Skip to main content
. 2022 Feb 24;12:838701. doi: 10.3389/fonc.2022.838701

Table 3.

The performance of imaging, radiomics of single and multiple MR sequences, and final fusion models for predicting MVI in ICC patients.

Models Classifier and cohort AUC Accuracy Sensitivity Specificity Precision
Imaging model LR (TD/VD) 0.726/0.522 0.669/0.545 0.605/0.400 0.696/0.609 0.451/0.308
RF (TD/VD) 0.742/0.578 0.731/0.697 0.211/0.100 0.946/0.957 0.615/0.500
SVM (TD/VD) 0.726/0.483 0.708/0.697 0.000/0.000 1.000/1.000 0.000/0.000
DWI model LR (TD/VD) 1.000/0.530 1.000/0.485 1.000/0.600 1.000/0.435 1.000/0.316
RF (TD/VD) 0.943/0.530 0.800/0.697 0.316/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.774 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000
T1 model LR (TD/VD) 1.000/0.643 1.000/0.636 1.000/0.700 1.000/0.609 1.000/0.438
RF (TD/VD) 0.949/0.687 0.823/0.697 0.395/0.100 1.000/0.957 1.000/0.500
SVM (TD/VD) 1.000/0.513 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000
T1A model LR (TD/VD) 1.000/0.443 1.000/0.636 1.000/0.500 1.000/0.304 1.000/0.238
RF (TD/VD) 0.967/0.700 1.000/0.364 0.158/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.500 0.754/0.697 1.000/0.000 1.000/1.000 1.000/0.000
T1D model LR (TD/VD) 1.000/0.665 1.000/0.606 1.000/0.700 1.000/0.565 1.000/0.412
RF (TD/VD) 0.978/0.765 0.738/0.697 0.105/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.574 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000
T1V model LR (TD/VD) 1.000/0.430 1.000/0.424 1.000/0.600 1.000/0.348 1.000/0.286
RF (TD/VD) 0.979/0.661 0.738/0.697 0.105/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.426 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000
T2 model LR (TD/VD) 1.000/0.422 1.000/0.424 1.000/0.100 1.000/0.565 1.000/0.091
RF (TD/VD) 0.969/0.383 0.746/0.697 0.132/0.000 1.000/1.000 1.000/0.000
SVM (TD/VD) 1.000/0.448 1.000/0.697 1.000/0.000 1.000/1.000 1.000/0.000
DWI+T1 model LR (TD/VD) 0.941/0.817 0.892/0.758 0.895/0.800 0.891/0.739 0.773/0.571
RF (TD/VD) 0.963/0.854 0.908/0.848 0.895/0.900 0.913/0.826 0.810/0.692
SVM (TD/VD) 0.941/0.826 0.892/0.788 0.816/0.800 0.924/0.783 0.816/0.615
DWI+T1D model LR (TD/VD) 0.901/0.852 0.846/0.788 0.684/0.700 0.913/0.826 0.765/0.636
RF (TD/VD) 0.897/0.852 0.792/0.636 0.816/0.800 0.783/0.565 0.608/0.444
SVM (TD/VD) 0.890/0.835 0.815/0.788 0.474/0.600 0.957/0.870 0.818/0.667
T1+T1D model LR (TD/VD) 0.883/0.874 0.846/0.818 0.711/0.600 0.902/0.913 0.705/0.750
RF (TD/VD) 0.905/0.878 0.869/0.818 0.816/0.800 0.891/0.826 0.756/0.667
SVM (TD/VD) 0.884/0.835 0.777/0.727 0.237/0.100 1.000/1.000 1.000/1.000
Radiomics model LR (TD/VD) 0.950/0.883 0.862/0.788 0.921/0.900 0.837/0.739 0.700/0.600
RF (TD/VD) 0.967/0.891 0.908/0.879 0.895/0.900 0.913/0.870 0.801/0.750
SVM (TD/VD) 0.947/0.865 0.869/0.818 0.579/0.700 0.989/0.870 0.957/0.700
Imaging+radiomics model LR (TD/VD) 0.953/0.861 0.892/0.818 0.974/0.900 0.859/0.783 0.740/0.643
RF (TD/VD) 0.988/0.878 0.946/0.909 0.895/0.800 0.967/0.957 0.919/0.889
SVM (TD/VD) 0.898/0.878 0.869/0.909 0.763/0.900 0.913/0.913 0.784/0.818
Radiomics model LR (test) 0.812 (0.617–1.000) 0.792 0.750 0.833 0.818
RF (test) 0.757 (0.532–0.982) 0.792 0.667 0.917 0.889
SVM (test) 0.812 (0.617–1.000) 0.708 0.500 0.917 0.857
Imaging+radiomics model LR (test) 0.819 (0.620–1.000) 0.875 0.833 0.917 0.909
RF (test) 0.771 (0.556–0.986) 0.750 0.583 0.917 0.875
SVM (test) 0.771 (0.555–0.987) 0.792 0.667 0.917 0.889

LR, logistic regression; RF, random forest; SVM, support vector machine; TD, training dataset; VD, validation dataset; AUC, area under the curve.