Algorithm 1.
The training process of MDGCN-SRCNN.
| Input : A labeled training data set, the maximum number of training epochs T; the initialize adjacency matrix A,regularization coefficientα. |
| Output: The learned adjacency matrix, the model parameterΘ for MDGCN-SRCNN and the predicted labelŷ. |
| Step 1 : Initialize the model parametersΘ in MDGCN-SRCNN model. Set iteration unit iter = 1; |
| Step 2 : whileiter < T do |
| Step 3 : fork = 1, ..., l do |
| Step 4 : Calculate the k-th graph convolutional layer H(k)via Eq. (1) and calculate the k-th sum pooling layerPool(H(k)); |
| Step 5 : fork = 1, ..., l do |
| Step 6 : Calculate the k-th SMR-based convolution layerCkvia Eq. (9); |
| Step 7 : Concatenate the different layers of features Fvia Eq. (10); |
| Step 8 : Calculate the prediction labelŷ via Eq. (11); |
| Step 9 : Update the adjacency matrix Aand the model parametersΘ via optimizer according to the cross-entropy loss. |
| Step 10: iter =iter+1; |
| Step 11: end while |