TABLE 7.
Markers | NWS.15 | ISB.15 | NWS.16 | ISB.16 | Pst.571242 | Pst.571262 | Pst.140202 | Pst.571243 | |
90K | BayesA | 0.506 (0.052) | 0.405 (0.053) | 0.482 (0.07) | 0.506 (0.038) | 0.279 (0.113) | 0.219 (0.074) | 0.11 (0.05) | 0.426 (0.059) |
BayesB | 0.489 (0.055) | 0.407 (0.05) | 0.486 (0.07) | 0.51 (0.044) | 0.286 (0.111) | 0.228 (0.079) | 0.101 (0.051) | 0.414 (0.062) | |
BayesC | 0.491 (0.061) | 0.413 (0.052) | 0.477 (0.077) | 0.5 (0.044) | 0.29 (0.104) | 0.236 (0.076) | 0.107 (0.055) | 0.434 (0.061) | |
BRR | 0.488 (0.055) | 0.395 (0.056) | 0.502 (0.061) | 0.498 (0.044) | 0.264 (0.102) | 0.236 (0.079) | 0.139 (0.041) | 0.413 (0.06) | |
BL | 0.511 (0.053) | 0.392 (0.047) | 0.47 (0.078) | 0.493 (0.043) | 0.275 (0.101) | 0.24 (0.073) | 0.102 (0.05) | 0.42 (0.059) | |
GBLUP | 0.468 (0.058) | 0.393 (0.048) | 0.472 (0.069) | 0.494 (0.044) | 0.259 (0.103) | 0.241 (0.077) | 0.106 (0.038) | 0.396 (0.059) | |
RKHS | 0.354 (0.054) | 0.235 (0.054) | 0.39 (0.081) | 0.386 (0.062) | 0.205 (0.094) | 0.221 (0.064) | 0.061 (0.049) | 0.226 (0.084) | |
EN | 0.48 (0.062) | 0.413 (0.06) | 0.482 (0.069) | 0.491 (0.043) | 0.227 (0.104) | 0.214 (0.085) | 0.117 (0.033) | 0.402 (0.056) | |
RVM | 0.505 (0.067) | 0.396 (0.072) | 0.486 (0.069) | 0.466 (0.049) | 0.245 (0.108) | 0.212 (0.06) | 0.131 (0.043) | 0.34 (0.054) | |
GP | 0.476 (0.058) | 0.392 (0.06) | 0.5 (0.058) | 0.498 (0.048) | 0.258 (0.107) | 0.25 (0.076) | 0.088 (0.038) | 0.408 (0.057) | |
RRBLUP | 0.481 (0.057) | 0.406 (0.052) | 0.486 (0.069) | 0.501 (0.042) | 0.228 (0.099) | 0.222 (0.078) | 0.139 (0.035) | 0.405 (0.058) | |
GBS | BayesA | 0.449 (0.108) | 0.442 (0.077) | 0.391 (0.061) | 0.399 (0.089) | 0.168 (0.047) | 0.102 (0.07) | 0.079 (0.053) | 0.23 (0.051) |
BayesB | 0.421 (0.118) | 0.432 (0.083) | 0.386 (0.06) | 0.405 (0.086) | 0.146 (0.046) | 0.117 (0.067) | 0.067 (0.056) | 0.227 (0.048) | |
BayesC | 0.421 (0.114) | 0.412 (0.084) | 0.395 (0.061) | 0.396 (0.084) | 0.157 (0.053) | 0.122 (0.07) | 0.097 (0.053) | 0.236 (0.044) | |
BRR | 0.407 (0.114) | 0.426 (0.079) | 0.398 (0.061) | 0.428 (0.084) | 0.146 (0.05) | 0.106 (0.067) | 0.062 (0.059) | 0.229 (0.048) | |
BL | 0.428 (0.111) | 0.399 (0.087) | 0.38 (0.062) | 0.391 (0.093) | 0.15 (0.05) | 0.109 (0.071) | 0.054 (0.056) | 0.241 (0.048) | |
GBLUP | 0.417 (0.111) | 0.435 (0.081) | 0.366 (0.069) | 0.388 (0.086) | 0.151 (0.051) | 0.117 (0.069) | 0.013 (0.054) | 0.225 (0.05) | |
RKHS | 0.403 (0.115) | 0.424 (0.082) | 0.36 (0.064) | 0.407 (0.09) | 0.104 (0.043) | 0.107 (0.07) | 0.039 (0.052) | 0.228 (0.052) | |
EN | 0.26 (0.086) | 0.33 (0.109) | 0.17 (0.104) | 0.379 (0.066) | 0.256 (0.049) | 0.002 (0.087) | −0.01(0.07) | 0.084 (0.065) | |
RVM | 0.486 (0.106) | 0.381 (0.08) | 0.346 (0.072) | 0.439 (0.084) | 0.06 (0.04) | 0.038 (0.071) | 0.171 (0.06) | 0.224 (0.083) | |
GP | 0.413 (0.114) | 0.427 (0.087) | 0.372 (0.069) | 0.466 (0.084) | 0.139 (0.049) | 0.133 (0.071) | 0.048 (0.066) | 0.246 (0.056) | |
RRBLUP | 0.398 (0.109) | 0.421 (0.082) | 0.388 (0.061) | 0.385 (0.087) | 0.079 (0.056) | 0.104 (0.07) | 0.001 (0.053) | 0.213 (0.055) |
Genomic prediction models: BayesA, BayesB, and BayesC. BRR, Bayesian ridge regression; BL, Bayesian least absolute shrinkage and selector operator; GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert spaces regression; EN, elastic net; RVM, relevance vector machine; GP, Gaussian processor; rrBLUP, ridge regression best linear unbiased prediction. The values in the parentheses are SDs of the prediction accuracies.