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Rapid expansion and extinction of antibiotic
resistance mutations during treatment of acute
bacterial respiratory infections
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Acute bacterial infections are often treated empirically, with the choice of antibiotic therapy

updated during treatment. The effects of such rapid antibiotic switching on the evolution of

antibiotic resistance in individual patients are poorly understood. Here we find that low-

frequency antibiotic resistance mutations emerge, contract, and even go to extinction within

days of changes in therapy. We analyzed Pseudomonas aeruginosa populations in sputum

samples collected serially from 7 mechanically ventilated patients at the onset of respiratory

infection. Combining short- and long-read sequencing and resistance phenotyping of 420

isolates revealed that while new infections are near-clonal, reflecting a recent colonization

bottleneck, resistance mutations could emerge at low frequencies within days of therapy. We

then measured the in vivo frequencies of select resistance mutations in intact sputum

samples with resistance-targeted deep amplicon sequencing (RETRA-Seq), which revealed

that rare resistance mutations not detected by clinically used culture-based methods can

increase by nearly 40-fold over 5–12 days in response to antibiotic changes. Conversely,

mutations conferring resistance to antibiotics not administered diminish and even go to

extinction. Our results underscore how therapy choice shapes the dynamics of low-frequency

resistance mutations at short time scales, and the findings provide a possibility for driving

resistance mutations to extinction during early stages of infection by designing patient-

specific antibiotic cycling strategies informed by deep genomic surveillance.
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Antibiotic treatment selects for resistance mutations, posing
a major threat to effective treatment of bacterial
infections1. The selection of resistance mutations during

chronic infections as a result of antibiotic treatment over months
to years is well-known2–9. However, it is not well-understood how
short-term changes in antibiotic therapy affect the dynamics of
resistance mutations in acute infections, especially in a newly
colonizing infection that is thought to start from a clonal
population10.

Emerging resistance is of particular concern in the treatment of
acute respiratory tract infections that are common in intensive
care units (ICUs) worldwide, particularly in mechanically venti-
lated patients who are at high risk for ventilator-associated
pneumonia (VAP), septic shock, and infection-associated
mortality11–15. VAP and other lower respiratory tract infections
are of major concern in the SARS-CoV-2 pandemic given the
large number of hospitalized COVID-19 patients requiring
ventilation16–19. Pseudomonas aeruginosa is one of the most
common bacterial pathogens causing respiratory infections in
ventilated patients, and is associated with increased mortality and
low treatment efficacy due to the high rates of antibiotic resis-
tance that can occur within days of antibiotic treatment10,20–26.

Shallow profiling of pathogen populations using cultured iso-
lates have shown that the frequencies of antibiotic resistance
mutations can fluctuate over days to weeks during infection10,27,
but whether these changes reflect drift, sampling bias, or
treatment-induced selection at short timescales is unknown.
Current clinical methods for detecting resistance variants are
largely culture-based, where isolates with visually distinct mor-
phology (by size, shape, and color) are selected for resistance
phenotyping. However, these methods are susceptible to bias
from culture-based growth and are limited in their sampling
resolution, especially for detecting low-frequency mutations.
While molecular surveillance methods such as rapid PCR tests
and real-time genome sequencing can identify the presence of
known resistance genes28–31, e.g., efflux pumps, to identify
resistant strains, they are not suitable for monitoring within-
population pathogen diversity. Furthermore, it is not well-
understood whether resistance mutations can contract and be
reversed during the course of treatment in acute infections. A
molecular, culture-free diagnostic could determine the role of
low-frequency resistance variants at short time scales, and pos-
sibly inform which antibiotics should be avoided.

Here we combine whole-genome sequencing with resistance-
targeted deep amplicon sequencing (RETRA-Seq) to show that
resistance mutations, either pre-existing or de novo, expand and
contract rapidly within days of changes in therapy. By conducting
a deep sampling study of P. aeruginosa populations, and using
long-read sequencing to construct patient-specific reference
genomes in order to maximize the detection of within-population
mutations, we construct a high-resolution view of pathogen
evolution during acute respiratory infection. We then relate how
changes in empirically administered antibiotics impact resistance
in individual patients, and discover that resistance mutation
frequencies change within days, depending on the duration and
type of antibiotic therapy.

Results
Prospective study of P. aeruginosa populations during acute
respiratory infections. We conducted a prospective study of
mechanically ventilated patients with clinical evidence of acute
respiratory tract infection in the pediatric or cardiac intensive
care unit at Boston Children’s Hospital. Eighty-seven patients
were screened to identify 49 patients that met the inclusion cri-
teria, of which 31 patients consented to enrollment (Fig. 1a;

Methods). Endotracheal or tracheal aspirates (referred here
throughout as sputum samples) were collected at the onset of
symptoms (‘sputum day 1’), with serial samples (‘sputum follow-
up’) collected when possible. We first conducted a small pilot
study to assess the genomic diversity of P. aeruginosa in two
patients, patients A and E*, who were sampled only at day 1.
After confirming population growth and detectable diversity, we
focused on studying short-term infection dynamics in 7 patients
whose serial samples were collected 4–11 days after day 1 and
exhibited P. aeruginosa growth at both time points as the pre-
dominant pathogen (Fig. 1b; Supplementary Fig. 1; Methods;
Supplementary Table 1). In addition, as GI tract carriage is
thought to be a source of intrapatient infection32, stool was also
collected if available, of which only 2 of 4 available samples
exhibited P. aeruginosa growth. Among the 9 patients (7 serially
sampled and 2 pilot study patients), 4 had no history of P. aer-
uginosa infection (patients A-D) while 5 had a documented his-
tory of prior P. aeruginosa infection (denoted by an asterisk,
patients E*-I*). In total, we collected 18 sputum and 2 stool
samples across 9 patients from the onset of infection.

Maximizing the detection of genomic diversity by constructing
patient-specific reference genomes. To capture the full extent of
genomic diversity in pathogens, we used both long-read and
short-read sequencing to characterize the P. aeruginosa popula-
tions in each patient. P. aeruginosa has a flexible pangenome with
variations in gene content across strains by up to 50%33. A poor
choice in the reference genome would impact the alignment rate
of short reads and therefore, the fraction of usable reads for
identifying within-patient polymorphisms. We thus assembled a
complete patient-specific reference genome using long-read
sequencing of a single P. aeruginosa colony per patient10,34,35

(Fig. 1c), which supported that each patient was infected with a
unique strain based on gene content (Supplementary Fig. 2a;
Methods). To capture within-patient diversity, we collected 24
additional cultured isolates from each sputum or stool (n= 420
total), sequenced their whole genomes with short reads, and
aligned these reads to the patient-specific reference genomes
(average alignment rate > 99%, Supplementary Fig. 2b) in order to
identify within-patient single nucleotide polymorphisms (SNPs)
and short insertions and deletions (indels) (Supplementary
Fig. 2c; Supplementary Data 1). We then used the within-patient
variants (SNPs and indels) to construct patient-specific phylo-
genies of P. aeruginosa populations and to infer the most recent
common ancestor (MRCA) in each patient (Methods).

New infections start with clonal founders. The diversity of
pathogens at the onset of infection depended on the infection
history of patients. In the case of a presumed new infection in
patient A, the population was nearly clonal, which was consistent
with a recent colonization by a single founder36–38 (Fig. 2a, left).
In contrast, the day 1 population was polymorphic in patient E*,
who had a documented history of P. aeruginosa infection (Fig. 2a,
right). Testing whether initial pathogen diversity—defined as the
frequency of polymorphisms at day 1—differed by infection
history across patients indeed revealed that patients with prior
infection had higher initial diversity (Fig. 2b; P= 0.007, two-sided
t-test). Suspecting that populations from prior infections were
maintained in these patients, we compared the inferred coloni-
zation time of each patient based on genomic data (Methods) to
the time since the last clinically documented P. aeruginosa
infection, which were significantly associated (Fig. 2b; Spearman
r= 0.93, P= 0.003), providing evidence that pathogen reservoirs
were maintained between symptomatic episodes that resembles a
chronic infection6,7. Consistently, mutations at day 1 were found
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in genes and pathways important for pathogen colonization6,
such as biofilm formation (Fig. 2d; Supplementary Data 2) and
impairment in motility (Fig. 2e, P < 0.0001). Altogether, these
results show that new infections are colonized by a single clonal
founder, and that once colonized, pathogen reservoirs can be
maintained in patients between symptomatic episodes that
resembles subchronic infection.

Mutations that alter clinical phenotypes are accrued over days.
Pathogen populations diversified within all patients by the
emergence of single point mutations. In most patients, mutations
accumulated significantly over days as quantified by the increase
in distance to the most recent common ancestor (dMRCA; Fig. 3,
horizontal bar plots insets, permutation test of <dMRCA>; Meth-
ods), although the frequencies of individual mutations could both
increase or decrease (Supplementary Fig. 3a). Notably, stool and
sputum populations within each patient, where observed, were
indistinguishable (Fig. 3c, d), indicating either gut carriage as the
source of respiratory colonization10,32, or more simply, that stool
samples reflect the passage of ingested sputum through the gas-
trointestinal tract.

To assess whether mutations could reflect diversifying selec-
tion, we characterized clinically relevant phenotypes of a subset of
non-synonymous mutations that increased in frequency (Supple-
mentary Fig. 3a) or those that occurred recurrently in genes,
which we interpret as under selection2,3,5,8 (Supplementary
Fig. 3b). To estimate a genotype-phenotype relation, we focused
on singleton mutations and compared isolates with and without
only that mutation that were otherwise genetically identical, i.e.,
comparing mutants to estimated isogenic controls (based on
>99% alignment rate of isolate genomes, Supplementary Fig. 2b).
Point mutations impacted a wide range of clinically important
phenotypes, including those in wbpL and wzy that altered

lipopolysaccharide (LPS) and O-antigen presentation thereby
affecting sensitivity to human serum (Supplementary Fig. 3c–f;
Methods), and those in biofilm-related genes encoding BifA and
KinB that impacted swarming, biofilm formation, and alginate
production (Supplementary Fig. 3g–k). Altogether, our findings
show that the evolution of P. aeruginosa over days leads to the
diversification of clinically important phenotypes.

Measuring the in vivo frequencies of resistance mutations. We
identified mutations associated with resistance by mapping the
antibiotic resistance profiles of isolates to their genomes (Fig. 3,
red symbols; Supplementary Fig. 4). The frequencies of these
mutations changed across days, based on cultured isolates, with
some resistant mutants observed only in later time points. For
example, nalD (a repressor of MexAB-OprM39), anmK (involved
in peptidoglycan recycling40), and sltB1 (a lytic
transglycosylase41) were found in a sublineage of patient G* that
appeared to emerge after day 1 (Fig. 3e). Another set of linked
mutations—oprD, ampD, and sltB1 in patient D—conferring
resistance to meropenem and ceftazidime (Fig. 3c) were found at
low frequencies in only the second time point.

To accurately capture the dynamics of resistance mutations in
patients, without culture-based growth bias, we designed a
scheme to measure the mutation frequencies directly from intact
sputum samples by developing “resistance-targeted deep ampli-
con sequencing” (RETRA-Seq), in which we amplify the mutated
loci from total DNA extracted from sputum for deep amplicon
sequencing (Fig. 4a). In order to control for amplification bias
and reliably measure the number of unique genomes across
thousands of single cells that correspond to each allele, we
incorporate unique molecular identifiers (UMIs) in the primers,
and sequence at a saturating depth such that allele frequencies are

Fig. 1 Prospective study of P. aeruginosa populations from mechanically ventilated patients during acute respiratory tract infection. a Prospective study
design describing the enrollment strategy of mechanically ventilated patients in the ICU. Of 87 patients screened, 49 eligible patients were identified, from
which 31 consented to enrollment. We focused on 2 pilot patients sampled at only day 1, and 7 patients sampled serially across 4–11 days that exhibited
predominant P. aeruginosa growth in both samples. b Sampling sputum and stool across patients (y-axis) over time (x-axis) from the onset of symptoms.
Day 1 sputum sample (teal box) were collected in all patients, and a follow-up sputum (dark blue box) were collected in 7 patients between day 5 and day
12, i.e. 4–11 days after day 1. Stool samples (brown box) with confirmed P. aeruginosa growth were collected in 2 patients. Asterisk: patients with prior P.
aeruginosa infection. Treatment with anti-pseudomonal antibiotics are indicated by horizontal lines: piperacillin/tazobactam (weighted black), cefepime
(thin black), ceftazidime (dotted black), ciprofloxacin (dotted blue), meropenem (weighted pink). c Samples (sputum or stool) were cultured on cetrimide
agar in serial dilutions. A single isolate from day 1 sputum of each patient was used to construct a patient-specific reference genome using long-read
sequencing. From each sample, 24 isolates were randomly selected for short-read whole-genome sequencing and phenotyping.
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resolved to the sequencing error rate (Supplementary Fig. 5;
Supplementary Data 3; Methods).

RETRA-Seq of select resistance mutations (Fig. 3c-e, red symbols
on branches of trees) revealed three types of in vivo muta-
tion dynamics: (i) ‘pre-existing’ mutations that expanded from low
frequencies at day 1 that were initially undetected by culture-based
assay, (ii) presumed ‘de novo’ mutations within sequencing error,
and (iii) mutations that went to ‘extinction’ (Fig. 4b–d). Some of
these mutations impacted key residues at the interface of multimers,
suggesting a loss-of-function (Fig. 4e). The observed magnitudes of
expansions that occurred in vivo were striking: for instance, pre-
existing mutations in nalD, anmK, and sltB1 started at 7–8% allele
frequency and increased to 44–49%, and a presumed de novo
mutation in ampD increased to 19%, all over 11 days. Conversely,
two independentmexRmutations conferring levofloxacin resistance
went to extinction in <5 days. Altogether, our findings show that
low-frequency resistance mutations can expand or contract over
large magnitudes within days, suggesting that RETRA-Seq could be
utilized during acute infection to accurately survey the in vivo
dynamics of resistance mutations.

Relating dynamics of low-frequency resistance mutations with
antibiotic therapy. The expansion and contraction of low-
frequency resistance mutations coincided with changes in anti-
biotic therapy. In several patients, population-wide resistance to
β-lactams—cefepime, ceftazidime, piperacillin-tazobactam—
changed significantly over time (Fig. 4f, Supplementary Fig. 4;
two-sided Mann–Whitney U-test). Furthermore, increased cefe-
pime resistance over time was associated with longer duration of
β-lactam therapy, which was calculated as the fraction of
days between serial samples that patients were treated with at
least one β-lactam (Fig. 4g, Pearson’s r= 0.936, P= 0.002), that
were driven in part by expansions of low-frequency mutations
(patients D, F*, G*; Fig. 4b-d). Of note, oprD mutants may have
emerged after meropenem therapy10, which was administered to
patient D one day prior to mutant detection (Fig. 1b).

Conversely, changes in therapy also coincided with the
contraction of resistance mutations. Patient I* was treated with
ceftazidime for several days before day 1 but not during the study
period (Supplementary Fig. 1), which coincided with a decrease in
cefepime resistance over time (Fig. 4g; Supplementary Fig. 4d, f).
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In the case of the aforementioned extinction of levofloxacin-
resistant mexR mutations in patient F* (Fig. 4d), the patient had
received ciprofloxacin 6 months earlier but was not treated with
fluoroquinolones during the study period. Altogether, our
findings show that population resistance can shift within days
based on prior and ongoing choice of antibiotic therapy, in part
by the expansion or contraction of low-frequency resistance
mutations.

Discussion
Our study shows that the frequencies of resistance mutations
change rapidly with antibiotic therapy, highlighting a potential
for deep sequencing-guided, short-term cycling of antibiotics
within patients as a possible future therapeutic strategy. As
resistance mutations can persist in the population for months
following treatment42, monitoring low-frequency mutations by
deep population profiling can inform which antibiotics should be
avoided, or conversely, should be actively used in the case of
compounds that select against a specific type of resistance43,44.
While antibiotic cycling has been proposed as a strategy to limit
the selective advantage of resistance mutations based on mathe-
matical modeling and experimental evolution studies45–49, to
date, there are limited data on its clinical efficacy50. Our study
suggests a possible approach in acute infections, by cycling drugs

over days within individual patients over short timescales, which
requires further study.

To inform patient-specific antibiotic cycling strategies, mole-
cular diagnostics that deeply and accurately monitor pathogen
diversity throughout infection, particularly at the start of infec-
tion, are needed. Current culture-based clinical microbiology
practice risks missing low-frequency resistant variants51. Fur-
thermore, culture-based assays introduce growth bias that differs
from the native context of the human lung, where spatial selec-
tion is known to occur on pathogens across different niches8.
Specific alleles encoding resistance could be detected with next-
generation molecular assays, e.g., CRISPR-based diagnostics52. To
monitor known hotspots of mutated genes, we propose
resistance-targeted deep amplicon sequencing (RETRA-Seq),
using primers that are designed to be suitable across multiple
strains, as a highly sensitive method to monitor numerous loci
across pathogen genomes.

Methods
Patient enrollment. The clinical research conducted in this study complies with all
relevant ethical regulations, and the study protocol was approved by the Institu-
tional Review Board of Boston Children’s Hospital. Informed consent was obtained
for sample use/collection and medical record review. For paediatric patients,
consent was obtained from legal guardians of each patient. Mechanically ventilated
patients in the pediatric ICU (via endotracheal tube (ETT) or tracheostomy tube
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of minimum inhibitory concentration (log2(MIC); µg/mL) of individual isolates (rows) aligned to the isolate’s position on the tree, shown for levofloxacin
(LEV), meropenem (MER), cefepime (CFP), and ceftazidime (CFZ). Right: distance to the MRCA (<dMRCA>, x-axis) of isolates (gray dots) at each time
point (y-axis, days of infection). Mean (horizontal bars) and standard error (error bars) calculated over n= 24 biologically independent isolates per sputum
or stool sample (exception: n= 12 isolates in Day 5 sputum of patient B (a)). Significance, one-tailed permutation test: P= 0.03 (a), P= 0.001 (b),
P= 0.009 (d), P= 0.001 (f), P < 10−4 (g). NS not significant. g Far right, bottom: schematic showing the relative copy number (y-axis) of a ~34 kb
duplicated chromosomal region (x-axis) that encodes, among others, genes of the pyoverdine pathway (bottom).
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(trach)) were enrolled in the study at the time of suspected infection, defined as
when respiratory samples (sputum obtained via endotracheal aspirate or trach
aspirate) were ordered by the clinical team for evaluation of suspected infection,
with subsequent confirmation of P. aeruginosa growth in the clinical microbiology
lab. Patients typically experienced fever or hypothermia, increase in ventilator
settings or oxygen requirement, and/or increase in quantity and/or change in color
or thickness of respiratory secretions (Supplementary Table 1). Patients were

classified as having pneumonia if they met these criteria and there was a new and
persistent infiltrate on chest radiograph (CXR). Patients were classified as tracheitis
if CXR showed no evidence of pneumonia but sputum obtained via ETT aspirate or
tracheal aspirate showed few, moderate, or abundant polymorphonuclear leuko-
cytes (PMN) on Gram stain. None of the patients met criteria for a ventilator-
associated event (VAE). None of the patients had bacteremia, and all recovered
from their infection.

Fig. 4 Treatment-associated dynamics of low-frequency resistance mutations. a Workflow of resistance-targeted deep amplicon sequencing (RETRA-
Seq) as a diagnostic for monitoring resistance mutation frequencies. Total DNA is extracted from clinical sputum and prepared as sequencing libraries via
PCR using primers that contain sequencing adapters (green, red) and unique molecular identifiers (UMIs; blue) composed of 8 degenerate nucleotides (N).
Amplicon libraries are sequenced on a next-generation sequencing platform and aligned to a reference genome to determine polymorphic frequencies.
Images created with BioRender.com. b–d Mutation frequencies (y-axis) across time (x-axis) of select resistance loci within each patient, measured by
RETRA-Seq (solid pink) and by the fraction of culture-based isolates (dashed gray). Axis labels (y-axis) indicate the gene name and the mutation type (pink
superscript): non-synonymous substitution, insertion (ins), or deletion (Δ). Error bars: Wilson Score interval of UMI counts (amplicon sequencing) or
discrete counts (isolate sampling; Methods). Three types of changes in resistance frequencies: expansion of pre-existing mutations that were undetected
by culture-based assay (b), expansion of presumed de novo mutations (c), and extinction of mutations (d). e Select non-synonymous mapped on protein
structures of homologs of PA0810 (Protein Data Bank ID: 3UMC), AnmK (3QBW), NalD (5DAJ), and MexR (3ECH). Shades of gray indicate distinct
monomers and pink/green spheres indicate mutated residues. f Distribution of cefepime MIC (µg/mL; y-axis) in individual isolates (dots) from day 1 (teal)
and follow-up (dark blue) sputum samples, with mean value (horizontal read line). Ranges of resistance/intermediate susceptibility (R; gray) and sensitive
(S; white) shown on the right and by background color, according to breakpoints defined by the Clinical Laboratory Standards Institute (CLSI). Significance
(two-sided Mann–Whitney test): P= 7.5 × 10−4 (patient D), P= 2.2 × 10−5 (patient F), P= 0.004 (patient G), P < 10−5 (patient I). NS – not significant.
g Relationship between cefepime resistance and clinical history of patient therapy. Fold change in mean cefepime MIC (y-axis) vs. the duration of β-lactam
antibiotics administered to each patient during the study period (x-axis), shown for serially sampled patients (dots). Pearson’s correlation (two-sided),
r= 0.936, P= 0.002.
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Sample collection. Sputum and stool samples were processed within 24–48 h of
collection from the patient, and solubilized with 10 mM dithiothreitol, frozen in
15% glycerol, and stored at −80 °C until further processing.

Whole-genome sequencing of P. aeruginosa isolates. solates were cultured from
sputum and stool samples as previously described8. Serial dilutions (100–10−4) of
each sample in PBS were plated onto cetrimide agar (BD) to identify a dilution
plate with growth of 50–300 colonies in total to use for colony picking in order to
maximize diversity while minimizing competition between isolates. Colonies (24)
were randomly picked by taping a paper pre-marked with 24 random “x” marks to
the back of each Petri dish using a clean toothpick, which were placed into 1 mL of
LB broth in 96 deep-well plates, then grown overnight at 37 °C with shaking. Half
of the saturated cultures were used to make glycerol stocks and the rest were used
for DNA extraction (Invitrogen PureLink Pro 96 Genomic DNA Purification Kit).
Sequencing libraries of the genomes were prepared as previously described53 and
sequenced using paired-end 100 bp reads on the Illumina HiSeq 2000 platform,
targeting an average sequencing coverage of 40X per isolate.

Constructing patient-specific reference genomes with long reads. A single
colony was isolated from a cetrimide agar plate streaked with each patient’s day
1 sputum sample, grown overnight at 37 °C, and cultured overnight in LB broth
with shaking, from which genomes were extracted (Invitrogen PureLink Pro 96
Genomic DNA Purification Kit). Genomes were sequenced on both the PacBio
platform (long reads) and on the Illumina HiSeq 2500 platform (short reads) to
enable error-correction of assembled contigs. Illumina reads were filtered (min
Phred score 15) then trimmed for adapter sequences and assembled de novo using
Newbler (v2.7), with minimum contig size 100 bp and minimum coverage at 50×.
PacBio reads were assembled de novo using default HGAP 2.0/HGAP 3.0 para-
meters in the SMRT Analysis Portal (v. 2.3.0). Overlapping contig ends were
removed to circularize individual PacBio contigs, and Illumina data was mapped to
circularized contigs to detect/correct errors. Comparative genomic analyses were
performed using Geneious54.

Constructing a pangenome of coding sequences across reference genomes. A
pangenome of all coding sequences found across the patient reference genomes,
and two published strains PAO1 and PA14, was constructed with Roary55 3.8.0 (-i
80; minimum percentage identity for blastp). Serotypes were predicted using the
web server of PAst56.

Identifying within-patient mutations and short indels. Short reads (Illumina
platform) of individual isolate genomes were adapter trimmed (cutadapt v1.8.3),
filtered (sickle, quality cutoff 25, length cutoff 50), and aligned to the corresponding
patient-specific reference genome (bowtie2 v2.2.4 paired-end, maximum fragment
length 2000 bp, no-mixed, dovetail, very-sensitive, n-ceil 0, 0.01). Within-patient
single nucleotide polymorphisms (SNPs) were determined by first identifying
variant positions of individual isolates with respect to patient-specific references
(SAMtools v1.357, FQ ≤−30), combining the list of variant positions across all
isolates of a patient, which were then filtered to high-quality SNP positions. High-
quality SNPs were defined as nucleotides at which any two isolates disagreed in the
called nucleotide, with both calls meeting a patient-specific FQ threshold that was
set based on the distribution of all FQ scores within each patient2. Short insertions
and deletions (indels) were identified with platypus58 (v0.8.1, getVariants-
FromBAMs= 1, genSNPs= 0, genIndels= 1, minMapQual= 30), using a QD
(ratio of variant quality to read depth) threshold set for each patient based on the
distribution of all QD values. All short indels were confirmed by visual inspection
of the aligned reads. A genotype matrix (isolates by positions) based on SNPs and
indels were constructed for each patient’s pathogen population used for down-
stream analysis.

Within-patient phylogenetic trees. A maximum parsimony phylogenetic tree
was constructed for each patient, using the genotype matrix of within-patient SNPs
and indels, with dnapars v3.696 (PHYLIP package)59. Indels were treated as a
mutational event, with “I” or “D” designating an insertion or deletion. To root the
tree, an “Outgroup” for each patient was created by using the most likely ancestral
nucleotide state at each polymorphic locus; this was identified by querying a 101 bp
sequence (50 bp upstream and downstream from each mutated locus) against all
Pseudomonas aeruginosa genomes in the NCBI database with BLASTN. For all
polymorphic loci, only one state was found in the database, which was designated
as the ancestral state based on its prior observation, while the other state was
interpreted as a de novo mutation. All phylogenetic trees were plotted with Toytree
v2.0.160.

Estimating patient colonization time. Bayesian phylogenetic analysis (BEAST
1.10.461) was conducted on the genotype matrix of each patient to estimate the
time to the ancestral node in days. Input files were generated with BEAUTi v.10.4,
and BEAST 1.10.4 was run under a tree prior of coalescent expansion growth
model and otherwise default parameters. Analyses were run using CIPRES62.

Pathway analysis of day 1 mutations. Mutations within day 1 pathogen popu-
lations across all patients that were found in annotated coding genes (50 of 81
mutations total) were used to identify associated KEGG pathways on The Pseu-
domonas Genome Database63.

Twitching motility assay. Assay was conducted as previously reported64. Frozen
isolates were streaked onto LB-agar plates and grown at 37 °C o/n. Individual
colonies were selected with a toothpick and stabbed to the bottom of the twitching
assay plate (1% tryptone (Sigma–Aldrich), 0.5% yeast extract (Sigma–Aldrich),
0.5% NaCl (Sigma)); plates were incubated at 37 °C for 20 h. Agar was carefully
removed, then plates were stained with 0.1% of Crystal Violet (Sigma) in DI water
for 15 min and rinsed with DI water once, then dried. The diameter of the circle
was measured in cm.

Permutation test for shift in < dMRCA > over time. The distance to the most
recent common ancestor (dMRCA), inferred by the maximum parsimony tree of
each patient, was calculated for each isolate within a patient population. Mean
<dMRCA> of each sputum sample, <dMRCA> t1 for day 1 and <dMRCA> t2 for follow-
up sputum, was calculated within each patient. To test whether the observed dif-
ference in means, <dMRCA> t2− <dMRCA> t1 was significant, we constructed a null
model by permuting the sputum sample assignment across all sputa isolates and
recalculating the difference in means across 1000 permutations, from which a one-
tailed p-value was calculated.

Pro-Q gel for lipopolysaccharide. Colonies from an overnight grown Luria Agar
plate were resuspended in Luria Broth, normalized to an OD600 of 2.0, then pel-
leted. LPS was prepared as previously documented65, and 15 µL of each LPS sample
was loaded into each well, then separated by SDS-PAGE in a 10% Mini-PROTEAN
TGX gel (Bio-Rad) along with CandyCane glycoprotein ladder (Thermo Fisher).
LPS was stained using Pro-Q Emerald 300 LPS Gel Stain (Thermo Fisher)
according to the manufacturer’s instructions with slight modifications (the initial
fixation step was repeated twice and each washing step was repeated three times).

O6 serotype Western blot. Colonies from an overnight grown Luria Agar plate
were resuspended in Luria Broth, normalized to an OD600 of 2.0, then pelleted. LPS
was prepared as previously documented65, and 15 µL of each LPS sample was
loaded into each well, then separated by SDS-PAGE in a 10% Mini-PROTEAN
TGX gel (Bio-Rad) along with Precision Plus All Blue Protein ladder (Bio-Rad).
The LPS was then transferred to a PVDF membrane and blocked for 1 h, at room
temperature, in PBST-5% milk. O6 primary antibody was incubated in a 1:2500
dilution (Group G, Accurate Chemical & Scientific) in PBST-3% BSA overnight at
4 °C. Secondary α-rabbit-HRP IgG (Sigma) was incubated in a 1:10,000 dilution in
PBST-3% BSA for 1 h at room temperature. Blot was visualized using Pierce ECL
Western Blotting Substrate (Thermo) according to the manufacturer’s instructions.

Serum killing assay. Isolates were streaked onto TSA plates and incubated at 37 °C
o/n, then resuspended in 10 mL PBS+ (PBS, 1% proteose peptone, 1 mM CaCl2,
1 mM MgCl2) to an OD600 of 0.25, and diluted 1:23 fold to a final concentration of
5 × 105 CFU/100 µL. Hundred microliters of the diluted culture was mixed with
50% serum (Human Serum, male AB plasma, Sigma–Aldrich H4522; diluted 1:2
with PBS+) in a 96-well round bottom plate in triplicate. Serum assay plates were
incubated at 37 °C with shaking at 100 r.p.m. for 1 h, then plated onto TSA,
incubated at 37 °C o/n, and quantified for colony forming units (CFU). The
PAO1 strain was used as a negative control (not serum sensitive) and PAO1 galU
mutant66 was used as a positive control (serum sensitive).

Swarming motility assay. Swarming assays were performed as previously
reported67. Swarming medium contained 0.52% agar with M8 medium supple-
mented with casamino acids (0.5%), glucose (0.2%) and MgSO4 (1 mM). Swarming
plates were inoculated with 2.5 µL of an overnight culture grown in LB at 37 °C.
Plates were incubated at 37 °C for 16 h. The “Total Swarm Area” is a measure of the
number of pixels calculated using ImageJ by first selecting the swarm area, con-
verting images to grayscale (Image→ Type → 8-bit), thresholding the image
(converting to a black and white image where swarm area is black), and analyzing
the particles in the swarm (the number of pixels).

Biofilm and Psl assay. Biofilm assays were performed as previously described68.
Overnight cultures (1.5 µL) were inoculated in 100 µL swarming medium and
incubated at 37 °C for 24 h. Plates were then stained with 0.1% crystal violet.
Absorbance was read at OD550. Psl ELISA was conducted following published
methods69. Briefly, 96-well flat-bottom ELISA plates were coated with bacteria
overnight at 4 °C. Diluted anti-Psl monoclonal antibody69 (Cam-003; gift from
Antonio DiGiandomenico) was added to PBS+ 1% BSA (PBS-B)–blocked plates
for 1 h, washed with PBS supplemented with 0.1% Tween 20 (PBST), and treated
with alkaline phosphatase-conjugated anti–human IgG secondary antibodies
(Sigma #A1543) at 1:1000 for 1 h, followed by development with PNP substrate
(Sigma).
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AlgD promoter activity assay. Strains carrying the lacZ fusion were streaked on
PIA or PIA supplemented with 0.1 mM uracil at 37 °C for 24 h. The colonies were
then scraped into 4 mL 1× PBS and then diluted to OD600 0.3–0.7. Triplicates of
100 µL of the sample were added to 900 µL of Z-Buffer and 20 µL toluene in a
1.5 mL elution tube. After mixing by inverting 4–5 times tubes were placed with
tops open in a shaking incubator at 37 °C for 40 min. After, 200 µL of ortho-
Nitrophenyl-β-galactoside (ONPG) (4 mg/mL) (Thermo Scientific, Waltham, MA)
was added and the time of color change was recorded the reaction was stopped by
adding 500 µL of 1M Na2CO3 (Fisher Scientific, Waltham, MA) after 20 min.
OD420 and OD550 were measured using a SpectraMax i3x (Molecular Devices,
Downingtown, PA) plate reader. Miller units were calculated using the following
formula: 1000 × [OD420 − (1.75 ×OD550)]/[color change time (min.) × Sample
volume × OD600]. In-frame deletion of kinB in strain PA14 was conducted using
pEX100T-NotI-ΔkinB through a two-step allelic exchange procedure70. Single-
crossover merodiploid strains were selected based on sensitivity to sucrose (sacB)
and resistance to carbenicillin. Selected merodiploid strains were then grown in LB
broth at 37 °C. Double-crossover strains were selected based on sensitivity to
carbenicillin and confirmed through PCR amplification of the flanking region of
target gene.

Antibiotic susceptibility measurements. Minimum inhibitory concentrations
(MICs) or zones of inhibition were measured for each isolate in the Infectious
Diseases Diagnostic Laboratory at Boston Children’s Hospital, using the Vitek-2
instrument (liquid culture assay) or disk diffusion assay, respectively.

Preparation of amplicon sequencing library. Total genomic DNA was extracted
from each sputum following previously published methods71. Briefly, sputum was
mixed with 1 mM dithiothreitol (DTT), incubated at 30 °C for 30 min with
0.18 mg/mL lysostaphin and 3.6 mg/mL lysozyme. DNA was purified using the
High Pure PCR Template Preparation Kit (Roche) according to the manufacturer’s
instructions and eluted in 30 µL of sterile water. A two-step PCR reaction was used
to amplify select loci and add adapter sequences as previously documented72. First
PCR. PCR mix was the following: 2 µL DNA template, 10 µL Q5 Hot-Start High-
Fidelity 2X Master Mix, 1 µL (NEB #M0494S), 1 µL locus-specific forward primer
with UMIs, 1 µL locus-specific reverse primer with UMIs (primers in Supple-
mentary Data 3), 6 µL PCR grade sterile water. Cycling program: hot-start 30 s at
98 °C, 20× cycles of [10 s at 98 °C, 15 s at 67 °C, 15 s at 72 °C], then final extension
2 min at 72 °C. Dilute PCR1 products 1:10 in PCR grade water. Second PCR. PCR
mix was the following: 2 µL 1:10 diluted PCR1 product, 10 µL Q5 Hot-Start High-
Fidelity 2X Master Mix, 1 µL universal forward primer, 1 µL sample-specific bar-
coded reverse primer, 6 µL PCR grade sterile water. Cycling program: hot-start 30 s
at 98 °C, 20× cycles of [10 s at 98 °C, 30 s at 72 °C], then final extension 2 min at
72 °C. Pool and clean up PCR reaction using a column (Zymo Research #D4013).
Amplicon libraries were assessed for correct fragment sizes (350–400 bp) on a 2%
agarose gel and quantified using Qubit. Libraries were sequenced on a MiSeq v2
300 cycle kit (Illumina #MS-102-2002) with Read 1: 150 cycles, Index 1: 8 cycles,
Read 2: 150 cycles, sequenced at a minimum saturating depth defined as 1/Illumina
sequencing error rate, estimated as 0.5%73.

Analysis of amplicon sequencing data. Paired-end reads were trimmed for
adapter sequences and filtered with cutadapt (pair-filter q30), then merged across
overlapping regions of Read 1 and Read 2 with vsearch v2.15.2, and aligned to the
coding sequence of mutated genes (bowtie2–local). From each merged and aligned
read, we extracted both the sequence at the profiled locus (wild-type vs. mutant)
and the unique UMI sequence (from both forward and reverse), which were used
to count the number of unique UMI corresponding to each allele type. Uncertainty
of each allele frequency was calculated using the Wilson Score interval based on
UMI counts using the statsmodels package (proportion_confint).

Mapping mutations onto protein structure. Protein sequences of mutated genes
were queried in the Protein Data Bank (PDB) to find the closes homolog structures:
NalD (PDB ID: 5DAJ, 94% identity), AnmK (3QBW, 99% identity), MexR (1LNW,
99% identity), AmpR (5MMH, 100% identity), PA0810 (3UMC, 93% identity).

Statistical analyses. Statistical analyses using Mann–Whitney U-test (ranksum)
and Kolmogorov–Smirov test (kstest2) were conducted using built-in packages in
MATLAB (R2017b). ANOVA tests for phenotype assays were conducted in Prism
(GraphPad). Permutation test for <dMRCA> were conducted in python, with code
available at GitHub https://github.com/hattiechung/Paeruginosa_acute_infection.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The patient-specific reference genomes constructed from PacBio sequencing in this study
have been deposited to Sequence Read Archive (SRA) under accession code
PRJNA638217. The raw FASTQ files of Illumina sequencing of the 420 isolates generated

in this study have been deposited to SRA under accession code PRJNA622605. The list of
all within-patient pathogen variants is available in Supplementary Data 1. The processed
data of genomic variants used to construct phylogenetic trees and the data on antibiotic
resistance susceptibility profiles of all 420 isolates are available on GitHub [https://
github.com/hattiechung/Paeruginosa_acute_infection]. Protein structure data are
available at the Protein Data Bank under the following IDs: 5DAJ, 3QBW, 1LNW,
5MMH, 3UMC. Source data are provided with this paper.

Materials availability
All 420 clinical isolates of P. aeruginosa used for whole-genome sequencing on the
Illumina platform and for antibiotic susceptibility measurements are available upon
request. Source data are provided with this paper.

Code availability
Code used for analyses are available on GitHub [https://github.com/hattiechung/
Paeruginosa_acute_infection].
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