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Abstract

In medical imaging, quantitative measurements have shown promise in identifying diseases 

by classifying normal vs. pathological parameters from tissues. The support vector machine 

(SVM) has shown promise as a supervised classification algorithm and has been widely used. 

However, the classification results typically identify a category of abnormal tissues, but do not 

necessarily differentiate progressive stages of a disease. Moreover, the classification result is 

typically provided independently as a supplement to medical images, which contributes to an 

overload of information sources in the clinic. Hence, we propose a new imaging method utilizing 

the SVM to integrate classification results into medical images. This framework is called disease-

specific imaging (DSI) which produces a color overlaid highlight on B-mode ultrasound images 

indicating the type, location, and severity of pathology from different conditions. In this paper, 

the SVM training was performed to construct hyperplanes that can differentiate normal, fibrosis, 

steatosis, and pancreatic ductal adenocarcinoma (PDAC) metastases in livers based on ultrasound 

echoes. Also, cluster centroids for specific diseases define unique disease axes, and the inner 

product between measured features and any disease axis selected by the SVM quantifies the 

disease progression. The features were measured from 2794 ultrasound frames using the H-scan 

analysis, attenuation estimation, and B-mode image analysis. The performance of our proposed 

DSI method was evaluated for a pre-clinical model of steatosis (n = 400 frames). The contribution 

of each feature was assessed, and the results were compared with ground truth from histology. 

Moreover, the images generated by our DSI were compared with earlier imaging methods of 
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B-mode, H-scan, and histology. The comparisons demonstrate that DSI images yield higher 

sensitivity to monitor progressive steatosis than B-mode and H-scan and provide a comparable 

performance with the histology. For the parameter comparison, DSI and H-scan resulted in similar 

correlation with histology (rs=0.83), but higher than attenuation (rs=0.73) and B-mode (rs=0.47). 

Therefore, we conclude that DSI utilizing the SVM applied to steatosis can visually represent the 

classification results with color highlighting, which can simplify the interpretation of classification 

compared to the traditional SVM result. We expect the proposed DSI can be used for any medical 

imaging modality that can estimate multiple quantitative parameters at high resolution.
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I. INTRODUCTION

In medical ultrasound, a number of quantitative measurements have been developed over the 

past decades as a means of improving diagnosis and going beyond subjective assessment 

of B-mode imaging [1–8]. The broad field of tissue characterization has analyzed scattering 

and propagation parameters of tissues across a variety of conditions [9–14].

As scanning systems develop more capabilities, clinicians can capture more parameters 

from a region of interest (ROI) interrogated by ultrasound. This leads to multiparametric 

studies to discriminate between groups, such as normal vs. diseased tissue, and different 

disease (for example, hepatic steatosis vs fibrosis) [15]. Early work on the statistical 

classification of multiparametric clusters of ultrasound-related measurements indicated 

the usefulness of incorporating several quantitative measurements [16, 17]. Today, an 

emerging set of parameters can be measured using B-mode or optional sequences in 

clinical scanners. Specifically, the attenuation coefficient estimated using B-mode imaging 

has the feasibility to stage steatosis [18–20]. Further, there are parameters related to both 

ultrasound and shear wave propagation in tissues which are linked to the staging of steatosis 

[21–25] or fibrosis [26, 27]. However, these measurements only show trajectories of the 

parameters without providing any diagnostic guide, meaning that it is desirable to propose 

methods that can set thresholds for 1D or boundaries for multi-dimensional space between 

different disease stages. Moreover, this evolving set of multiparametric measures raises an 

important next-level question: how to best integrate a plethora of new measurements in 

a straightforward way that assists the clinical diagnosis of a patient? Recent studies have 

employed machine learning to classify multi-features [28–32], although deep learning is 

widely applicable to solve ultrasound problems, such as image reconstruction [33, 34], 

image enhancement [35], and lesion segmentation [36, 37]. Deep learning is known as 

more advanced technique than machine learning with the advantage that it directly extracts 

features from input images, avoiding preprocessing for feature measurement and selection. 

However, it requires a larger number of training sets and longer processing time, which 

can be critical disadvantages since (1) in medical imaging, collecting a large number of 

patient training sets may be challenging, and (2) ultrasound applications aim to be real-time. 
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Hence, tissue classification for multi-parameters utilizes the support vector machine (SVM), 

which requires less processing time and a smaller number of training datasets compared 

with other machine learning and deep learning methods. Classification examples using 

SVM include liver lesions [20, 30, 38–40], liver fibrosis [31], steatosis [41, 42], breast 

lesions [32], and thyroid nodules [28]. However, these studies extracted features using 

intensity signals based on general image processing techniques. Recent studies [20, 39, 41, 

42] have extracted some features in the frequency domain based on ultrasound physics, 

including measurements from (1) attenuation caused by ultrasound beam propagation and 

(2) frequency shifts caused by ultrasound attenuation, which may be not characterized 

by general image processing. Thus, tissue classification with multiple parameters can 

take advantage of the SVM and ultrasound physical properties. Although the research 

demonstrates that multiparametric analysis can classify diseases, routine clinical use of 

the features will require new integrative and simple-to-use tools to be developed. For 

example, color-coding utilizing quantitative parameters would be beneficial to clinicians 

since it directly clarifies feature differences between normal and abnormal tissues [6, 43]. 

It has been common practice to display each measured parameter independently, however 

this requires the clinician to integrate information across numerous images. A method 

combining multi-parameters and showing a representative image may be advantageous. We 

have addressed this need by formulating a framework called disease-specific imaging (DSI) 

utilizing machine learning and mathematical approaches. In this framework, a training set is 

studied using statistical methods to identify clusters of parameters (corresponding to specific 

disease states) in a multidimensional space comprised of the multiparametric measures [40]. 

Then, as a new scan is acquired from a patient, these parameters are examined in the 

multidimensional space and classified using the SVM, which constructs decision planes of 

the disease clusters [39]. Mathematical measures of closeness to a disease cluster are then 

applied to the original B-mode image as color overlays, with unique colors assigned to the 

unique diseases identified within the training set. In this way the complicated mathematical 

analysis of multiparametric information, which can be overwhelming for an individual to 

sort out, can be simply displayed in the context of the familiar B-mode image.

In this paper, we apply this DSI framework to in vivo scans from an animal model of simple 

steatosis of the liver. The DSI framework has been trained on liver scans from three previous 

studies with four different conditions: liver fibrosis from CCl4 (carbon tetrachloride) 

exposure [20], liver metastases from pancreatic ductal adenocarcinoma (PDAC) infiltration 

[44], liver steatosis from choline-deficient diets [41, 42], and normal liver from the control 

group for each study. These previous studies all derived multiple quantitative parameters 

in connection with the H-scan analysis and other metrics, and the clusters for normal vs. 

pathological liver conditions were identified in a unified multiparametric space, defining 

corresponding disease axes. The DSI images are generated based on degrees of closeness to 

the identified disease axes. The results are shown to correspond to histological assessments 

of fat infiltration in the liver and provide both quantitative information about the progression 

of steatosis and a simple visual display of the increasing amount of fat.
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II. THEORY

In this section, we introduce the theoretical background and the motivation of our 

proposed medical imaging method to visualize SVM classification of diseases. The SVM 

classification result can be directly imaged and overlaid onto B-mode ultrasound images.

A. Support vector machine

The SVM classifier [45–47] is widely used in medical imaging applications to classify 

different diseases due to a number of advantages. First, the concept of the SVM is based 

on maximization of margins between clusters for input data points. While maximizing, 

the SVM only utilizes the data subsets positioned near the clusters’ boundaries, called 

support vectors. Thus, the SVM can determine decision planes successfully even if there 

are not enough data points, but those data points near the boundaries can well describe 

the data distribution between different classes. Second, SVM is a convex optimization 

problem. Therefore, the solutions of the SVM are a global optimum, whereas solutions 

from other classifiers can be local minima. Third, the SVM allows misclassified data points 

near boundaries, which can provide practical solutions because most real-world data sets 

are not 100% separable for different classes. The amount of misclassified data points that 

can be allowed by the SVM is determined by the box constraint parameter. Lastly, the 

SVM can employ the Gaussian kernel function, which results in non-linear hyperplanes; 

the smoothness of the hyperplanes is determined by the Gaussian kernel sigma parameter. 

Therefore, the SVM methods have been applied to the medical imaging field to classify 

diseases by using multiple parameters extracted from the medical images, of which output 

is a class; for example, a medical imaging scan can be classified as a normal condition or a 

specific disease such as inflammation, fibrosis, steatosis, or a tumor type. As illustrated in 

the ‘Training’ box of Fig. 1, the features extracted from ultrasound signals are used as inputs 

for the SVM training, and then the SVM outputs decision planes that can be used for the 

prediction. In the ‘Prediction’ box, Method A in Fig. 1 describes how the decision plane can 

classify the disease class of a new patient scan. The output is a 1D parameter (‘CLASS’) in:

CLASS 1, 2, …, Mdisease

where Mdisease is the number of classes used for the training. For example, when classifying 

the four liver conditions of normal, steatosis, fibrosis, and tumor, the classification would 

result in one of the four, and CLASS = 1, 2, 3, and 4 denote normal, steatosis, fibrosis, and 

tumor, respectively.

This classification-based analysis does have limitations. The classification result cannot 

provide progressive level/disease severity, i.e., it cannot indicate progression from normal or 

early stages to late stages. The decision planes obtained by the SVM classifier are illustrated 

in a multiparameter space however these cannot be directly visualized with the using 

common imaging modalities. Without background knowledge regarding the parameters, 

users cannot understand the meaning of the decision planes and cluster distributions. 

Moreover, the decision planes are not visible if there are more than 3 features. Therefore, 
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any visualization method that can directly clarify the 1D classification result is highly 

desirable.

B. Inner product with disease axis

Because the 1D parameter output of SVM classification does not indicate the level of 

disease progression, we propose a method that can estimate disease score (the severity of 

disease/level of disease progression) by using the inner product to calculate a projection. 

Considering a feature set with M diseases containing progressive disease states and a feature 

dimension of N (the number of features), the following analysis is performed on the N-

dimensional features ∈ ℝN . We propose the concept of the disease axis, and the feature’s 

projection (a scalar value ∈ ℝ1) onto the disease axis indicates the disease progression level. 

The disease axis is defined by the SVM training dataset. The data points in each CLASS 
form a cluster, whose linear fit line is obtained with the linear equation form:

a1 ⋅ x1 + a2 ⋅ x2 + … + aN ⋅ xN + b = 0 (1)

where ai and b are coefficients identifying the linear fit line. We can choose any two 

different points that the line passes, whose coordinates can be written as A1, A2, …, AN ≡ A

and B1, B2, …, BN ≡ B . Then, a unit vector for the line can be defined by:

A − B

A − B 2
=

A − B

A − B ⋅ A − B
(2)

where the notation · represents the inner product or dot product, defined by:

c ⋅ d =
i = 1

N
cidi ≡ projection . (3)

c = c1, c2, …cN  and d = c1, c2, …, cN  are any vector in ℝN space. In (3), the scalar value 

derived from the inner product is called “projection”. The Fig. 1 training box illustrates an 

example for N = 3. Each cluster can find its linear fit line indicating the direction of the 

disease progression, and then we can calculate unit vectors for these lines. The three axes for 

the unit vectors become disease axes. Thus, the training can result in decision planes and a 

disease axis set. With the new patient scan and its features, method B in the prediction box 

in Fig. 1 first classifies the liver states using the decision planes obtained from the SVM and 

results in CLASS, and then it calculates the inner product between the features and disease 

axis corresponding to the output CLASS. The projection obtained from the inner product 

indicates the disease progression level. For example, a feature classified as steatosis has a 

steatosis progression level determined by calculating the inner product between the steatosis 

axis and the feature. Therefore, disease classification (CLASS) and its progression level 

(projection) can be provided as a 2D parameter (CLASS, projection), but these parameters 

are shown in parameter space, independently, with their corresponding input images.
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C. Disease-specific imaging to visualize SVM classification

We propose DSI, which is designed as a supervised learning method to predict disease types 

and progression levels from input ultrasound scans (or, in principle any imaging modality 

that can measure multiple features in pixel-wise resolution). DSI first requires training as 

illustrated in the Fig. 1 Training box, and a training dataset and the corresponding desired 

output can be ultrasound signals and pathological confirmation for each target of the scans, 

respectively. Then, the training results are (1) decision planes constructed by using the SVM 

and (2) disease axes obtained by analyzing the clusters of input features. Based on the 

desired output provided by pathology, the number of diseases that can be identified by the 

trained DSI can be specified. For example, in this study, the DSI enables identification of 

four liver conditions, including normal, steatosis, fibrosis, and PDAC metastasis in liver. 

The DSI prediction is depicted in the Fig. 1 Prediction box Method C. The trained DSI 

can output a color image by processing a new patient scan. Features extracted from the 

new scans are assigned as input to the trained DSI, and then the trained SVM and inner 

product utilizing its SVM classification result and disease axes output (CLASS, projection). 

The 2D output corresponds to (disease name, progression level), which is mapped into 

(Color, Intensity). The color images generated using the assigned color and its intensity are 

overlaid onto the input B-mode image. The four colors of grayscale, yellow, green, and 

red indicate normal, steatosis, fibrosis, and PDAC metastasis, respectively. For example, 

as fat accumulates in a liver, the yellow color becomes brighter. Its measured features are 

gradually changed, advancing along the steatosis axis. Accordingly, the inner product of the 

features and the unit vector of the steatosis axis increases. While training the DSI, we set a 

maximum inner product value indicating the severest steatosis level. Using this maximum, 

the inner product results (projection onto the steatosis unit vector) are normalized, resulting 

in a minimum of 0 and a maximum of 1. The normalized values become RGB color 

components. For steatosis, the normalized value × [1,1,0] becomes the RGB code for 

each pixel. DSI color can change from dark to bright, indicating disease progression level. 

Therefore, our proposed method visualizes the SVM classification using a simple color 

display.

III. MATERIALS AND METHODS

A. Study overview

The proposed DSI method is shown in Fig. 2. Ultrasound scans were performed, and 

users manually set a region-of-interest (ROI) box for DSI processing; to monitor disease 

progression, it is recommended to set the ROI consistently while repeating ultrasound scans 

over time. Within the ROI, feature extraction is performed. Three features characterizing 

tissue signatures are obtained from H-scan imaging, attenuation estimation, and B-mode 

imaging. The features become the input of the DSI processing. The DSI procedure consists 

of two main steps: (1) training the DSI, resulting in hyperplanes constructed by the SVM 

and disease axes derived from feature clusters, and (2) predicting liver conditions with the 

trained DSI to inform disease progression. When predicting liver conditions, DSI finally 

outputs disease-specific images for the scanned liver.
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B. Training and Testing datasets

For the proposed DSI, the training and the testing study were independently performed. 

As shown in Fig. 2, DSI prediction requires training, and therefore the pre-training was 

performed [40], which corresponds to the “Training DSI” block in Fig. 2. The trained DSI 

has applied to steatosis cases in this work.

For the training, we included 4 different classes of liver conditions: normal, steatosis, 

fibrosis, and PDAC metastasis. The 3 disease conditions of steatosis, fibrosis, and PDAC 

metastasis were induced in animal livers. The steatosis was induced by a choline-deficient 

diet in 12 Sprague-Dawley rats (SD, Charles River Laboratories, Wilmington, MA, USA) 

for 6 weeks. The fibrosis was induced by CCl4 (carbon tetrachloride) exposure (1mL/kg, 

three times per week) for 4 to 8 weeks in enrolled 11 rats, of which 7 were SD rats 

and 4 were TAC NIHRNU (nude, Taconic Biosciences, Inc., Rensselaer, NY, USA). 

The PDAC metastasis in liver was grown by injecting 4 × 105 luciferase expressing 

murine pancreatic tumor cells into the spleen of 9 C57BL/6J mice (Jackson Laboratory, 

Bar Harbor, ME, USA). The progression of PDAC metastasis was monitored from 10 

days to 9 weeks after the injection. The baseline animals before diseases induction were 

considered as the normal groups, and the each of the diseases progressed from early to 

late stages. Their end time points were investigated by pathologists. The stages became the 

ground truth for the DSI. The livers were ultrasound-imaged from baseline to late stage 

of each disease so that the total of 2794 ultrasound frames acquired by three ultrasound 

scanners: Verasonics ultrasound scanner (Vantage 256, Verasonics, Inc., Kirkland, WA, 

USA) with an L11–5v probe (10 MHz center frequency) for PDAC metastasis; Vevo 2100 

(FUJIFILM VisualSonics, Toronto, ON, Canada) with a MS 250 linear transducer (21 

MHz center frequency) for fibrosis; and Vevo 3100 (FUJIFILM VisualSonics, Toronto, 

ON, Canada) with a MX 201 linear probe (15 MHz center frequency) for steatosis. The 

center frequencies of transmission were provided above, and this study recommends that 

the sampling frequencies need to be high enough based on the Nyquist sampling theorem 

for frequency domain analysis of the H-scan and attenuation estimation. The numbers of 

scanlines are determined by transducers. The VisualSonics scanner saved radiofrequency 

(RF) data, and the Verasonics scanner saved in-phase quadrature (IQ) data. The feature 

extraction of H-scan and attenuation estimation analysis used RF or IQ data, and B-mode 

intensity was measured from log-compressed data. We involved the three studies with 

different disease models of liver pathology, which were investigated by three ultrasound 

scanners utilizing the transmissions with different center frequencies and bandwidths. These 

experimental settings were designed to verify that our proposed approach, including training 

for the SVM, is not limited to a specific animal disease model or ultrasound system.

To evaluate the performance of the DSI prediction as a testing study, especially for 

steatosis, we scanned 400 ultrasound frames independently with the training study. As 

an in vivo study, ten Sprague–Dawley rats (Charles River Laboratories, Wilmington, MA) 

were enrolled to monitor progression of nonalcoholic fatty liver disease (NAFLD). The ten 

animals were randomly divided into two groups: control (n = 4) and diet (n = 6), which were 

fed by a control or methionine and choline deficient (MCD) diet, respectively. The MCD 

diet induces fat accumulation in livers. The rat livers were ultrasound-imaged at baseline and 
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week 2. The Vevo 3100 scanner (FUJIFILM VisualSonics Inc., Toronto, Canada) utilizing a 

15 MHz center frequency linear probe (MX201) acquired RF data. Each scan acquired 100 

frames of RF data, and among them 20 frames were selected at regular intervals, whereby 

a total of 400 frames were investigated. The animals were sacrificed at week 2 to obtain 

liver sections for histology of both hematoxylin and eosin (H&E) and Picrosirius red stain; 

object × 20 and × 40 magnifications were obtained. For all animals in this testing data set, 

their liver conditions were pathologically confirmed using the histology images, and the 

confirmation was used as the ground truth. This protocol was approved by the Institutional 

Animal Care and Use Committee at the University of Texas at Dallas.

C. Feature extraction

We extracted three features from the backscattered ultrasound echoes, utilizing the 

attenuation estimation, H-scan analysis, and B-mode imaging. Please note that this study 

demonstrates that the features extracted from ultrasound images acquired from three 

different ultrasound systems can be unified into the multiparametric space.

1) Attenuation Estimation: The attenuation coefficient (α, [dB/MHz/cm]) was first 

measured by estimating the frequency down-shift over depth using the concept of H-scan 

analysis that can measure frequency components [20]. The processing was performed line 

by line, whereby each scanline has an estimated attenuation coefficient. An example image 

of estimated attenuation coefficients is provided in Fig. 2 with the attenuation color bar 

ranging from 0 to 1 dB/MHz/cm.

2) H-scan analysis: H-scan is a matched filter analysis used to identify tissue 

characteristics by measuring frequency shifts from reflected echoes [48]. The H-scan 

displays colorcoded images by mapping the frequency shifts to red/blue colors. The 

colormap is provided in Fig. 2; more red colors represent frequency down-shift that may be 

caused by larger scatterers, whereas more blue colors represent frequency up-shifts caused 

by smaller scatterers. Prior to measuring the H-scan parameter of percent blue (% blue), 

based on the estimated attenuation coefficient, attenuation over depth in RF data was first 

corrected [48]. The attenuation-corrected RF data was assigned as the input of the H-scan 

analysis, and therefore H-scan color images can result in uniform color distribution over 

depth but discriminated colors corresponding to scatterer size. The colors from red to blue 

correspond to relatively smaller to larger scatterer size [48]. The color distributions for 

smaller to larger scatterers are provided in the Fig. 2H-scan color bar. The H-scan color 

levels are digitalized with 256 scales, and for quantifying the H-scan analysis we calculate % 

blue as:

%blue = Number of blue pixels
Number of all pixels within a ROI × 100% (4)

where the pixels within ROI are divided into red and blue pixels, and these have color levels 

of 1–128 and 129–256, respectively. The color levels correspond to a matched filter set 

whose peak frequencies range from 5.3 to 15.7 MHz with an equal interval between the 256 

peak frequencies for steatosis. The peak frequencies of the matched filters were determined 
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to have 50% blue for normal livers. Since the transmit frequencies of the three scanners vary, 

different peak frequencies for matched filters were used.

3) B-mode imaging: B-mode intensity in the dB scale was measured from log-

compressed images. As mentioned in Section III.B, three different ultrasound scanners 

were used, which have different transmit frequencies, system designs, and post-processing, 

resulting in different signal levels and spectra. To incorporate features obtained from the 

different signals into an analysis, feature standardization is required. To be specific, when 

training DSI, we standardized B-mode intensity obtained from the different scanners. Each 

scanner has a different intensity baseline, and thus B-mode intensity for normal livers was 

set to −15 dB, requiring an intensity level offset for each scanner.

D. Testing of DSI applied to steatosis

We evaluated the accuracy of the trained DSI by performing a testing study for steatosis. 

DSI was applied to the testing dataset of 400 ultrasound frames of the ten animals acquired 

at baseline and week 2.

1) Parameter Analysis with Feature Trajectories: For the measured features, 

statistical analyses were performed. To verify that the parameters are able to monitor liver 

tissue changes due to disease progression, we investigated trajectories of the measured 

parameters as a function of severity of the disease states. First, we define a combined 

parameter C C ∈ ℝ1  by combining the H-scan and attenuation parameters, which can be 

considered as frequency domain-based analysis. The 1D trajectories were investigated. 

Parameter trajectories including B-mode intensity were also the investigated in 3D space. 

For both 1D and 3D trajectories, the pathways of the training and testing studies were 

compared.

The combined parameter C is defined with H-scan % blue and attenuation coefficient as:

C = ωH ⋅ xH + ωA ⋅ xA (5)

where xH and xA are normalized H-scan and attenuation parameters, respectively, obtained 

by:

xH = %blue − 50
10 ; xA = α − 0.5 × 10. (6)

These parameters tend to range from −5 to 5 and are 0 when a normal liver is scanned. As 

any disease progresses in liver, the absolute sum for the normalized H-scan and attenuation 

coefficient, |xH|+|xA|, increases, whereas normal livers have an absolute sum near 0. In 

addition to the summation of the absolute values which indicate disease severity, there 

are changing directions determined by positive or negative values of % blue or α. When 

investigating the liver diseases PDAC metastasis, steatosis, and fibrosis, we find that the 

weights wA = 0.6 · sign(xA) and wH = 0.4 · sign(xA) provide the best separation of the three 

diseases [40].

Baek et al. Page 9

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2) Segmentation for Diseased Area: DSI performance was evaluated by calculating 

fat fraction area and comparing it with histology as shown in Fig. 3. The DSI highlights fat 

fraction in yellow, and the fat fraction was quantified as ‘steatotic %’:

steatotic%

= Number of pixels classified as steatosis
total number of pixels × 100% (7)

where our DSI classifies each pixel’s state between normal, steatosis, fibrosis, and PDAC 

metastasis. Similarly, ‘fibrotic %’ and ‘tumor %’ were also calculated with the number of 

pixels classified as fibrosis and PDAC tumor, respectively, by updating the numerator in (7). 

In this way the percentages for the three diseases were calculated for DSI.

To evaluate DSI accuracy by comparing the result with the gold standard, fat fraction in 

histology images was also calculated using fat-stained areas. We can quantify steatosis 

progression by measuring the area of fat inclusions within the liver histology images. As 

shown in Fig. 3 (a) and Fig. 4, fat inclusions appear in brighter than normal tissues. The 

histology images were first converted to gray scale, and then a threshold for binarization 

was set. The binarization in Fig. 3 (a) enables the differentiation of fat pixels from normal 

pixels, then the number of pixels classified as steatosis by binarization was divided by the 

total number of pixels in histology, and therefore steatotic % in histology images was also 

calculated using (7). The steatotic % classified by DSI and histology was compared by using 

Spearman’s correlation coefficient.

IV. RESULTS

A. Feature analysis

1) H-scan: Example images of B-mode, H-scan, and histology are displayed in Fig. 4; 

the upper and lower rows show normal and fatty liver results, respectively. In the fatty liver 

images, the B-mode images appear brighter, and the H-scan images show as more blue 

compared to the normal liver. For the histology images, the normal liver only shows normal 

cells, whereas the fatty liver also shows white fat inclusions. The histology slides indicate 

that the fat inclusions tend to have smaller diameters than normal cells. The fat diameters 

were measured for all diet groups’ cases, and the average was 8.6 ± 1.8 µm. This average 

diameter is smaller than the normal hepatocytes’ diameter of approximately 20 µm. This is 

plausibly the key mechanism explaining why the fatty livers appear more blue on H-scan 

compared to normal livers.

2) Feature and Statistics: The features measured from H-scan, attenuation estimation, 

and B-mode are presented in Fig. 5. For the control group, the parameter measurements 

remain unchanged over time, whereas for the diet group they increase from baseline to 

week 2. The H-scan and B-mode metrics showed significant difference between weeks 0 

and 2 for the diet group. While the attenuation coefficient is not significantly different 

between the control and diet groups, the diet group tends to have higher attenuation than 

the control; we may need a larger number of livers for a more reliable result. Overall, the 
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measured parameters change as fat accumulates, demonstrating each parameter contributes 

to the differentiation between normal and fatty livers.

3) Trajectories: To track disease progression in addition to a gross classification 

between normal and abnormal, we combined the parameters and investigated them in 

multidimensional space, as shown in Fig. 6, which demonstrates that the parameters’ 

trajectories over time follow the disease progression pathways in combined parameter or 

multiparametric space; the progression direction is from the origin to the end point of the 

pathways. Fig. 6 (a) analyzes the 1D combined parameter, showing trajectories for steatosis, 

fibrosis, and PDAC metastases over time. It displays the three diseases’ progression 

pathways obtained from the training and testing study, demonstrating that the testing study’s 

trajectories follow the steatosis pathway obtained from the earlier training set. Moreover, 

Fig. 6 (a) shows 4 areas representing normal to early stage, steatosis, fibrosis, and PDAC 

metastasis, where boundaries were decided by SVM with the training dataset (n = 2794 

images). The start and end time points were tagged as normal and diseased, respectively, 

for the training and testing datasets (n = 400 images). The trained SVM was applied to the 

testing set, and the classification accuracies for the training and testing datasets were 100% 

and 91.7%, respectively.

In 3D vector space, as shown in Fig. 6 (b), the week 2 diet measurements resulted in vectors 

near the steatosis axis among the three different disease axes. Their projections onto the 

steatosis axis quantifies components of the steatosis axis. When the projection result is 

further from the origin, it indicates more progressive steatosis, quantifying fat accumulation 

level based on the axis obtained from DSI training. The trained axis indicates progression 

direction and measured parameters from normal to late stage/severe steatosis. Therefore, 

the multiparametric study depicted in Fig. 6 enables the tracking of parameter changes 

by employing a joint analysis related to steatosis progression. Hence, we propose DSI as 

a simple visual display which enables clinicians to visualize how steatosis is progressing 

based on the imaging, without detailed examination of the features obtained from ultrasound 

physics.

B. DSI performance

1) Diseased Area Segmentation: The segmentation results obtained using DSI are 

illustrated in Fig. 3 with segmented area and color intensity, which is capable of tracking 

gradual fat increase by utilizing color changes from dark to bright. From Fig. 3 (b) to (e), 

there is gradual fat accumulation from normal to progressive steatosis. Although Fig. 3 (c) 

to (e) are all selected from the diet group at week 2, each animal had a different volume 

percentage of fat, which can be verified by the steatotic % calculated from histology images. 

Consistent with the fat segmentation in histology, DSI also demonstrates a gradual increase 

in overlaid yellow area on B-mode images. The yellow area was segmented using DSI; 

the trained SVM in DSI classified each pixel’s disease type, and then DSI highlights the 

segmented fat area in yellow. The example images in Fig. 3 only have pixels displaying 

yellow, meaning all pixels classified as diseased tissues resulted in steatosis. In addition to 

steatotic %, DSI also measured fibrotic % and tumor %; the average percentages with one 

standard deviation are listed in Table I. The steatotic % for the MCD diet group obtained 
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from both DSI and histology is higher than the other percentages. The steatotic % for the 

control group, and the fibrotic % and tumor % for all cases can be considered as false 

classification results when they are greater than 0; nevertheless, the false classification 

percentages are less than 1%. The false classification of DSI is comparable to the error 

of histology, meaning that when investigating control livers using histology figures, the 

steatotic % also resulted in 0.96 ± 0.95% instead of 0%. Therefore, we conclude that our 

DSI approach enables the identification of steatotic tissues in liver with a similar error level 

as measuring fat fraction in histology.

2) Correlation with Histology: To further assess DSI performance by testing whether 

it can detect gradual fat accumulation as well as differentiating between normal liver and 

steatosis, we compared the performance with histology. The ability to segment the fat 

fraction was assessed through steatotic % in both DSI and histology, and the percentages 

were compared. The steatotic % in histology images was calculated for individual livers 

using both 20× and 40× magnification. The overall correlation between DSI and histology 

is high, as shown in Fig. 7, with Spearman’s correlation rs of 0.842 and 0.808 for the 20× 

and 40× magnification, respectively, although only 10 animals were investigated. Hence, 

DSI can detect the gradual increase in fat accumulation or progressive steatosis, including 

early-stage steatosis.

C. DSI performance comparisons

1) Feature Selection and Contribution for the SVM classification: We selected 

three features that can be considered as having independent properties; H-scan and B-mode 

measure scatterers’ properties which can be estimated in frequency and time-domain, 

respectively, and attenuation coefficient estimates physical properties derived by ultrasound 

beam propagation. As described in Section IV.A., we have demonstrated our features and 

their trajectories can successfully characterize liver states and steatosis progressions through 

evaluations with statistics and SVM classification. Moreover, as described in Section IV.B., 

combining the features by the DSI utilizing the SVM shows strong agreements with 

histology measurements. Therefore, we expect that all the parameters could contribute to 

classification. To verify this, we investigated their contribution as input features of the SVM 

classification.

First, we investigated correlation between the features and the ground truth of measurements 

from histology to estimate each feature’s contribution. As shown in Fig. 8 (a), DSI and 

H-scan have the highest correlation (rs = 0.83) with the ground truth. B-mode intensity 

resulted in rs = 0.73, and attenuation has the least correlation with rs = 0.47.

Comparing the correlation coefficient, the DSI utilizing attenuation resulted in the 

comparable performance with H-scan, but the attenuation showed the relatively lower 

performance than the others. Therefore, to see whether attenuation can actually contribute to 

the DSI, we performed two different trainings without and with the attenuation parameter. 

As mentioned in Section IV.A.3., the SVM training for our DSI reached 100% classification 

accuracy when utilizing 3 parameters, including the attenuation coefficient. Fig. 8 (b) shows 

SVM training results with just the two input features of H-scan and B-mode, excluding 
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attenuation. The hyperplanes have classification accuracies ranging from 87.8% to 100%, 

from left to right, according to their parameters. The SVM parameters of box constraint 

and Gaussian kernel were adjusted to optimize hyperplane shapes, and thus from left to 

right there is a tendency from under- to over-fitting of results. The implementations were 

carried out with MATLAB R2018b (The MathWorks, Inc., Natick, MA, USA); the tested 

classifier is the SVM with Gaussian kernel, and the SVM parameters were adjusted from 

1 to 100 for hyperplane optimization. According to Fig. 8 (b), the SVM classification 

in 2D space excluding the attenuation parameter cannot reach 100% accuracy without 

overfitting. We can conclude that the classification accuracy obtained from 2D analysis is 

approximately 90% without overfitting. However, when including the attenuation parameter, 

the 3D analysis of the SVM in Fig. 8 (c) shows all 100% accuracy. From left to right, the 

parameters were set to have higher accuracies, but the hyperplanes were getting overfitted. 

However, the left-most figure provides the decision planes without overfitting. Therefore, 

we can conclude that the attenuation parameter also contributes to the SVM classification, 

because without the parameter the SVM classification cannot reach 100% accuracy.

2) Performance Comparisons with Other Methods: Imaging: To illustrate the 

advantages of our proposed DSI method in the imaging aspect, we compared imaging 

results of the DSI and other existing methods providing images in Fig. 8 (d). This figure 

displays images obtained using B-mode, H-scan, DSI, and histology (Picrosirius red (PSR) 

and H&E). Each column was imaged using the same animal, but with different imaging 

modalities. From left to right images, there is fat accumulation; to be specific, the left-most 

figure is a normal liver, and the others have progressive steatosis from early to late stages. 

All the imaging methods tend to show gradual changes from left to right. The histology may 

be the most accurate, but it cannot be acquired without sacrificing the target animals. In the 

upper row, the traditional B-mode has been used for steatosis diagnosis, and it is known 

that steatosis produces brighter B-mode echoes than normal livers, but the subtle changes 

between early to late stages are not easily assessed as demonstrated in the images in the 

second to fifth columns. In the second row, the H-scan shows increase in blue colors as 

steatosis progresses, which is possibly more noticeable compared to the subtle changes of 

B-mode. However, for the use of H-scan for steatosis, clinicians should have a reference 

value for the blue levels for each stage. Lastly, by incorporating multiple parameters, the 

DSI method can display the yellow highlighted images with diseased area segmentation. The 

DSI for the normal liver in the first column does not show any yellow, and the segmented 

yellow area increases as steatosis progresses. Users will know how much fatty tissue is 

distributed within the scanned target, similar to the gold standard histology.

Therefore, our proposed DSI method utilizing the SVM (and inner product) enables the 

visualization of steatosis progression in an easier way and with better performance compared 

to other imaging methods.

V. DISCUSSION

We note that the general approach utilized within DSI incorporates the well-established 

classification approach of utilizing a training set and then a testing set. In our case, 

the training sets were somewhat unusual in that they were acquired from three different 
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institutions, three different preclinical models of liver pathology, and three different 

ultrasound scanners. However, with proper standardization of the multiparametric measures, 

these were all incorporated into a common 3D parameter space that is represented by Fig. 

2. Once established, all results from new studies within the diseases used in training can 

be assessed as demonstrated in Fig. 6 with a final visual representation of DSI as shown 

in Fig. 3 and Fig. 8 (d). It can be noted that the traditional graphing of results, shown in 

Fig. 5, can be confusing as more parameters are measured. However, the DSI framework 

incorporates the information within the SVM classification and then can label the B-mode 

images with color overlays as shown in Fig. 3 and Fig. 8 (d), simplifying interpretation. 

With this small testing group, the overall correlation between DSI classification of steatosis 

and histological measurement of vacuoles was over 0.8, indicating a strong agreement. 

In our recent publications, we demonstrated the high performance of the DSI applied to 

the three disease models utilizing the ultrasound images acquired by the three ultrasound 

scanners at three different laboratories [40]. Moreover, with the proper standardization 

methods, our approach can be applied to other disease models and ultrasound scanners.

This study was performed to assess the proposed DSI approach for steatosis, and therefore 

assessments for fibrosis, PDAC metastases, and other diseases remain for future study.

For the steatotic animals in this paper, we investigated livers whose fat accumulation ranged 

from normal to severe steatosis. The average steatosis volume percentage measured in 

histology was 20.02 ± 6.90%, and minimum and maximum were 10.70% and 36.06%, 

respectively. However, the performance for earlier stage (less than 10% steatosis) is still 

unknown.

In human clinical practice, pathological states can present more complicated combinations 

of diseases. Further research on these complicated conditions is needed to evaluate how the 

combination of diseases affects feature trajectories between each single disease axis, and 

how they can be visualized (for example, mixing colors between different diseases). Another 

question for comparing human scans with animal scans is whether the lower resolution 

caused by the lower transmission frequencies will yield the same ability to accurately 

measure the features to yield precise DSI. To demonstrate DSI’s capability in utilizing 

ultrasound signals acquired at lower transmission frequencies, further studies of human 

scans are required. However, there have been studies extracting features from human scans, 

including H-scan and quantitative ultrasound, which show good performance [6, 7, 49]. 

Therefore, we expect that the DSI method can be applied to human scans.

Our DSI approach was developed utilizing ultrasound echoes and the H-scan analysis, and 

then we demonstrated that DSI was able to segment steatosis areas with strong agreement 

with histological measurements. However, the proposed DSI method has the potential 

to be utilized with higher accuracy and with multiple imaging modalities and features. 

First, training of DSI was performed using a dataset acquired from different ultrasound 

scanners as previously mentioned, which can be more challenging than using only one 

scanner to incorporate different disease models since scanners have different ultrasound 

beam properties, such as transmit frequency and bandwidth. When building a commercial 

DSI application for an ultrasound device, training would ideally be performed using signals 
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acquired by a single platform, and then the multiparametric analysis in DSI could be simpler 

and more reliable since training with a single platform does not require the standardization 

described in Section III.C.2-3. It can be challenging to standardize normal livers’ brightness 

and % blue. Second, pixels can be falsely classified by DSI as shown in Table I, although 

the errors are less than 1%. These errors might be lower if we could train DSI with 

ultrasound signals obtained from the same scanner thereby excluding the standardization 

procedures. Lastly, the DSI method is not limited to ultrasound imaging or H-scan analysis. 

It can be applied to any imaging modality that can estimate parameters examining tissue 

characteristics. Moreover, it can be applied to ultrasound signals using features other than 

the H-scan analysis. If features can be extracted at close to pixel-level resolution, the rest of 

the procedures are identical to this study’s ultrasound and H-scan-based DSI.

Some questions remain for further research. (1) Limitations on the spatial resolution of DSI 

classification have not been specified; currently the resolution is limited by requirements 

of the measurement of attenuation. Related to this is the tradeoff between accuracy 

of parameters and spatial support of the estimator; finer spatial resolution in estimated 

parameters is gained at the expense of higher variation in the estimated parameters, so 

an optimal combination remains to be quantified. (2) The upper limit on the number of 

unique pathological states (diseases) that can be classified with DSI is not known. Generally, 

the more independent parameters that can be included for analysis, the higher the feature 

dimension, and then less overlap between different diseases are anticipated. However, this 

question still entails both mathematics and biology. The analytical side involves all the 

issues surrounding how many classified regions and SVM boundaries can be reasonably 

determined with N measured parameters and some nominal variability in measurements. 

The biological side of the question relates to how different pathologies will influence and 

separate the N measured parameters, and to how much variability between patients (with 

the same biopsy grade or score) will be expected in the clinic. Together, these factors will 

ultimately set a practical limit for DSI classifications. However, the expectation is that as 

more independent measured parameters are enabled and more additional information is 

added from patient records, the upper bound may increase as the integration of relevant 

measures continues. (3) Further work for real-time implementation is desirable only for 

prediction purposes. The proposed approach requires training and prediction for liver 

diagnosis using the trained DSI. It is not necessary for the training to be conducted in 

real-time. Though this study didn’t implement it in real-time, we use the SVM, which is 

computationally less extensive than other machine learning and deep learning approaches.

VI. CONCLUSION

We developed the DSI technique to segment diseased tissues and highlight them with colors 

overlaid on B-mode. Features were first measured based on ultrasound physics, which form 

unique clusters specific to diseases in multiparametric space. Disease axes can be found 

from the clusters, and SVM constructs hyperplanes setting boundaries that can differentiate 

the diseases in the feature spaces. Lastly, a mathematical approach, including the inner 

product, incorporates the multiparametric and machine learning results, producing a color 

display of disease severity. The accuracy of DSI applied to a preclinical steatosis model 

was evaluated, yielding strong agreement with histology for segmentation of fat fraction. 
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Therefore, DSI has the potential to be used to classify areas of steatosis, fibrosis, tumors, 

or other conditions, enabling better diagnosis. Furthermore, while the current study was 

performed using ultrasound imaging, the DSI framework has the potential to be applied to 

other imaging modalities which can provide quantitative multiparametric features.
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Fig. 1. 
DSI strategy to visualize SVM classification. DSI is proposed as a supervised learning 

method, which requires training and prediction procedures. Utilizing a training dataset with 

ultrasound images and the corresponding ground truth tags, training results in decision 

planes constructed by the SVM and disease axes obtained from feature clusters. Here, 

three different prediction methods are provided to introduce DSI as Method C. Method A 
illustrates traditional SVM classification, and the trained decision plane classifies the new 

patient scan’s state; the output is the 1D parameter ‘CLASS’. Method B provides further 

analysis using the inner product in addition to the SVM classification. By utilizing the 

CLASS obtained from the trained SVM, projection onto the disease axis (i = CLASS) is also 

calculated where i indicates a class index. Thus, Method B outputs a 2D parameter (CLASS, 
projection). Method C color-processes the 2D parameter results suggesting that DSI that 
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can visualize the classification results with indication of disease progression level. Method C 

makes it easier to distinguish disease states compared to Methods A and B.

Baek et al. Page 21

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Disease-specific imaging procedure, including feature extraction, training, prediction. More 

details for the Prediction block are described in Fig.1 Method C.
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Fig. 3. 
Segmentation of diseased area. (a) The method to calculate fat fraction in histology images. 

(b-e) Fat segmentation in DSI and histology. Examples of (b) control and (c-e) diet group are 

shown; from (b) to (e), there is gradual fat accumulation. Fat area is segmented using yellow 

regions in DSI and overlaid on B-mode images within red ROI boxes. Additionally, for the 

histology images, fat area is segmented using green colors.
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Fig. 4. 
B-mode, H-scan, and histology images for a normal (top row) and fatty liver (bottom row) 

case. The red boxes in the B-mode images represent processing ROIs. H-scan colors are 

shown within the ROIs. H&E and Picrosirius red histology images for the animals are 

shown. For the normal liver, only normal cells are found; their diameters are approximately 

20 µm. For the fatty liver, fat inclusions (white in color) are found within the normal tissues. 

The inclusions’ diameter, measured for all diet group animals, was 8.6 ± 1.8 µm.
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Fig. 5. 
Traditional display of individual parameters (a) H-scan % blue, (b) attenuation coefficient, 

and (c) B-mode intensity. The following statistical notations were employed: ns (no 

significance) indicates p > 0.05; ∗ indicates p < 0.05; ∗∗ indicates p < 0.01; ∗∗∗ indicates p < 

0.001; and ∗∗∗∗ indicates p < 0.0001.
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Fig. 6. 
Parameter changes in (a) 1D and (b) 3D space caused by fat accumulation. (a) The combined 

parameter changes at 2 weeks follow the steatotic trajectories. (b) In 3D space, the vectors 

for the second week’s measurements are located near the steatosis axis, instead of the tumor 

or fibrosis axes. The vectors were projected onto the nearest disease axis, which is the 

steatotic axis here. The blue line denotes the projection from the original vectors to the 

steatosis axis. Projected points are shown with yellow dots. The larger the distance between 

the origin and the projection, the more severe the steatosis.
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Fig. 7. 
The overall correlation between DSI classification of steatosis and histological measurement 

of fat inclusions was (a) 0.842 for 20× magnification and (b) 0.808 for the 40× 

magnification.
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Fig. 8. 
Performance evaluation compared to other imaging methods. (a) Correlation between the 

ground truth and the measured features. (b) SVM hyperplane optimization using 2D 

features, excluding attenuation coefficient. (c) SVM hyperplane optimization using 3D 

features. (d) Comparison of the images acquired using different methods. The livers from 

left to right have fat accumulation from normal to severe steatosis.
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TABLE I

DISEASE SEGMENTATION PERCENTAGES OBTAINED BY DSI AND HISTOLOGY. (AVERAGE ±1 STANDARD DEVIATION)

Diet Steatotic % Fibrotic % Tumor %

Histology
Control 0.96 ± 0.95 - -

MCD 20.02 ± 6.90 - -

DSI
Control 0.77 ± 1.47

0.08 ± 0.36 0.75 ± 3.33
MCD 31.30 ± 24.97
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