Skip to main content
. 2022 Mar 9;14:35. doi: 10.1186/s13102-022-00431-3

Table 2.

Multinomial logistic regression models adjusted for the dependent variable injury type for each sex

Dependent variable Predictor B (Std error) p odds ratio 95% CI odds ratio
Type of injury1 Boys3
Sprain Intercept  − 0.793 (0.276) .004
SP level (0) 0.100 (0.672) .882 1.105 (0.296, 4.125)
SP level (1) 2.180 (0.838) .009 8.842 (1.713, 45.651)
Fracture Intercept  − 0.480 (0.250) .055
SP level (0)  − 1.600 (1.090) .142 0.202 (0.024, 1.709)
SP level (1) 1.984 (0.821) .016 7.269 (1.455, 36.306)
Type of injury2 Girls4
Strain Intercept 2.272 (0.810) .005
Maturity offset  − 0.538 (0.224) .016 0.584 (0.376, 0.906)
SP level(0)  − 1.249 (0.756) .098 0.287 (0.065, 1.262)
SP level(1)  − 2.012 (0.824) .015 0.134 (0.027, 0.673)
SP level(2)  − 3.029 (1.239) .015 0.048 (0.004, 0.549)
Fracture Intercept 2.050 (0.895) .022
Maturity offset  − 0.842 (0.253) < .001 0.431 (0.262, 0.707)
SP level(o)  − 1.869 (0.974) .055 0.154 (0.023, 1.041)
SP level(1)  − 1.541 (0.932) .098 0.214 (0.034, 1.330)
SP level(2)  − 0.572 (0.945) .545 0.564 (0.089, 3.596)

1The reference category is strain

2The reference category is sprain

3Model X2(4) = 15.165, p = .004; Cox & Snell R2 = .120; Nagelkerke R2 = .135; McFadden R2 = .059

4Model X2(8) = 28.770, p < .001; Cox & Snell R2 = .290; Nagelkerke R2 = .328; McFadden R2 = .158