
Article

Applied Psychological Measurement
2022, Vol. 46(2) 136–155
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/01466216211066603
journals.sagepub.com/home/apm

Predictive Fit Metrics for Item
Response Models

Benjamin A. Stenhaug1, and Benjamin W. Domingue1

Abstract
The fit of an item response model is typically conceptualized as whether a given model could have
generated the data. In this study, for an alternative view of fit, “predictive fit,” based on the model’s
ability to predict new data is advocated. The authors define two prediction tasks: “missing re-
sponses prediction”—where the goal is to predict an in-sample person’s response to an in-sample
item—and “missing persons prediction”—where the goal is to predict an out-of-sample person’s
string of responses. Based on these prediction tasks, two predictive fit metrics are derived for
item response models that assess how well an estimated item response model fits the data-
generating model. These metrics are based on long-run out-of-sample predictive performance
(i.e., if the data-generating model produced infinite amounts of data, what is the quality of a
“model’s predictions on average?”). Simulation studies are conducted to identify the prediction-
maximizing model across a variety of conditions. For example, defining prediction in terms of
missing responses, greater average person ability, and greater item discrimination are all asso-
ciated with the 3PL model producing relatively worse predictions, and thus lead to greater
minimum sample sizes for the 3PL model. In each simulation, the prediction-maximizing model to
the model selected by Akaike’s information criterion, Bayesian information criterion (BIC), and
likelihood ratio tests are compared. It is found that performance of these methods depends on the
prediction task of interest. In general, likelihood ratio tests often select overly flexible models,
while BIC selects overly parsimonious models. The authors use Programme for International
Student Assessment data to demonstrate how to use cross-validation to directly estimate the
predictive fit metrics in practice. The implications for item response model selection in oper-
ational settings are discussed.
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A focal point of psychological measurement is item response data generated when persons re-
spond to items (e.g., multiple choice items in educational assessments). Item response models are
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statistical models fit to such item response data. As with most statistical models, more and less
flexible versions of item response models are available. Consider the common family of unidi-
mensional models dichotomous item responses: The one parameter logistic (1PL), the two pa-
rameter (2PL) logistic, and the three parameter (3PL) logistic models. The 1PL model is the least
flexible, with just a difficulty parameter for each item (Rasch, 1960). The 3PL model is the most
flexible, with a difficulty, discrimination, and guessing parameter for each item (Birnbaum, 1968).

Suppose that data are generated by a 3PL model (i.e., the data-generating model, abbreviated
“DGM”) and that both a 2PLmodel and 3PLmodel are estimated using this data.What does it mean
for one of these models to “fit” the data? In item response theory research literature, fit is often
defined by whether the model could have produced the data (DiTrapani, 2019). In essence, a variety
of methods aim to test the null hypothesis that the model generated the data. For example, the M2
statistic compares the expected (according to the model) to the observed (by counting the data)
moments of a contingency table (Maydeu-Olivares & Joe, 2005). If there is a mismatch between
these moments, then the null hypothesis that the model could have generated the data is rejected and
it is concluded that the model has poor fit. This view of model fit leads to the counterintuitive result
that models are less likely to fit larger datasets: As sample size increases so does the statistical power
with which trivial discrepancies between the data and the model can be identified (Steiger, 1990).
Similarly, posterior predictive checks use the model to simulate data, use discrepancy measures to
compare that simulated data to the observed data, and then conclude whether the model could have
produced the observed data based on those discrepancy measures (Sinharay et al., 2006).

Item response model simulation studies, which are commonly used to guide usage in empirical
settings, often take a similar view of fit. Luecht and Ackerman (2018) summarize the majority of
these simulation studies as following the script, wherein (1) a DGM model is chosen (e.g., the
3PL), (2) item and person parameters are specified and item response data are simulated, (3) a
variety of models are estimated using the simulated data, and (4) those models are compared.
Luecht and Ackerman (2018) point out the inevitable conclusion that the model with the same
parameterization as the DGM best fits the data. Going a step further, they remark that “one might
even conclude that that result is axiomatic, thus eliminating the need to ever again see this type of
IRT simulation study published” (p. 66).

As an example of such a simulation study, consider Kang and Cohen (2007) who evaluated the
effectiveness of a variety of item response model comparison methods such as Akaike’s in-
formation criterion (AIC; Akaike (1974)) and Bayesian information criterion (BIC; Schwarz et al.
(1978)). They simulated data via the 3PL DGM, and fit 1PL, 2PL, and 3PL models to the
simulated data. Finally, and this is crucial, they evaluated a model comparison method’s (e.g.,
BIC) performance according to its ability to choose the 3PL model as the best fitting model. Their
implicit assumption was that, by definition, if a 3PL model generated the data, then a 3PL model
must best fit the data. After all, that model produced the data. One of their conclusions was that
BIC performed poorly for data generated from a 3PL model because BIC preferred a simpler (than
the 3PL) model. Other research on model comparison methods has also assumed that the
prediction-maximizing model shares the same parameterization as the DGM: For example,
Svetina and Levy (2016) negatively judged NOHARM-based methods—including RMSR and
ALR—for detecting the dimensionality of item response data, based on their tendency to find
fewer than the data-generating number of dimensions at low sample sizes.

An Alternative Approach to Fit: Predictive Fit

The previous work to illustrate how fit is often conceptualized in the item response theory research
literature is summarized. An alternative approach is predictive fit which is based on how well a
model predicts new (i.e., out-of-sample) data from the DGM (Gelman et al., 2014). The
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fundamental logic of predictive fit is that the model with the best predictions is likely to be the
most useful. When introducing the now eponymous model, Rasch (1960) wrote, “When you
construct a model you leave out all the details Models should not be true, but it is important that
they are” (p. 38). Lord (1983) argued that the Rasch model should be preferred at small sample
sizes, even if it is known to be the “wrong” model, precisely because it might offer better
predictions. At the core of these suggestions is that, the goal of model selection should be to
identify an effective model, not necessarily the model that generated the data.

Onemight argue that item responsemodels are typically used to explain and understand as opposed to
predict. The authors agree with the many who have argued that this is a false dichotomy and that
explanation and prediction are in fact two sides of the same coin (Watts et al., 2018; Yarkoni &Westfall,
2017). Feynman et al. (1965) argued that science is the process of making hypotheses and checking their
predictions against newdata. In otherwords, the ultimate test of a scientific hypothesis is its ability tomake
predictions. Focusing on item response data, the conclusions from item response models that make poor
predictions should not be trusted. In fact, in operational settings, one cannot know that the data came from
an item response model; the question is rather whether item response models can characterize the data
usefully. The better an item response model’s predictions, the better it has characterized the data and the
more trust we can place in its conclusions. Further, we argue that many item response model simulation
studies would be more valuable if they assessed models according to their predictive fit. The predictive fit
view argues that it is better to have amodel that produces high-quality predictions than it is to have amodel
with the same parameterization as the DGM. Thus, Kang and Cohen (2007) might have judged model
selection methods not by their ability to identify the DGM, but instead by their ability to select the model
that makes the best predictions.

In essence, a compelling way is argued to assess how applicable or useful an item response
model is by the quality of its predictions. Accordingly, our goal is to forward the predictive fit view
by taking a step back and delineating two distinct prediction tasks for an item response model. The
first prediction task, which is named name “missing responses,” is to predict the probability of a
missing item response. The second prediction task, which is named “missing persons,” is to
predict the probability of all of the responses from a new, randomly drawn person. These two
prediction tasks correspond to two predictive fit metrics, which is defined as measures of how well
an item response model predicts new data from the DGM.

Organization. The background on item response models and how they are typically compared
in practice is given first. Second, the two possible prediction tasks which correspond to different
definitions of out-of-sample for item response data are described. Third, two predictive fit metrics
based on these two definitions are derived. These metrics are derived for the theoretical case when
the DGM is known, such as in a simulation study. Fourth, the behavior and utility of these metrics
are shown in four simulation studies. To reexamine and extend Kang and Cohen (2007), the
prediction-maximizing model to the model selected by common methods such as AIC and BIC is
compared. Lastly, a real world example of model selection is provided, which includes a de-
scription of how to use cross-validation to estimate the predictive fit metrics in practice.

Item Response Models

Let Y represent an observed item response matrix. yij is an observed dichotomous item response
where yij ¼ 1 indicates that the ith person responded correctly to the jth item and yij ¼ 0 indicates
that they responded incorrectly. Item response theory provides a framework for modeling Y ,
especially when there is a reason to believe that one or more latent traits exists. The fundamental
building block of item response theory is the item response function (IRF) which gives the
probability that a person will respond correctly to (or positively endorse) an item (Baker & Kim,
2004). The 3PL IRF is commonly used and is specified as
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where θi is the ith person’s ability; aj, bj, and cj are the jth item’s discrimination, easiness, and
guessing parameters respectively; and F is the sigmoid function, FðxÞ ¼ ex=1þ ex. The two
parameter logistic (2PL) and one parameter logistic (1PL) IRFs can be thought of as constrained
forms of the 3PL IRF. The 2PL IRF constrains the guessing parameter cj to 0. The 1PL IRF
constrains the guessing parameter cj to 0 and the discrimination parameter aj to 1.

Item response models are commonly estimated using marginal maximum likelihood estimation
(MMLE), which estimates item parameters while treating person abilities as a nuisance parameter
(Bock, 1983; Casabianca & Lewis, 2015). MMLE was developed to remedy the fact that si-
multaneously estimating item and person parameters yields statistically inconsistent estimates as
the number of persons goes to infinity (Bock & Aitkin, 1981). As such, MMLE estimates item
parameters by maximizing the marginal log likelihood (MLL) of the model

MLLðmodelðY ÞÞ ¼
XI
i

log

Z "
∏
J

j¼1

cPr�yij���bψj,θ
�#bgðθÞdθ

where bψj is the vector of estimated item parameters and bgðθÞ is the distribution of ability.
Typically, bgðθÞ is assumed to be normally distributed with hyperparameters (e.g., mean and/or
variance) estimated during model fitting. (Baker & Kim, 2004). If necessary, person ability
estimates can be obtained using an estimation technique such as expected a-posteriori (EAP) or
maximum a-posteriori (MAP) following MMLE of item parameters (Bock, 1983).

Item Response Model Selection In Practice

Item response models are typically compared using likelihood ratio tests (LRT) or information criterion
such as AIC and BIC (Maydeu-Olivares, 2013). Each of these methods is based on the model’s
marginalized log likelihood, MLLðmodelðY ÞÞ, and number of item parameters estimated in fitting the
model,M . Consider twomodels fit to Y :model1ðY Þ andmodel2ðY Þ where the latter model has a greater
number of parameters such that M2 >M1. An LRT compares these models by exploiting the fact that

2 � ½MLLðmodel2ðY ÞÞ �MLLðmodel1ðY ÞÞ�
follows a chi-squared distribution with M2 �M1 degrees of freedom (Andersen, 1973; Baker &
Kim, 2004). If the associated p-value is statistically significant (often at a 0.05 significance level),
then it is concluded that model2ðY Þ fits better than model1ðY Þ. On the other hand, AIC and BIC
both add a penalty to the likelihood based on M

AICðmodelÞ ¼ �2 �MLLðmodelðY ÞÞ þ 2M
BICðmodelÞ ¼ �2 �MLLðmodelðY ÞÞ þ logðIÞ �M

where I is the number of persons (i.e., rows) in Y . Lower values of AIC and BIC indicate better fit.
With the goal of defining predictive fit metrics, the missing responses and missing persons
prediction tasks for item response models are now described from first principles.

Out-of-Sample for Item Response Data

The goal of predictive fit metrics is to measure how well a model predicts out-of-sample data from
the DGM, but what, exactly, should be considered out-of-sample? Should it be the person, the
item, or the item response that is out-of-sample? The fact that item responses are cross-classified
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within persons and items complicates this discussion (Furr, 2017). If entire persons are out-of-
sample, then in-sample ability estimates are unavailable, meaning that they cannot be used to
generate predictions. Instead, predictions can be made based on bgðθÞ. On the other hand, if it is
single item responses that are out-of-sample, then a person’s responses to in-sample items can be
used to generate in-sample ability estimates.

We denote some arbitrary out-of-sample matrix ~Y . Two1 versions of ~Y are considered,
which vary based on what is considered out-of-sample. The first version of ~Y comes from in-
sample persons responding to in-sample items. This out-of-sample matrix as ~Y

MR
is denoted,

with “MR” abbreviating “missing responses.” The unit of observation for ~Y
MR

is the item
response. The missing response on the left of Figure 1 shows that Person A’s response to
item 1 is missing. The model’s prediction task is to estimate the probability of this missing
response. To do so, the model can use the other persons to estimate item 1’s parameters and
the other items to estimate Person A’s ability. This logic can be applied to each entry ~Y

MR
,

and therefore ~Y
MR

has the same dimensions as Y . Adaptive testing is an application in which
the missing responses prediction task might make sense: The goal of an adaptive testing
engine is often to next assign an item that the person has a fixed chance (e.g., 50%) of
responding correctly to. Accordingly, the model that can best estimate these probabilities
may be most useful.

The second version of ~Y comes from out-of-sample persons responding to in-sample
items. This out-of-sample matrix as ~Y

MP
is denoted, with “MP” abbreviating “missing

persons.” The unit of observation for ~Y
MP

is a person’s vector of item responses. The bottom
row on the right of Figure 1 represents a new person, Person D, responding to each of the
items for the first time. The prediction task is for the model to estimate the likelihood of all of
Person D’s item responses. The other persons is used to estimate item parameters, but there is
no way to estimate Person D’s ability. As a result, a prediction about their entire vector of item
responses has to be made—the unit of analysis—by treating ability as a nuisance variable; to
do this, we average (i.e., integrate) over the distribution, denoted gðθÞ, from which we assume
Person D’s ability originates. So that ~Y

MP
has the same scale as Y , the authors might consider

there to be as many missing persons as there are persons in Y . Traditional linear testing is an
application wherein the missing persons prediction task might be preferred: the ability of the
next test taker is unknown and a reasonable goal might be to prefer a scoring model that will
perform optimally in the case of this heightened uncertainty. Note that LRT, AIC, and BIC all
implicitly target the missing persons prediction task because they are based on the mar-
ginalized log likelihood of the model.

Predictive Fit Metrics

A predictive fit metric for each of ~Y
MR

and ~Y
MP

is now derived. These metrics can only be
calculated exactly when the DGM is known such as in a simulation study (how to use cross-
validation to estimate these metrics in practice is described later). When the DGM is known, a
model’s predictive performance on the produced can be directly measured by the DGM. Con-
ceptually, this is equivalent to using the DGM to simulate an infinite amount of out-of-sample data,
and then measuring a model’s fit to the DGM based on its predictive performance for this (infinite)
out-of-sample data. In particular, the metrics measure how well a model predicts all possible out-
of-sample matrices that the DGMmight produce, weighted by their probability of being produced.
Both metrics begin with the likelihood of a single ~Y according to a model fit to Y , which is
generically denoted as modelðY Þ. This is known as log predictive likelihood (lpl), which can be
thought of as a function that takes ~Y and a model fit to Y as inputs and outputs the log likelihood of
~Y according to that model (Gelman et al., 2014)
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:

Metric 1: Expected Log Predictive Likelihood for Missing Responses (ELPL-MR)

Calculation of log predictive likelihood of missing responses (lpl-MR) for a single ~Y
MR

is rel-
atively straightforward because we can use estimates of person abilities so that

lpl �MR
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, modelðY Þ

!
¼ logcPr ~Y
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¼
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XJ
j¼1

logcPr ~yMR
ij

�����bψj,bθi
!

where ~yMR
ij is an item response from YMR, bψj is item j’s vector of parameter estimates from

modelðY Þ, and bθi is person i’s vector of ability estimates from modelðY Þ. We use the short-handbpMR
i,j ¼cPrðyMR

i,j ¼ 1jbψj,bθiÞ. To be concrete, in the case of the unidimensional 2PL model
specification

lpl �MR
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Of course, there are many possible out-of-sample item response matrices ~Y

MR
. The measure of

model performance should be reflective of the DGM in general, not one particular ~Y
MR

. The DGM
is captured simply by pMR

i,j , the data-generating probability of yMR
ij being responded to correctly. If

the DGM is an item response model, pMR
i,j ¼ PrðyMR

i,j ¼ 1jψj,θiÞ. The out-of-sample predictive
performance metric of interest is Expected Log Predictive Likelihood for Missing Responses
(ELPL-MR), which is the expectation of lpl

ELPL�MRðmodelðY ÞÞ ¼ E

"
lpl

 
~Y
MR
,modelðY Þ

!#

¼
XI
i¼1

XJ
j¼1

pi,jlog
�bpi,j�þ �1� pi,j

�
log
�
1� bpi,j�:

In essence, ELPL-MR can be thought of as a function that takes a model fit to Y as input and
outputs the expectation of the log likelihood of ~Y

MR
.

One way to think about this equation is that ELPL-MR is the weighted average of the log
likelihood, where the weights are determined by the true probabilities. As a simple example,
consider a model that predicts that an item response will be correct at a rate of 0:8 but the true data-
generating probability is 0:9. The long-run log likelihood of the item response according to the
model is 0:9log0:8þ 0:1log0:2 ≈� 0:36. Translating back to the probability scale, the long-run
likelihood is expð�0:36Þ ≈ 0:70.
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Metric 2: Expected Log Predictive Likelihood for Missing Persons (ELPL-MP)

The predictive fit metric is now derived for when the prediction task is the vector of responses for
persons not known to the model as is a row vector, yMP

u , from ~Y
MP

. Calculation of log predictive
likelihood of missing persons (lpl-MP) for ~Y

MP
is complicated by the fact that the persons in ~Y

MP

are out-of-sample and therefore unobserved in Y ; hence, ability estimates are unavailable.
However, as is standard in MMLE, we can calculate a marginalized likelihood by taking the
expectation over bgðθÞ, the distribution of ability as estimated by the model. We begin by cal-
culating the lpl of yMP

u

lpl �MP
�
yMP
u ,modelðY Þ� ¼ Z cPr�yMP

u

��θ�bgðθÞdθ ¼
Z "

∏
J

j¼1

cPr�yMP
uj

�����bψj,θ

�#bgðθÞdθ
Next, the data-generating distribution of ~Y

MP
is to be accounted for, which is captured by πu,

the probability of a random person from the DGM producing yu. There are U possible response
patterns (e.g., a dichotomous test with J items has U ¼ 2J possible response patterns). Assuming
the DGM is an item response model, we calculate πu as follows

πu ¼
Z

Pr
�
yMP
u

��θ�gðθÞdθ ¼
Z "

∏
J

j¼1
Pr
�
yMP
uj

����ψj,θ
�#

gðθÞdθ:

The out-of-sample predictive performance metric of interest is Expected Log Predictive
Likelihood for Missing Persons (ELPL-MP), which is the expectation of lpl over each possible yu

ELPL �MPðmodelðY ÞÞ ¼ E
	
lpl
�
yMP
u ,modelðY Þ�


¼
XU
u¼1

πu � lpl
�
yMP
u ,modelðY Þ�

¼
XU
u¼1

πu �
 Z "

∏
J

j¼1

cPr�yuj���bψj,θ
�#bgðθÞdθ!

As with ELPL-MR, ELPL-MP can be thought of as a function that takes a model fit to Y as
input and outputs the expectation of the log likelihood of ~Y

MP
. In practice, integrals can be

approximated using Gauss–Hermite quadrature (Embretson & Reise, 2013).

Simulation Studies

To demonstrate the behavior and utility of the two predictive fit metrics, ELPL-MR and ELPL-MP,
four simulation studies were conducted. The first revisited Kang and Cohen (2007) using pre-
dictive fit. The second and third both used a 3PL DGM and explored the role different ability
distributions, sample sizes, and item architectures play in which of the 1PL, 2PL, and 3PL model
have the best predictive fit. The first three simulation studies used exclusively unidimensional (a
single ability factor); the fourth compared models with varying numbers of factors.

Throughout, the prediction-maximizing model was identified according to the two predictive
fit metrics. Calculations were made on which model AIC, BIC, and LRT should be selected in
order to demonstrate how they perform vis-a-vis our two predictive metrics. Each simulation study
involved many replications where a replication consisted of the following steps: (1) simulate data
using the DGM, (2) fit a variety of models to the simulated data, (3) calculate ELPL-MR, ELPL-
MP, the likelihood, AIC, and BIC for each of the models, and (4) determine the winning model
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according to each of these methods. For ELPL-MR and ELPL-MP, the model with the greatest
value is the prediction-maximizing model. For AIC and BIC, the model with the lowest value is
the selected model. For LRT, we conducted a sequence of tests so that, for example, if the 2PL
model was statistically significant compared to the 1PLmodel but not the 3PLmodel, then the 2PL
model was selected. In general, let us say a model “wins” if it is optimal according to a specific
measure. The DGM and models fit in steps (1) and (2) varied across simulation studies; steps (3)
and (4) were consistent across the simulation studies.

R was used for computing (R Core Team, 2019). The R package, mirt, was used to fit models
using MMLE with the EM algorithm and 61 quadrature points (Chalmers, 2012) (Figure 1). We
used custom written functions to calculate ELPL-MR and ELPL-MP for each model. In particular,
ELPL-MRwas calculated using equation. Abilities were estimated using bothMAP and EAP with
the usual standard normal prior. Because results using EAP and MAP were nearly identical, only
results using EAP ability estimates are reported.2 ELPL-MP was calculated using equation.
Integrals were approximated using Gauss-Hermite quadrature with 61 points (Embretson & Reise,
2013). We used the suite of R packages known as the tidyverse for data wrangling and visu-
alization (Wickham, 2017). Materials to reproduce this article, including functions to estimate
ELPL-MR and ELPL-MP, are available at github.com/stenhaug/irt-predictive-fit.

Methods for Simulation Study 1

In Simulation Study 1, Kang and Cohen (2007) were revisited who evaluated model selection
methods (e.g., BIC) via their capacity to identify the model with the same parameterization as the
DGM (e.g., a model selection method should choose the 3PL model if the 3PL DGM was used)
(Table 1). Whether the 3PL model actually had the best predictive fit in the conditions in which
they conducted their simulation study was questioned. The six conditions from Kang and Cohen
(2007) that came from crossing the DGM (1PL, 2PL, or 3PL) and sample size (500 or 1000
persons) were focused. In each condition, 20 items were used and drew abilities from a normal
distribution, θ∼Nð0; 1Þ. Their exact item parameters are used as reported in Table 4 of Kang and
Cohen (2007). Five hundred replications for each condition were conducted. Our hypothesis was
that the winning model—that is, the most predictive model—would not always have the same
parameterization as the DGM. The authors believed that this was most likely at lower sample sizes
where more complex models might overfit the data, leading to poor predictions.

Figure 1. Understanding the two out-of-sample item response matrices, ~Y
MR

and ~Y
MP
. With missing

responses, the unit of observation is a single item response and the person’s other responses can be used
to estimate ability. With missing persons, the unit of observation is the person’s response vector and there
are no responses with which to estimate ability.
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Results for Simulation Study 1

Table 1 shows the number of replications in which each model won. In the conditions with the 1PL
or 2PL DGM, the prediction-maximizing model according to ELPL-MR and ELPL-MP nearly
always shared the DGM’s parameterization. In these conditions, the model selection methods,
BIC, AIC, and LRT, nearly always selected this model with the exception that the LRT occa-
sionally (4% of replications) chose the 2PL model when the prediction-maximizing model was the
1PL model. In contrast, with the 3PL DGM, the 2PL model often won based on our predictive
metrics (i.e., the 2PL optimally predicted the out-of-sample data). Under these conditions, Kang
and Cohen (2007) found that AIC often selected the 2PL model, which they interpreted as a failure
of AIC. Our results instead indicate that if the goal is to identify the model with the greatest
predictive fit, AIC may actually have been a useful metric. In general, LRT selects models
consistent with ELPL-MP, while AIC and BIC selects models more consistent with ELPL-MR.

The model with the greatest ELPL-MR was often simpler than the model with the greatest
ELPL-MP. For example, with a 3PL DGM and 500 persons, the 2PL model outperformed the 3PL
model in 488 out of 500 replications according to ELPL-MR and in 245 out of 500 replications
according to ELPL-MP. This is taken as evidence that ELPL-MR prefers more parsimonious
models than ELPL-MP. Why is this so? Recall that the difference between ELPL-MP and ELPL-
MR is how they treat ability. ELPL-MP assumes ability to be coming from a generic distribution,
gðθÞ, whereas ELPL-MR actually estimates each person’s ability. As a result, ELPL-MR requires
estimation of more parameters (item parameters and a parameter for each person) than ELPL-MP
(just item parameters). Estimation of additional parameters requires increased sample size. When
ELPL-MR is calculated, the additional step of estimating each person’s ability is taken, which
causes the imperfection in the item parameter estimates to propagate to the person abilities. On the
other hand, when ELPL-MP is calculated, gðθÞ is just integrated over which is much more tolerant
of those imperfect item parameter estimates.3

Methods for Simulation Study 2

Simulation Study 1 found that with the 3PLDGM, the 2PLmodel was frequently best according to
predictive performance metrics, especially if the number of persons was relatively small
(Figure 2). Simulation Study 2 builds on this observation by exploring the role of sample size (i.e.,
number of persons) and ability distribution in determining which model best fits a 3PL DGM. In
Simulation Study 2, we used the 3PL DGM, 20 items, and item parameters from Kang and Cohen
(2007). Two thousand replications were conducted, each of which was as follows. The number of
persons were drawn from a discrete uniform distribution, I ∼ unif f100; 10000g. Abilities were

Table 1. Simulation Study 1 results.

Estimated Model

ELPL-MR ELPL-MP BIC AIC LRT

DGM Persons 1PL 2PL 3PL 1PL 2PL 3PL 1PL 2PL 3PL 1PL 2PL 3PL 1PL 2PL 3PL

1PL 500 500 0 0 500 0 0 500 0 0 497 3 0 480 20 0
1PL 1000 500 0 0 500 0 0 500 0 0 499 1 0 482 182 0
2PL 500 0 499 1 0 499 1 0 500 0 0 0 500 0 500 0
2PL 1000 0 498 2 0 498 0 0 500 0 0 0 500 0 499 0
3PL 500 0 488 12 0 245 255 86 414 0 0 388 112 0 246 254
3PL 1000 0 407 93 0 11 489 0 500 0 0 136 364 0 44 456
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drawn from a normal distribution, θi ∼Nðμθ,1Þ, where the mean of that distribution was drawn
from a continuous uniform distribution, μθ ∼ unif ð�2; 2Þ. As before, data were simulated using
these parameters, fit the 1PL, 2PL, and 3PLmodels, determined the best fitting model according to
ELPL-MR and ELPL-MP, and identified the model selected by BIC, AIC, and LRT.

Results for Simulation Study 2

Figure 2 shows the prediction-maximizing model according to ELPL-MP and ELPL-MR as well as
the model selected by BIC, AIC, and LRT. As in Simulation Study 1, ELPL-MR preferred more
parsimonious models as evidenced by the 2PL model winning more frequently according to ELPL-
MR than according to ELPL-MP. As anticipated, the greater the number of persons, I , the more
likely the 3PL model was to win. However, the ability distribution is also salient. As μθ increased,
the 3PL became less likely to win. This is to be expected; guessing plays less of a role for high ability
persons, which decreases the predictive value of the model including a guessing parameter. LRTand
AIC tended to select the prediction-maximizing model according to ELPL-MP. BIC selectedmodels
more in line with the prediction-maximizing model according to ELPL-MR.

Figure 2 can be read in terms of minimum sample requirements for the 3PL model (although
results may depend somewhat on the specific set of item parameters). When μθ is less than 0, the
sample size at which the 3PL model tended to outperform the 2PL model was somewhat low
(≈2000) according to ELPL-MP, and it was a bit higher according to ELPL-MR. As μθ increased,
the relative predictive performance of the 3PL model decreased quickly, so much so that, for
ELPL-MR, the 3PL model nearly never won when μθ was greater than one.

Methods for Simulation Study 3

Simulation Studies 1 and 2 both used item parameters fromKang and Cohen (2007). In Simulation
Study 3, item parameters were simulated with the goal of understanding how different item

Figure 2. Simulation study 2 results. Each point corresponds to the prediction-maximizing model according
to the predictive fit metrics, ELPL-MR and ELPL-MP, or the model selected by BIC, AIC, or LRT for one of
2000 replications. The 3PL model was most likely to offer the best fit and be selected with more persons and
at lower mean ability (guessing is more prominent). For the predictive fit metrics, ELPL-MP preferred more
flexible models than ELPL-MR. For the model selection methods, LRT and AIC preferred more flexible
models than BIC.
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architectures—the distribution of easiness, discrimination, and guessing—effect which model
wins according to ELPL-MR and ELPL-MP (Figure 3). Simulation Study three again exclusively
used the 3PL DGM. Nine conditions were first created by crossing the vector of guessing pa-
rameters c (set to 0.03, 0.10, 0.25 for all items) and the sample size (set to 1000, 5000, or 10,000
persons). One thousand replications were conducted in each condition, each of which was as
follows Twenty item easiness parameters were drawn from a normal distribution, b∼Nðμeasy,1Þ,
and the mean of that distribution was drawn from a continuous uniform distribution,
μθ ∼ unif ð�2; 2Þ. Similarly, 20 item discrimination parameters were drawn from a log-normal
distribution, a∼Lognormalðμa,0:5Þ, and μa was drawn from a continuous uniform distribution,
μa ∼ unif ð�0:5,1:5Þ. Note that μa is the log of the median of the log-normal distribution so, for
example, when μa ¼ �0:5, the expected median item discrimination is expð�0:5Þ ≈ 0:61. As in
Simulation Study 1 and 2, for each replication, the 1PL, 2PL, and 3PL models were fit which
determined the prediction-maximizing model according to ELPL-MR and ELPL-MP, and
identified the model selected by BIC, AIC, and LRT.

Results for Simulation Study 3

Figure 3 shows the prediction-maximizing model for each replication according to ELPL-MR and
ELPL-MP. As with Simulation Study 1 and 2, the 3PL model fit best more frequently according to
ELPL-MP than ELPL-MR. The role of item easiness was as expected from Simulation Study 2: As
μeasy decreased, the 3PL model was more likely to win. Figure 4 shows the model selected by BIC,
AIC, and LRT. Consistent with results from the previous two simulation studies, LRT selected
models consistent with ELPL-MP, while BIC and AIC selected models more consistent with
ELPL-MR.

As anticipated, the guessing parameter played a prominent role: The 3PL model usually won
when c ¼ 0:25, with the lowest sample size I ¼ 1000 using ELPL-MR as an exception. Our
original hypothesis was that c ¼ 0:03 was a nearly ignorable level of guessing and consequently that
the 3PL model would not perform well. That turned out not to be the case: The 3PL model won
somewhat frequently evenwhen c ¼ 0:03. Turning to discrimination, as μa increased (so that overall
item discrimination increased), the 2PL model performed worse. This result might seem counter-

Figure 3. Simulation study 3 results for the predictive fit metrics, ELPL-MR and ELPL-MP. Each point
corresponds to the prediction-maximizing model from one of 1000 replications. The 3PL model was most
likely to offer the best fit with greater item discrimination, more difficult items, and more persons. ELPL-MP
preferred the 3PL model more often than ELPL-MR did.
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intuitive, but consider the following: For items with very high discriminations (i.e., nearly Guttman
(1974) items), low-ability persons have very low probabilities of correct responses under the 2PL
model, whereas in fact the true probability is never below the guessing parameter. This leads to the
2PL model performing poorly for items generated with high discrimination and some guessing.

Methods for Simulation Study

Each of the previous simulation studies looked at models with varying item complexity (e.g., 1PL,
2PL, and 3PL) but a fixed single latent ability factor (Figure 4). In Simulation Study 4, we invert
our focus by always using a 2PL model, but varying the number of latent ability factors. For
example, the 2-factor 2PL (hereafter 2F 2PL) model is specified as

Pr
�
Yij

� ¼ F
�
aj1θi1 þ aj2θi2 þ bj

�
where, for example, aj2 is the jth item’s loading on the second factor, and θi2 is the ith person’s
score for the second factor (Reckase, 2009). Our questions are similar as in the previous simulation
studies: For example, if the DGM is a 2F 2PL model, when does a 1F 2PL model make better
predictions for new data from the DGM as measured by ELPL-MR and ELPL-MP?

Accordingly, Simulation Study 4 used exclusively the 2F 2PL DGM. As with the previous
simulation studies, only 20 items were considered. Two thousand runs were conducted, each of
which was as follows (Figure 5) Item easiness parameters were drawn from the standard normal
distribution, b∼Nð0; 1Þ. Item discrimination parameters were drawn independently from a log-
normal distribution, a∼ Lognormalð0; 0:5Þ. The number of persons were drawn from a discrete
uniform distribution, I ∼ unif f500; 10000g. Abilities from a multidimensional normal distri-

bution were drawn with mean vector [ μθ1 ¼ 0, μθ2 ¼ 0 ] and covariance matrix
1 v
v 1

� �
where v

is the correlation between factors and captures the degree to which persons with a high first
factor score tend to have a high second factor score. For example, if the first factor is addition,
and the second factor is subtraction, then v might be expected to be high. v can be thought as
essentially making dimensionality continuous: At v ¼ 1, ability is unidimensional, at v ¼ 0,
ability is fully two dimensional, and at v ¼ 0:5, ability is somewhere between one and two
dimensional. v is drawn from a continuous uniform distribution, v∼ unif ð0; 1Þ. Two thousand
such replications were conducted.

Results for Simulation Study 4

Figure 5 shows the winning model for each run according to ELPL-MP (left) and ELPL-MR
(right). As before, ELPL-MR preferred more parsimonious models, with the 1F 2PL winning
slightly more frequently according to ELPL-MR than ELPL-MP. The role of the correlation
between factors is focused here, v. In general, as v increased, the 1F 2PL was more likely to
win. As with Simulation Study 2 these results can be read in terms of minimum sample
requirements for the 2F 2PL model. Under these conditions, the 2F 2PL was best according
to both metrics whenever v < 0:5 (at least up to our minimum sample size of I ¼ 500
persons). For greater values of v , the 1F 2PL was more often best, especially for lower
sample sizes and according to ELPL-MR. Lastly, it is worth noting that the 2F 2PL typically
won according to both metrics for v near 0.7 and I close to 10,000 persons, which suggests
that at large sample sizes it’s possible for multi-factor item response models to disentangle
highly correlated factors.
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Predictive Fit in Practice via Cross-validation

In the simulation studies, ELPL-MR and ELPL-MP could be calculated because the DGM was
known. In practice, when the DGM is not known, the predictive performance metrics can be
estimated by hiding part of the data from the model so as to serve as out-of-sample data. This is
known as cross-validation and it needs to be implemented based on which prediction task (and
metric) is of interest (Bates et al., 2021). For example, Bolt and Lall (2003) implemented a cross-
validation technique that corresponds to the missing person prediction task. Bergner et al. (2012)
and Wu et al. (2020) cross-validated item response models in a way that corresponds to the
missing responses task. How to use cross-validation to estimate each predictive fit metric in
practice is now discussed. Then, a real data example of using cross-validation is provided.

Cross-validated Log Likelihood for Missing Responses (CVLL-MR)

The data are randomly partitioned into folds based on the item responses (i.e., the elements of Y ).
Randomization is stratified by person so that each person is split into “sub-persons” and each sub-
person gets randomly assigned to a fold (DiTrapani, 2019). As a result, each fold contains
approximately the same number of item responses for each person. Mathematically, following
notation similar to Vehtari et al. (2017), the data is partitioned into eight folds Y ðkÞ for k ¼ 1,…,8.
Each model is fit separately to each training set Y ð�kÞ using MMLE, which yields item parameter
estimates ψð�kÞ

j . Similarly, person abilities, bθð�kÞ
i , are estimated using EAP. The predictive (i.e.

out-of-sample or cross-validated) likelihood of Y ðkÞ is

p
�
Y ðkÞ��Y ð�kÞ� ¼ ∏

I

i¼1
∏
J

j¼1

cPr yðkÞij

�����bψð�kÞ
j ,bθð�kÞ

i

!
:

Folds are then aggregated across to get the cross-validated log likelihood for missing responses
(CVLL-MR)

Figure 4. Simulation study 3 results for the model selection methods, BIC, AIC, and LRT. Each point
corresponds to the selected model from one of 1000 replications. The 3PL model was selected more often
with greater item discrimination, more difficult items, and more persons. BIC selected models consistent
with ELPL-MR, while AIC and LRT selected models more consistent with ELPL-MP.
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CVLL�MRðmodelðY ÞÞ ¼
XK
k¼1

logp
�
Y ðkÞ��Y ð�kÞ�:

Cross-validated Log Likelihood for Missing Persons (CVLL-MP)

The data are randomly partitioned into folds based on the persons (i.e., the rows of Y ). Math-
ematically, the data are partitioned into eight folds Y ðkÞ for k ¼ 1,…,8. Each model is fit separately
to each training set Y ð�kÞ using MMLE, which yields item parameter estimates ψð�kÞ

j . For each
fold, predictive (i.e. out-of-sample or cross-validated) likelihood of Y ðkÞ is calculated by inte-
grating over bgðθÞ

p
�
Y ðkÞ��Y ð�kÞ� ¼ ∏

I

i2 iðkÞ

Z
∏
J

j¼1

cPr�yðkÞij

���ψð�kÞ
j ,θ

�bgðθÞdθ:
Folds are then aggregated across to get the cross-validated log likelihood for missing persons

(CVLL-MP)

CVLL�MPðmodelðY ÞÞ ¼
XK
k¼1

logp
�
Y ðkÞ��Y ð�kÞ�:

Real Data Example

The Programme for International Student Assessment (PISA) is conducted every three years and
aims to measure “the extent to which 15-year-old students, near the end of the compulsory
education, have acquired key knowledge and skills” (PISA, 2015). In 2015, PISA switched from

Figure 5. Simulation Study 4 results. Each point corresponds to the prediction-maximizing model according
to the predictive fit metrics, ELPL-MR and ELPL-MP, or the model selected by BIC, AIC, or LRT for one of
2000 replications. The prediction-maximizing and selected model was more likely to be the 2F 2PL with
lower correlation between factors and more persons. LRT nearly always selected the 2F 2PL model even in
replications where both ELPL-MP and ELPL-MR identified the 1F 2PL model as prediction-maximizing. AIC
selected models largely consistent with ELPL-MP. BIC selected models more closely aligned to ELPL-MR.
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using a Rasch model to a 2PLmodel based on research showing that the 2PLmodel had lower AIC
and BIC (Oliveri & Davier, 2011). To demonstrate model selection in practice, a variety of models
fit was compared to a subset of the 2015 PISA data. In particular, the first 17 questions were
considered focused (because they have high response rates) from science booklet 25. The 9800
students (regardless of country) who responded to all 17 questions were considered. As a result, Y
contained no missingness and 9800 � 17 ¼ 166; 600 item responses. So that all items were di-
chotomously coded, partial credit was considered to be correct.

Seven models were compared that fit to this data: Rasch, 1F 2PL, 1F 3PL, 2F 2PL, 2F 3PL, 3F
2PL, and 3F 3PL. Each of these models was evaluated using CVLL-MR, CVLL-MP, BIC, AIC,
and LRT. For the LRT, each pair of models ordered by number of parameters was compared. Each
model was evaluated using cross-validated accuracy for missing responses (CVACC-MR), which
is similar to CVLL-MR but accuracy (at a 0.5 cutoff) as opposed to log likelihood is aggregated
across folds. As shown in Table 2, the selected model varied by metric. Consistent with results
from our simulation studies, metrics based on the MR prediction task selected models with fewer
parameters than metrics based on the MP prediction task. In particular, CVLL-MR and CVACC-
MR both selected the 1F 3PL. The other four metrics, which are all based on marginalized
likelihood, selected either the 2F 3PL or 3F 3PL models.

This case study demonstrates that the selected model varies significantly by metric. The cross-
validation metrics involve fewer assumptions, which might be good reason to prefer them to the
other metrics. Even so, which cross-validation metric should be used? If the goal is to predict
probabilities of item responses—for example, in developing a computer adaptive version of the
PISA—then the 1F 3PLmodel as selected by CVLL-MR and CVACC-MR4might be used. On the
other hand, if the goal is draw conclusions with regard to the item parameters, then a model with
more parameters such as the 3F 3PL model as selected by CVLL-MP may be preferred. This
example illustrates that there is no single best fitting model—instead, results depend on a number
of other factors including how prediction is defined.

Discussion

How should fit be thought about in the context of item response data? Previous research has
frequently defined fit in terms of whether the model could have been the DGM (e.g., whether the
expected contingency table from the model is similar to a contingency table of the data). An
alternative view of fit is advocated, predictive fit, based on how well a model predicts new data
from the DGM. Two predictive fit metrics are derived, ELPL-MR and ELPL-MP, which vary
based on the meaning of out-of-sample for item responses. These metrics are derived in the
theoretical case in which the DGM is a known item response model as is often the case in item
response simulation studies and also provide an example of how they can be used in practice. As it
is described below, it is believed that these metrics can help lay the groundwork for future
advances in item response model evaluation in practice; are useful for evaluating item response
models in simulation studies; and that our results offer guidance with regard to minimum sample
size requirements for item response models.

The authors believe that predictive fit metrics can play a valuable role in laying the groundwork
for future advances in item response model selection in practice. Model selection often involves
comparing models with different numbers of parameters. A model with more parameters has a
greater flexibility with which to fit the data-generating process but with this flexibility comes
greater variance. A model with fewer parameters will have more stable estimates but with the
stability comes potential bias. This is the well-known bias-variance trade off (Doroudi, 2020).
Results from the simulation studies can be generalized in terms of this trade off. First, the
prediction-maximizing model according to ELPL-MP was always more flexible than according to
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ELPL-MR. In other words, the model that is best for the missing persons prediction task typically
has more parameters than the model that is best for the missing responses prediction task. Second,
AIC, BIC, and LRT varied across simulation studies in their ability to select the model that
generated the best predictions. LRTselected the most flexible models, while BIC selected the least
flexible models. LRT tended to select models that were even more flexible than ELPL-MP
identified as prediction-maximizing, while BIC tended to select models that were even more
conservative than ELPL-MR identified as prediction-maximizing.

In the real world example with PISA data, metrics based on the missing persons prediction task
(CVLL-MP, AIC, BIC, and LRT) selected more flexible models than metrics based on the missing
responses prediction task (CVLL-MR and CVACC-MR), which is generally consistent with
results from the simulation studies. However, BIC selected a fairly flexible model (the 2F 3PL
model) which is surprising given our simulation study results that showed BIC to be very
conservative. One possible reason for this discrepancy is McDonald and Mok (1995)’s warning
that AIC and BIC may fail with modest sample sizes or misspecified models. A solution is to use
cross-validation which directly estimates the predictive fit metrics and requires fewer assumptions
(Bates et al., 2021; Fang, 2011). Cross-validation was briefly described in our real world example
but more research is needed to guide IRT practitioners in using cross-validation. For example:
How many folds are necessary in k-fold cross-validation? How much better do estimates of the
predictive fit metrics get as more folds are used?

This work offers more direct guidance on how models should be evaluated in simulation
studies. For example, Kang and Cohen (2007) fit both a 2PL and 3PL model to data from a 3PL
DGM. How should they have decided whether the 2PL model or the 3PL model fit better? They
assumed that because the 3PL DGM was used that the 3PL model must fit better. Based on this
assumption, they, for example, warned against using a model selection method because it fre-
quently selected the 2PL model. An alternative is to consider predictive fit by determining which
model makes the best predictions for additional data from the DGM. Results from our Simulation
Study 1 demonstrate that in the conditions used in Kang and Cohen (2007), the 2PL model
frequently actually makes better predictions than the 3PL model, and therefore has better pre-
dictive fit. Thus, it is a feature, not a bug, for a model selection method to select the 2PL model in
these conditions. Our broader point is that predictive fit metrics should be considered in these
types of simulation studies, and that using them has the potential to fundamentally change the
study’s conclusions.

Our simulation study results also offer guidance on a question of great practical importance:
minimum sample size requirements for item response models. A variety of minimum sample size
recommendations have been made for the 3PL model: Feuerstahler (2019) suggest at least 5000
persons, Hulin et al. (1982) suggest at least 1000 persons, and Thissen and Wainer (1982) suggest
at least 100,000 persons. Despite these recommendations, Feuerstahler (2019) reports that “it is
not uncommon to see the 3PL” model fit to item response data with fewer than 1000 persons (p.
12). In our view, a reasonable approach for benchmarking the minimum sample size for the 3PL
model is to consider the sample size at which the 3PL model makes better predictions than the 2PL
model. This is, of course, precisely what is investigated in the first three simulation studies. Our
results indicate that the minimum sample size for the 3PL model depends on a variety of
considerations, including how out-of-sample is defined, the ability of the persons, and the ar-
chitecture of the items. For example, considering MR, greater average person ability, and greater
item discrimination are all associated with the 3PL model producing relatively worse predictions,
and thus greater minimum sample sizes for the 3PL model. Still, heuristics can be useful to
practitioners: Simulation Study 2 results suggest a minimum sample size for the 3PL model of at
least 1000 persons according to ELPL-MR and between 500 and 1000 persons according to
ELPL-MP. With regard to multidimensional models, Simulation Study 4 results demonstrate that
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the minimum sample size requirement for the 2F 2PL model, defined by when the 2F 2PL model
makes better predictions than the 1F 2PL model, depends greatly on the correlation between
factors.

This study is closed with a fundamental question: How should item response models be
evaluated and compared in practice? Should information criterion such as AIC and BIC, MP
cross-validation where the empirical data is split at the response, or MR cross-validation where the
data is split at the person be used? The authors believe that the answer likely depends on the
purpose of the model. For example, the best model comparison method for selecting a model to
identify poorly performing items might very well be different than that for selecting a model to
rank-order persons. In the end, ELPL-MR and ELPL-MP are simply different ways of measuring
the predictive performance of an item response model. High predictive performance is a desirable
property for a model, but it certainly is not the only consideration (Vehtari et al., 2017). Future
research might work to build a framework for comparing item response models in practice that
helps researchers systematically balance the many considerations when navigating the process of
starting with item response data, fitting a variety of models, and then selecting one of those models
for a specific purpose.
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Notes

1. Both involve in-sample items. However, work by De Boeck (2008) proposes random item response
models wherein out-of-sample items are tractable; future work could potentially focus on this case.

2. Maximum likelihood ability estimates are not feasible because of completely perfect and imperfect
response vectors. Future work might consider alternatives like weighted likelihood estimates (Warm,
1989).

3. An alternative way to understand ELPL-MP preferring more flexible models is through the lens of
regularization. Regularization typically counters over fitting by shrinking parameter estimates (Tibshirani,
1996). In this case, ELPL-MP treating ability as coming from gðθÞ effectively regularizes the likelihood
by which the model is judged. As a result, over fitting is punished less harshly.

4. A benefit of missing responses is that the results are easier to interpret. For CVACC-MR, the accuracy of
each model are all within 0.4% which may or may not be a small difference depending on the context. For
CVLL-MR, the geometric mean of the likelihood can be reasoned about as the typical likelihood of an
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individual item response: For the 1F 3PL model the geometric mean is exp

�
�84828
166600

�
¼ 0:601 as opposed

to exp

�
�86130
166600

�
¼ 0:596 for the 1F Rasch model.
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