in all cycles. The Average LD cycle 
chronogram is only computed for the activity parameter

Single or double plot actograms

Rtivity actograms use ribbons with a color gradient to represent activ-
ity over time (x axis)
In “Survival analysis”, single plot actograms display individual chan-
nels as separate ribbons along the x axis (full time of experiment). In 
“Visual inspection”, the single plot actograms display the mean activ-
ity for each condition (grouping several channels). Alternatively, Rtiv-
ity can produce double plot actograms, where data for each condition 
is plotted twice, in a staggered manner, allowing a vertical comparison 
of activity patterns over time

Cumulative activity Representation of the cumulative activity (y axis) over time (x axis)

Periodograms
Representations of the similarity (i.e. power; y axis) between data seg-
mented in different periods (x axis). Rtivity computes the Chi-Square 
and Lomb-Scargle periodograms

Column graphs
Representations of a behavioural parameter (y axis) per condition, 
organized for example by day or by light and dark phase (x axis). Col-
umn graphs can either be bar-plots, box-plots, dot-plots (with mean 
and error) or simply the mean and error bars

Statistics

The statistics associated with each graph (e.g., n, mean, median, quartiles, SD, SEM) are displayed in a table and can be downloaded as XLSX 
files
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changes occurring prior to death (e.g. study of time-dependent effects of a toxic compound). To accommodate 
such particular interests, we used the following rationale: if an animal dies at any time point during the experi-
ment, it will have zero activity counts until the end of the experiment. Rtivity users can define a specific inactivity 
time (death threshold) to consider death for their species of interest. Rtivity will then perform a backward analy-
sis starting at the last experimental time point (from the end of the experiment going backwards), identifying 
animals with a continuous inactivity period that is larger than the user defined death threshold (‘dead animals’). 
Next, users can choose to remove the dead animals entirely from the analysis or, alternatively, choose to remove 
only their inactivity data after death (still being able to assess behavioural changes occurring prior to death). 
Another useful feature of Rtivity is that it facilitates survival studies, by registering the survival status at the end 
of the experiment, and automatically computing the time of death (Table 1). This allows the graphical represen-
tation of the survival percentage over time (Kaplan–Meier plot; Fig. 2Ci). Also, Rtivity allows users to visually 
inspect the data by generating actograms (Table 1) that display the individual channels from the monitor files 
(Fig. 2Cii). These actograms assist users with the definition of the death threshold, and the quality control search 
for experimental anomalies (e.g. empty channel, IR sensor malfunction, aberrant activity data).

Figure 2.   Inactivity parameters. (A) Movement stops and activity bouts: (i) user-defined inactivity threshold 
to consider a movement stop; ii) representation of activity bouts between two movement stops. (B) Sleep and 
sleep bouts: (i) user-defined inactivity threshold to consider that an animal is asleep; ii) representation of a sleep 
bout between two timepoints with non-zero activity. (C) Survival analysis: (i) survival percentage over time 
(Kaplan–Meier plot); (ii) representative actogram per channel, where the last inactivity periods are excluded 
from the representation (white sections inside the red rectangle). Data are from individual zebrafish larvae; time 
0 equals 4 days post fertilization (dpf). Images in Figure contain screenshots of the Rtivity software developed 
in this study (https://​ruisi​lva.​shiny​apps.​io/​rtivi​ty/), assembled and illustrated by co-authors RS and JMAO using 
version 2.8.22 of the free image editor GIMP (https://​www.​gimp.​org).

https://ruisilva.shinyapps.io/rtivity/
https://www.gimp.org
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In summary, to customize the behavioural analysis to different species, Rtivity allows users to specify different 
inactivity thresholds, thus optimizing the analysis of movement, sleep and death. Rtivity also eases the analyses 
of diverse biological rhythms, as described below.

Analysis of diverse biological rhythms and transient responses.  The study of biological rhythms 
often requires continuous analysis of activity over prolonged periods, which may span several days and nights. 
IR-based activity monitors are particularly useful for such prolonged studies due to their ability to detect activ-
ity independently of light conditions. Moreover, they provide numerical data that can be directly analysed, thus 
saving time and data storage when compared with prolonged video recordings6,9,11. The available software used 
to analyse data from IR-based activity monitors, however, are often optimized to a particular model species (e.g. 
drosophila) and thus allow only fixed 12 h light 12 h dark (12L:12D) cycles16. If the researchers require the use 
of different light–dark cycles (e.g. 16L:8D for house fly or Daphnia10,12; 14L:10D for zebrafish, present study), or 
wish to mimic seasonal variations in photoperiod, they would benefit from a software allowing a more flexible 
input of light–dark cycles. Rtivity has the advantageous feature of allowing the customization of the period and 
light hours of each light–dark cycle (Fig. 1A). This customization is also useful for experiments where short 
light–dark cycles (e.g. 30 min L : 30 min D) are used as a stimulus to evoke behavioural responses34,35.

The analysis of time-continuous data usually starts by the visual inspection of graphical representations36. 
Rtivity allows a versatile exploratory data analysis, displaying time-continuous (e.g. actograms, chronograms or 
cumulative activity) or column graphs (e.g. bar-plots, box-plots, dot-plots, mean & error bars), which users can 
adjust to create publication ready graphs, as detailed in the user guide (See “Integrated analysis of multiple experi-
ments and software interoperability”). Briefly, users may adjust axis, labels, title, condition color and linetype, 
and represent different error bars (Fig. 3). Time-continuous graphs can display the data acquisition time (the 0 
value is the first point analysed) or the zeitgeber time (the 0 value is the first light onset time).

Biological rhythms are usually characterized by their period, rhythmic strength and phase37. Rtivity com-
putes and plots the activity period and estimates the rhythmic strength with the Chi-Square or Lomb-Scargle 
periodograms (Table 1)36,37. Rtivity calculates the activity phase (Table 1) via the difference between the lights-on 
time and the activity peak time (acrophase)38. For this calculation, Rtivity uses the recently developed ActCr 
package39 to model the activity data into cosine curves (Extended Cosinor Model)40. Moreover, Rtivity computes 
other parameters that summarize activity rhythms: the inter-daily stability (IS; measures the day-to-day repro-
ducibility); the intra-daily variability (IV; measures fragmentation); and the relative amplitude (RA; measures 
amplitude)37,40 (Table 1).

Animal activity fluctuations may present patterns that remain similar across several time scales (minutes 
to hours), meaning that they are scale-invariant—also known as fractal activity patterns. Such patterns have 
been studied in small organisms (e.g. drosophila41, zebrafish42, and C. elegans43) and in mammals (e.g. rodents, 
primates, humans), where disruptions have been associated with aging and neurological diseases44–48. Rtivity 
performs fractal analysis with the “Detrending Fluctuation Analysis” (DFA) method49, using the recently devel-
oped nonlinearTseries package50. Rtivity plots the correlation between the amplitude of activity fluctuations and 
the time scales, and computes the scaling exponent parameter (Table 1), which represents the scale-invariance 
and typically ranges from ~ 0.5 (white noise) to ~ 1.5 (rigid and excessively regular activity patterns)44–47.

To illustrate Rtivity graphical capability, Fig. 3 depicts data from our experiments with zebrafish larvae, show-
ing: activity over time with automated light and dark annotations (Fig. 3A); mean activity in column graphs with 
data segmented by light phase (Fig. 3Bi), sleep bout duration with data segmented by day (Fig. 3Bii), and sleep 
ratio segmented by day and light phase (Fig. 3Biii). Moreover, in Fig. 3C, we show an example of the descriptive 
statistics computed by Rtivity, here referring to the graph of Fig. 3Bii.

In order to showcase Rtivity effectiveness in detecting less commonly explored biological rhythmicity, we 
revisited the description of the rhythmic activity patterns of an intertidal pipefish, Nerophis lumbriciformis51. 
After seamlessly importing the data (acquired, at the time, from video recordings) and adjusting the light–dark 
cycle to that experienced by the pipefish at the time of collection (13.5L:10.5D), we were able to promptly detect, 
in both sexes (Fig. 3D), the distinctive circatidal rhythmicity (period of about 12.4 h that coincides with the 
interval between the peaks of high and low tide) that intertidal species often display52.

Activity monitors can also be used to evaluate transient behaviours, as highlighted by the use of a DAM to 
detect activity peaks following blue light pulses in drosophila8. To provide users with this capability, Rtivity 
allows the visual inspection of transient behaviours and exports the represented data in a structured manner for 
further analysis (See “Integrated analysis of multiple experiments and software interoperability”). To illustrate 
this feature, we show in Fig. 3E the activity peak of a zebrafish stress response induced by a sudden light-to-dark 
transition, i.e. visual motor response53.

Thus, although the use of IR-based activity monitors and Rtivity is primarily advantageous over video-
recordings for long-run experiments (days), its ability to use data from short-run experiments (minutes or hours) 
greatly expands its spectrum of applications. A key feature of Rtivity is that users can import data from multiple 
short-run experiments for a combined analysis, and then export the data in a friendly format for further analysis 
in specialized statistical software, as explained below.

Integrated analysis of multiple experiments and software interoperability.  In research, robust 
results often emerge from the combined analysis of multiple independent experiments54. Rtivity allows the joint 
analysis of multiple monitor files (Fig. 4) and the combination of freely selected channels, from one or several 
files, into the same condition (Fig. 1C). Data from all imported files can be aligned by their individual light 
onset time (which may differ across files), thus allowing the integration of multiple experiments. Each analysis 
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Figure 3.   Versatility of data visualization and analysis. (A) Visual inspection: partial display of user inputs to customise publication-
ready graphs. The actogram represents activity per 15 min with light and dark annotations (x axis). (B) Representation of activity per 
light phase (i), sleep bout duration per day (ii), and sleep ratio per day and light phase (iii); in box-plots (i), bar-plots (ii), and dot-plots 
(iii). Data are from individual zebrafish larvae (time 0 equals 4 dpf). (C) Descriptive statistics of the sleep bout duration per day (Bii). 
For each condition, the table includes the number of animals, mean, errors (SEM; SD), median, and other quartiles (Q1, Q3). (D) 
Lomb-Scargle periodogram of intertidal pipefish activity (adult Nerophis lumbriciformis), showing circatidal rhythmicity (12.4 h) for 
females and males (F, M). (E) Representative chronogram showing ‘visual motor responses’ evoked by sudden light-to-dark-transition 
in zebrafish (4 dpf). Zebrafish data were obtained with LAM10 (Trikinetics). Pipefish data were obtained with video recordings and 
illustrate the capability of Rtivity to use counts per time data from any source, if they are first converted into the standard monitor file 
format. Images in Figure contain screenshots of the Rtivity software developed in this study (https://​ruisi​lva.​shiny​apps.​io/​rtivi​ty/), and 
drawings by co-author NM of pipefish and zebrafish, assembled and illustrated by co-authors RS, NM, and JMAO using version 2.8.22 
of the free image editor GIMP (https://​www.​gimp.​org).

https://ruisilva.shinyapps.io/rtivity/
https://www.gimp.org
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Figure 4.   Software workflow and interoperability. (A) Rtivity can integrate multiple monitor files in the 
same analysis. From these files, users select conditions to analyse and input analysis parameters that become 
exportable metadata (XLSX), which can be reused to repeat/continue the analysis. Metadata contain: filename, 
start and finish dates, channels, labels (condition name), order (used to order the conditions in the graphs), 
and light-onset time (ZT0). Rtivity allows death analysis and exports (XLSX) the associated settings and results 
(survival status and time of death or last activity timepoint of all channels). Rtivity represents behavioural 
parameters in graphs and computes the statistics associated with each representation. Graphs can be customised 
for publication and exported in a user-selected format. (B) For quality control and reproducibility, Rtvity exports 
the settings associated with each analysis. For interoperability, Rtivity exports consolidated data, providing two 
common structures required by main statistical software (conditions in column vs. row). Figure was drawn by 
co-authors RS and JMAO using version 2.8.22 of the free image editor GIMP (https://​www.​gimp.​org).

https://www.gimp.org
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is defined by metadata (containing information identifying the files and selected conditions; Fig. 1C and Fig. 4), 
which users can save for further analysis or simply to keep track of the performed analysis.

Rtivity allows the export of all graphs, data and metadata, including user imputed settings (e.g. inactivity 
thresholds, bin sizes) to allow quality control and reproducibility (Fig. 4). Graphs are exported as TIFF, JPG 
or PNG files, while data and metadata are exported as XLSX files. The data represented in each graph can be 
exported in a structured manner to simplify the interoperability with commonly used statistical programs such 
as Prism (GraphPad) or SPSS (Statistical Package for the Social Sciences, IBM) (Fig. 4). The exported XLSX file 
includes the data from each individual channel in analysis, the settings imputed by the user, and the statistics 
associated with the graphical representation.

Rtivity’s ability to generate and (re)use metadata allows the simultaneous analyses of multiple experiments, 
and its structured data export capabilities greatly facilitates its direct use by third-party statistical software 
(interoperability) (Fig. 4).

Software availability and user guide.  Rtivity is available as an online application (without installation) 
and also as a desktop application, which has a simple installation process and is fully operational offline. In 
our Lab webpage: https://​www.​sites.​google.​com/​view/​miton​euro/​softw​are) we provide a concise video demon-
strating Rtivity data import, graphical representations, data export into xlsx files, and software interoperability 
with Prism (GraphPad; Fig. 4B). We also provide links to access the software, a user guide, and sample data for 
users to test in Rtivity. The online Rtivity version (https://​ruisi​lva.​shiny​apps.​io/​rtivi​ty/) is advantageous for quick 
exploratory analysis of small data sets (upload limit: 5 MB); and can be run from common web browsers without 
local installation. However, for improved speed and especially for larger datasets, we recommend the desktop 
application. This is because running Rtivity offline in the desktop application allows the upload of larger files 
and saves upload/download time, thus being significantly faster than the online version (shinyapps), which by 
third-party default disconnects after 15 min of idle time (no user inputs). The software scripts are available at 
GitHub (https://​github.​com/​Rilva/​Rtivi​ty); for users who wish to run the software on Mac computers, it requires 
installation of R and RStudio, and the necessary libraries. The Windows version does not require additional 
installations, since the Rtivity_setup.exe file already includes a portable R with all the required libraries.

Conclusion
In this work, we developed a software, called Rtivity, for the analysis of animal behaviour experiments. Rtivity 
uses data obtained from infrared activity monitors, or from other sources where activity is expressed in a counts 
per time format. Rtivity enables the analysis of different types of rhythms and behaviours displayed by a wide 
range of animal species, by allowing users to customise activity and sleep parameters, as well as light–dark cycles, 
in a user-friendly interface that does not require programming skills. Rtivity also expedites survival studies by 
automatically scoring and computing time of death. In Rtivity, users can integrate the analysis of multiple experi-
ments, explore data visually with high graphical versatility, and export structured data for efficient software inter-
operability with common statistical software. Thus, Rtivity is suitable for a broad range of investigators, working 
in multidisciplinary research fields such as ecology, neurobiology, toxicology, and pharmacology.

Ethical statement.  Only young zebrafish larvae (maximum 7 days) were used in experiments. N. lumbrici-
formis was not used in experiments (data in Fig. 3D are a minor subset from a previous study, to demonstrate 
the software capability to use data from other sources and detect circatidal rhythmicity). All handling of animals, 
including zebrafish progenitors, followed the European Directive 2010/63/EU, and the Portuguese Law (Decreto 
Lei 113/2013), with procedures approved by the CIIMAR animal welfare body (ORBEA, Directive 2010/63/EU).
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