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Simple Summary: Patients diagnosed with breast cancer treated with chemotherapy before surgery
were included in this study. The tumor was imaged using ultrasound before the chemotherapy was
started and in the middle of chemotherapy treatment (one month after starting). After treatment
completion, patients were followed up according to standard clinical practice and categorized into
two groups based on disease recurrence until the last follow-up. The ultrasound imaging was
analyzed using advanced computational techniques, and artificial intelligence was used to develop
models to differentiate between the two outcomes. We demonstrated that using the ultrasound image
data, the final outcomes can be predicted as early as within one month of the start of chemotherapy.

Abstract: Background: This study was conducted to explore the use of quantitative ultrasound
(QUS) in predicting recurrence for patients with locally advanced breast cancer (LABC) early during
neoadjuvant chemotherapy (NAC). Methods: Eighty-three patients with LABC were scanned with
7 MHz ultrasound before starting NAC (week 0) and during treatment (week 4). Spectral parametric
maps were generated corresponding to tumor volume. Twenty-four textural features (QUS-Tex1)
were determined from parametric maps acquired using grey-level co-occurrence matrices (GLCM)
for each patient, which were further processed to generate 64 texture derivatives (QUS-Tex1-Tex2),
leading to a total of 95 features from each time point. Analysis was carried out on week 4 data
and compared to baseline (week 0) data. ∆Week 4 data was obtained from the difference in QUS
parameters, texture features (QUS-Tex1), and texture derivatives (QUS-Tex1-Tex2) of week 4 data
and week 0 data. Patients were divided into two groups: recurrence and non-recurrence. Machine
learning algorithms using k-nearest neighbor (k-NN) and support vector machines (SVMs) were
used to generate radiomic models. Internal validation was undertaken using leave-one patient out
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cross-validation method. Results: With a median follow up of 69 months (range 7–118 months),
28 patients had disease recurrence. The k-NN classifier was the best performing algorithm at week
4 with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 75%, 81%, and 0.83,
respectively. The inclusion of texture derivatives (QUS-Tex1-Tex2) in week 4 QUS data analysis led
to the improvement of the classifier performances. The AUC increased from 0.70 (0.59 to 0.79, 95%
confidence interval) without texture derivatives to 0.83 (0.73 to 0.92) with texture derivatives. The
most relevant features separating the two groups were higher-order texture derivatives obtained
from scatterer diameter and acoustic concentration-related parametric images. Conclusions: This
is the first study highlighting the utility of QUS radiomics in the prediction of recurrence during
the treatment of LABC. It reflects that the ongoing treatment-related changes can predict clinical
outcomes with higher accuracy as compared to pretreatment features alone.

Keywords: radiomics; breast cancer; recurrence; quantitative ultrasound; neoadjuvant chemotherapy;
delta radiomics; machine learning; texture analysis; texture derivatives; imaging biomarker

1. Introduction

Breast cancer is the most commonly diagnosed malignancy and is the leading cause
of cancer-related death among women [1]. Locally advanced breast cancer (LABC) can
be clinically defined as a primary tumor larger than 5 cm in size, which may be fixed to
the chest wall, with advanced lymph node involvement. LABC poses a clinical challenge
because, despite aggressive multimodality treatment, these patients have a high rate of re-
currence [2,3]. Neoadjuvant chemotherapy (NAC) is often used in patients with LABC with
the purpose of downstaging disease, improving resectability, and also treatment response
can serve as a useful indicator of long-term survival outcomes in specific molecular sub-
groups [4]. Approximately 30–50% of patients with LABC after primary treatment present
with recurrence, which is influenced by prognostic factors as well as treatment strategies [2].
For breast cancer patients, it has been demonstrated that the fear of cancer recurrence is
one of the most common and aversive psychological phenomena [5]. Genomic tools have
been developed in estimating recurrence risk in patients with early-stage breast cancer
and incorporated into clinical practice, guiding decisions regarding adjuvant therapy [6–8].
However, most of these genomic assays have limited clinical utility in LABC so far. In
regards to imaging tools, limited literature exists on the use of imaging biomarkers in
predicting the risk of breast cancer recurrence. In the past decade, a growing interest in the
field of radiomics using quantitative imaging analysis has led to significant advancements
in image-based phenotyping aimed at tumor characterization, and recently the identifi-
cation of predictors of treatment response in patients with breast cancer [9]. Radiomics
reflects the mechanisms occurring at a genetic and molecular level by converting imaging
data into high dimensional, mineable quantitative features.

Ultrasound (US) is a commonly used imaging modality with widespread clinical
applications in differentiating benign versus malignant primary lesions in the breast or
characterizing lymph nodes and facilitating tissue acquisition for histological evaluation.
Quantitative ultrasound (QUS) is similar to the clinically used ultrasound device, with the
primary difference of acquisition and analyzing the raw radiofrequency (RF) data, which
aids in more detailed biological characterization of the imaged tissues. The biophysical basis
of QUS imaging is the differences in the elastic properties, leading to differential scattering
reflected as backscatter ultrasound signals from tissues [10,11]. Application of quantitative
texture analysis to the QUS imaging has shown to unfold critical biological information
that can be modeled effectively to predict biological behavior in breast malignancies [12,13].
Several studies have demonstrated the utility of QUS imaging in predicting treatment
response using pretreatment imaging features [12,14–16]. Similarly, the acquisition of
QUS features during different treatment modalities (chemotherapy, radiotherapy) reflects
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ongoing microstructural changes resulting from cell death and can effectively improve the
interpretation of clinical outcomes [17,18].

The study here explored the role of QUS features, including higher-order texture
features obtained during the early course of NAC, in predicting the recurrence for patients
with LABC. We have demonstrated the utility of QUS in predicting clinical outcomes with
reasonable accuracy. Being a portable technique with rapid scan acquisition, QUS may be
beneficial over other imaging modalities for response monitoring mid-treatment as well as
in characterizing long term outcomes.

2. Material and Methods
2.1. Patient Selection

The prospective study was approved by the Research Ethics Board at Sunnybrook
Health Sciences Centre (SHSC), Toronto, Canada, and registered with Clinical Trials.gov
(NCT00437879). All study participants signed a written consent form. Inclusion criteria
were the presence of biopsy-proven LABC and scheduled to receive NAC as part of
their standard care of treatment. Clinical information was obtained from a prospectively
maintained database with additional information collected from patient electronic medical
records. Patients diagnosed with inflammatory breast cancer or upfront metastasis were
excluded from the analysis. The time to recurrence was defined from the start of NAC to the
clinical or radiological evidence of disease recurrence. In order to avoid underestimating
the risk of recurrence, the minimum follow-up time for patients without any recurrence
was required to be at least four years.

2.2. Treatment Details

The majority of patients were treated with an anthracycline and taxane-based NAC,
while some patients received other chemotherapy treatments. The chemotherapy regimen
and the interval between two cycles were based on the decision of the treating medical
oncologist. Patients with human epidermal growth factor receptor 2 (HER2) positive
status received targeted therapy in combination with NAC. After receiving NAC, all
patients underwent surgery (mastectomy or breast-conserving surgery), in conjunction
with sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND), based
on the pretreatment disease stage and response. Patients received adjuvant locoregional
radiation therapy and maintenance targeted therapy or endocrinal therapy according to
standard institutional practice. Patients were followed up every 3–6 months during the first
two years, and then after every 6–12 months, as indicated clinically. Oncologists confirmed
all recurrences with clinical examination, diagnostic imaging, and histological confirmation
as indicated clinically.

2.3. Quantitative Ultrasound Parameter Estimation

Ultrasound data were obtained using a Sonix RP clinical research system (Analogic
Medical Corp., Vancouver, Canada) coupled to a L14–5/60 transducer with a central fre-
quency of 7 MHz and −6 dB bandwidth of 4–9 MHz. Data were digitally collected with a
sampling frequency of 40 MHz with a 16-bit resolution. Patients were scanned before the
initiation of systemic therapy (week 0) and at week 4 from the start date of NAC. The scan
frames were collected at intervals of 1 cm, spanning the entire tumor, with the transducer
focus towards the center of the tumor. On each ultrasound frame, a region of interest (ROI)
was manually contoured corresponding to the tumor. Using a sliding window approach,
each ROI was divided into analysis blocks of size 10λ × 10λ, with a 94% adjacent overlap
in axial and lateral directions (2.2 mm × 2.2 mm approximately). The detailed description
of standardization methods and calculation of quantitative ultrasound parameters have
been explained in previous publications [19]. In short, from each of the selected ultrasound
frames, spectral parameters including mid-band fit (MBF), spectral slope (SS), spectral
intercept (SI), spacing among scatterers (SAS) and backscatter model parameters, acoustic
scatterer diameter (ASD) Anderson, and average acoustic-scatterer concentration (AAC)
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were determined [20,21]. Attenuation coefficient estimation (ACE) was used as a spectral
correction factor and also as a predictive parameter [22,23]. Spectral parametric maps,
represented as color-coded image maps, were generated for each ROI through the spatial
mapping of the parametric values calculated from all window blocks. Mean QUS parame-
ters were calculated by averaging the values within the maps. The workflow for feature
extraction, normalization process has been presented in Supplementary Figure S1.

2.4. Texture Features and Texture Derivatives Evaluation

The spatial distribution of QUS parameters was evaluated from parametric maps
using grey-level co-occurrence matrices (GLCM) [24], representing the distance and angular
spatial relationship between neighboring pixels. From each parametric map, the following
four textural features were extracted: Contrast parameter (CON), correlation parameter
(COR), homogeneity parameter (HOM), and energy parameter (ENE).

In summary, the CON parameter measures the magnitude of intensity differences
between two neighboring pixels. The COR parameter is a measure of how linearly a pixel
is correlated to its adjacent pixel. The ENE parameter measures textural uniformity, and
the HOM parameter estimates the incidence of pixel pairs of different intensities. A total of
24 textural features (QUS-Tex1) were determined from the six spectral parametric maps
(excluding ACE).

In order to determine third-order imaging features (texture derivatives), the GLCM
method (ENE, CON, COR, HOM) was repeated on the 16 QUS-texture maps (excluding SAS
and SS textural features) described above. As a result, a total of 64 texture derivatives were
determined (QUS-Tex1-Tex2). The steps were repeated for all ultrasound scans obtained
(at weeks 0 and 4). The ∆week 4 data was obtained from the difference in mean QUS
parameters, texture features (QUS-Tex1), and texture derivatives (QUS-Tex1-Tex2) of week 4
data from the corresponding week 0 data.

Therefore we had a set of 95 features from each time point (seven QUS spectral features,
24 QUS-Tex1, and 64 QUS Tex1-Tex2). The list of all the features extracted is presented
in Supplementary File. Final analysis was carried out using a combination of week 0
and ∆week 4 data (190 features). Image processing, feature extraction, development of
parametric maps, and texture analysis were done using MATLAB 2016a software.

2.5. Statistical Analysis and Classification Algorithms

A Shapiro–Wilk normality test was applied to the feature sets to confirm data distribu-
tion for the two groups (patients with and without recurrence). For normally distributed
faculty, a parametric unpaired student t-test was used, and otherwise, a non-parametric
test Mann–Whitney U test was performed. A total of 190 features (7 mean QUS, 24 QUS-
Tex1, 64 QUS-Tex1-Tex2 from each point), which was a combination of week 0 data and
∆Week 4 data, were used for the model development. A p-value of < 0.05 was considered
statistically significant.

Two machine learning classifiers, consisting of k-nearest neighbor (k-NN), and support
vector machine-radial based function (SVM), were independently tested for comparison
using MATLAB 2016a to evaluate diagnostic performance. The maximum feature number
was set to 3 in the classification model to avoid model overfitting due to the high dimension-
ality of the data set [25]. Since the two groups were not balanced well (28 with recurrence
and 55 without recurrence), a subset sampling method was undertaken. Seven subsets were
randomly generated to select an equal number of patients equivalent to the smaller group
(recurrence), with the final class assignment done based on majority voting. A forward
feature selection method was used for building the classifier algorithms. A leave one
patient out cross-validation method was used, which uses all except one data point in the
prediction of the output class. The performances of the different algorithms were compared
based on different diagnostic indices obtained, including sensitivity, specificity, accuracy,
and area under curve (AUC) along with 95% confidence intervals. To test the incremen-
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tal values of higher-order features (texture derivatives), the classifier models were tested
separately including QUS and QUS-Tex1 features, and then with all the features combined.

Survival analysis was undertaken using the Kaplan–Meier product-limit method.
Univariate analysis was done using log-rank tests to compare the survival estimates for
the two predicted groups using the radiomics model (predicted recurrence group versus
predicted non-recurrence group).

3. Results
3.1. Clinical Characteristics

The analysis included a sample size of 83 women with LABC as per inclusion criteria.
The patient’s ages ranged from 29 to 79 years (median 50 years). Clinical characteristics,
histopathologic features, and treatment details are mentioned in Table 1. To summarize, the
histology was invasive ductal carcinoma (IDC) in 76, invasive lobular carcinoma (ILC) in 3,
mixed IDC and ILC in 3, and metaplastic carcinoma in 1. Fifty-six patients received doxoru-
bicin, cyclophosphamide, and paclitaxel (AC-T), and twenty patients were administered
fluorouracil, epirubicin, cyclophosphamide, and docetaxel (FEC-D). Twenty-nine patients
were HER2 positive and, forty-eight were estrogen receptor (ER) positive.

Table 1. Patient, disease, and treatment-related characteristics for all patients (n = 83).

Features Recurrence (n = 28) Non-Recurrence (n = 55)

Patient Characteristics n % n %

Age Median (Range) 50 (29–79) years 48 (31–72) years

Menopausal Status

Premenopausal 16 57 33 60

Perimenopausal 1 4 3 6

Postmenopausal 10 36 17 31

Not specified 1 4 2 4

Laterality
Right 15 54 27 49

Left 13 46 28 51

Pathological features n % n %

Histology

IDC 25 89 51 93

ILC 2 7 1 2

Others 1 4 3 5

HR+/HER2+ 6 21 14 26

HR+/Her2− 10 36 20 36

HR−/HER2+ 4 14 5 9

TNBC 8 29 16 29

Neoadjuvant Treatment n % n %

Chemotherapy regimen

AC-T 21 75 35 64

FEC-D 5 18 15 27

TC 2 7 5 8

Dose Dense
No 13 46 26 47

Yes 15 54 29 53

Trastuzumab
No 18 64 36 66

Yes 10 36 19 34

Treatment Response n % n %

Pathological Complete Response (pCR) 0 0 16 29

Partial Responder (PR) 21 75 33 60

Non Responder (NR) 7 25 6 11

Abbreviations: HR: Hormone receptor; HER2+: Human epidermal growth factor receptor 2; IDC: Invasive ductal
carcinoma; ILC: Invasive lobular carcinoma; AC-T: doxorubicin, cyclophosphamide, and docetaxel, FEC-D: 5-
fluorouracil, epirubicin, cyclophosphamide, and docetaxel; TC: docetaxel and cyclophosphamide.
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3.2. Quantitative Ultrasound Feature Analysis

Representative ultrasound B-mode images and parametric maps of QUS features and
selected texture and texture-derivative maps for a patient with (1a) and without recurrence
(1b) are presented in Figure 1. ∆ASD-ENE (p = 0.033), and ∆MBF-HOM-CON (p = 0.038)
parameters exhibited a statistically significant difference between the two groups of patients
(Table 2). The corresponding scatter plots for these two features as obtained from all the
patients are shown in Figure 2.
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Figure 1. Quantitative ultrasound parametric images for representative patients with and without
disease recurrence. Representative ultrasound B-mode images and QUS-derived parametric maps
(ASD, ASD-CON, ASD-CON-CON, AAC, AAC-HOM, AAC-HOM-HOM) from one patient each
with recurrence (a) and no recurrence (b) acquired at week 0 and week 4 of treatment. The color maps
represent the quantitative values of the spectral parameters within the tumor. The change in values of
the parameters with treatment can be appreciated by the change of assigned color to the sub-regions
of interest within the tumor. The color scale on the right side represents the range for individual
features, ASD parameter of 40 to 200 µm, ASD-CON texture feature of 0 to 20, ASD-CON-CON
texture derivative of 0 to 54, AAC parameter of 7 to 65 db/cm3, AAC-HOM texture feature of 0 to 1,
AAC-HOM-HOM texture derivative of 0 to 1. The scale bar represents 2 cm.
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Table 2. Features with significant differences at week four into neoadjuvant chemotherapy.

Parameter Recurrence
Mean ± SEM

Non-Recurrence
Mean ± SEM p-Value

∆ASD-ENE 0.008 ± 0.021 0.005 ± 0.099 0.033

∆MBF-HOM-CON −0.306 ± 0.889 0.160 ± 0.867 0.038
∆ Indicates the difference of values of week 4 from week 0 for each feature included in the analysis. Abbreviations:
SEM: standard error of the mean; R: Recurrence; NR: No Recurrence; ASD: Average Scatterer Diameter; MBF: Mid-
band fit; AAC: Average Acoustic Concentration; ENE: Energy; HOM: Homogeneity; CON: Contrast.
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3.3. Classifier Results

Results obtained using different classifier models are displayed in Table 3, and their
associated receiver operating characteristic (ROC) curves and AUC values are presented in
Figure 3. The performance of both classifier models, k-NN and SVM based on data acquired
at a week 4 time, had an accuracy above 70%. Specifically, it was observed that using the
k-NN classifier model, the week 4 data in aggregate (QUS + QUS-Tex1 + QUS-Tex1-Tex2)
performed better as compared to the week 0 data (QUS + QUS-Tex1 + QUS-Tex1-Tex2). The
AUC improved from 0.78 to 0.83 in the k-NN classifier model, whereas it only enhanced
marginally in the SVM model, from 0.76 to 0.78 (Figure 3a,b).
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Table 3. Classification performance of the two machine learning classifiers with the selected features.

Classification
Performance Model %Sn %Sp %Acc AUC Selected Feature(s)

First and second-order
(QUS + QUS-Tex1)

k-NN 73
(61–83)

64
(52–75)

74
(63–85)

0.70
(0.59–0.79)

∆SAS
∆ASD-ENE

ASD-CONW0

SVM 74
(64–83)

86
(77–95)

84
(72–95)

0.78
(0.66–0.89)

SASW0
ASD-CONW0
∆AAC-HOM

All features
(QUS + QUS-Tex1 +

QUS-Tex1-Tex2)

k-NN 87
(78–95)

75
(64–85)

81
(70–93)

0.83
(0.73–0.92)

ACEW0
AAC-CON-CONW0
∆ASD-CON-CON

SVM 75
(62–87)

85
(72–96)

85
(73–97)

0.78
(0.68–0.88)

SASW0
ASD-CONW0
∆AAC-HOM

∆ Indicates the difference of values of week 4 from week 0 for each feature included in the analysis. The best
classifier performances using the k-NN model have been highlighted in bold. The values in parenthesis represent
95% confidence interval. Abbreviations: Sn: Sensitivity; Sp: Specificity, Acc: Accuracy, AUC: Area under curve;
k-NN: k-nearest-neighbors; SVM: Support vector machine with radial based kernel function; AAC (dB/cm3): Av-
erage Acoustic Concentration; ASD (µm): Average Scatterer Diameter; SAS: Spacing Among Scatterer; ACE
(dB/cm-MHz): Attenuation Coefficient Estimate; CON: Contrast; HOM: Homogeneity; ENE: Energy.
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Figure 3. Receiver operating characteristic (ROC) plots showing the estimated area under curve
(AUC) values obtained from the two classifiers. (a,b) A comparison of the performance by the
two classifiers (k-NN and SVM) based on week 0 and week 4 time-points using all features.
(c,d) The comparison of the performance of QUS + QUS-Tex1 (without texture derivatives) and
QUS + QUS-Tex1 + QUS-Tex1-Tex2 (with texture derivatives) data set by k-NN and SVM models at
week 4.



Cancers 2022, 14, 1247 9 of 13

At week 4, there was a significant improvement observed in the performance of the k-
NN classifier model with the introduction of texture derivatives (QUS-Tex1-Tex2). The AUC
improved significantly from 0.70 to 0.83 (Figure 3c). For the SVM model, the AUC of 0.78
remained the same, with no difference seen with the incorporation of texture derivatives
(Figure 3d).

Overall, the k-NN classifier performed best at week 4; the selected best features were
a multiparametric combination of ACEW0, AAC-CON-CONW0, and ∆ASD-CON-CON.
The sensitivity, specificity, and accuracy at week 4 for this model were 87%, 75%, and 81%,
respectively.

3.4. Clinical Outcomes and Performance of Prediction Models

The median follow up for the entire cohort was 69 months (interquartile range
49–84 months). Out of eighty-three patients included in the analysis, 28 patients had
developed disease recurrence, with the median time to recurrence being 24 months. More
than 80% of the recurrences were seen in the first four years. The site of the first recurrence
was isolated local disease in five, local and regional in one, regional and distant in four,
isolated distant relapse in 17, and combined local, regional, and distant in one patient. For
the entire group, five-year recurrence-free survival (RFS) and five-year overall survival (OS)
were 68% and 79%, respectively. The predicted RFS using the k-NN and SVM classifier
is shown in Figure 4. The five-year RFS for the predicted recurrence and non-recurrence
groups using the k-NN classifier was 56% (95% confidence interval 44–69%) and 93% (95%
confidence interval 84–99%), respectively (p = 0.001), and presented in Supplementary
Table S1.
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(recurrence vs. no recurrence). Legends: Survival curves showing the differences in the recurrence-
free survival outcomes as obtained from the predicted groups using the k-NN model (a) and SVM
model (b) at week 4 time-point, including all features (QUS + QUS-Tex1 + QUS-Tex1-Tex2).

4. Discussion

Statement of principal findings: In the study, 83 patients with LABC were imaged using
QUS before starting NAC and at week 4 of treatment. The changes in spectral parameters,
texture and higher-order texture-derivate features from chemotherapy were computed
and radiomics models were developed with disease recurrence as the endpoint. A k-NN
classifier was able to predict recurrence with sensitivity, specificity, accuracy, and AUC of
87%, 75%, 81%, and 0.83, respectively.

Strengths and weakness: This is the first study demonstrating the ability of QUS obtained
during the course of NAC in predicting disease recurrence in patients with breast cancer.
The study included patients with diverse clinical and molecular characteristics suggesting
the applicability of QUS radiomics model across different populations of patients with
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breast cancer. We had a reasonable follow up (median follow up > 5 years), with clinical
outcomes recorded prospectively adding to the strengths of the study. One of the limitations
of the study here was the relatively small number of patients who presented with recurrence.
The inclusion of more patients will likely improve the performance and robustness of the
classifiers, and also extending the study at other centers will help in undertaking external
validation techniques.

Relation to other studies: Several studies have identified various factors that can predict
the recurrence of breast cancer ranging from clinical characteristics, immunohistochemical
assays to gene expression levels. Clinically, the most reliable prognostic markers include
nodal status and tumor size. Various other clinical factors such as tumor grade, patient
age, and treatment type have been added to build a Clinical Treatment Score (CTS), which
provides a recurrence risk estimate for ER+ breast cancer [26]. In the past two decades,
there has been a range of genetic markers to predict the risk of cancer recurrence, primarily
for EBC [6,27,28]. Some studies have compared the genetic analysis with imaging features
showing good correlations. In a study by Sutton et al. (2015), the association between the
gene assay recurrence score and texture-based image features extracted from magnetic
resonance imaging (MRI) was investigated [29]. Similarly, a study by Woodard et al. (2018)
showed equivalent efficacy of the gene assay and Breast Imaging and Reporting Data
System (BI-RADS) mammography and MR images in the prediction of recurrence [30].

Meaning of the study: The role of ultrasound is widely recognized in the screening and
diagnosis of breast masses. Applications include assessing morphological tumor details
(spiculated, rounded, with necrosis, microcalcification), anatomic relationships of masses
to their surrounding tissues, and regional lymph nodal involvement. However, recent
clinical applications of ultrasound have expanded in the management of breast cancer.
For example, ultrasound elastography techniques can be used to differentiate benign
from malignant breast lesions, contrast-enhanced ultrasound can characterize tissues with
different vascularity, and three-dimensional ultrasound improves the characterization of
breast lesions [31]. QUS Techniques have been applied in characterizing tumor masses and
predicting treatment response in patients with LABC [17,32].

In the past, it has been demonstrated in preclinical studies that QUS can evaluate cell
death in response to different treatment modalities [33,34]. The intracellular mechanisms
resulting in phenotypical cell changes differ according to the mode of cell death. For
example, mitotic arrest results in cell swelling, whereas apoptotic death leads to cell
shrinkage, chromatin condensation, and nuclear fragmentation. These events form the basis
for differential change in QUS spectral and textural parameters for cell death monitoring.
These observations have been interpreted in clinical studies to predict treatment response
within 4 weeks of initiation of NAC [35].

The work presented in this study aimed to investigate the effectiveness of QUS texture
derivatives in predicting recurrence risk rather than the local response in breast cancer
within weeks of initiation of systemic therapy. The improvement in AUC performance
with the addition of texture derivatives, as well as from week 0 to week 4 in the k-NN
classifier [36], signifies the importance of higher-order derivatives and continuous moni-
toring. The improvement in classifier performance with inclusion of week 4 parameters
suggests the ongoing changes in the elastic properties of the tumor induced by chemother-
apy and its reflection on dictating the biological behaviour. It was interesting to observe that
the best features chosen by the k-NN model to classify patients in the two groups mainly
were texture derivatives (texture of texture features). The features were a combination
of ACEW0, AAC-CON-CONW0, and ∆ASD-CON-CON, at week 4 (Week 0 + ∆Week 4).
Amongst the three features, the two parameters (ACEW0 & AAC-CON-CONW0) are re-
lated to tissue composition and microstructural organization of cells. The selection of
texture derivative ‘AAC-CON-CONW0′ technically represents the summation of other
sub-variables and possibly depicts heterogeneity within a tumor at a more advanced level.
Other parameters were selected from the pretreatment (week 0) data. This suggests that
the spatial organization of the tissue as reflected in QUS parameters relates to tumor bi-
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ology and may have a role in recurrence prediction to some extent before initiation of
treatment. In previous studies, ACE W0 was found to be a significant predictive parameter
to distinguish tissues of different types, supporting the findings in this study [37,38].

The other texture derivative selected was ∆ASD-CON-CON, where ASD signifies
microstructural size and may be related to lobular diameter, and the contrast derivatives
(contrast of contrast), which measure the intensity differences. This was found to be
significant after the initiation of treatment. As mentioned previously, changes occurring at
the molecular level in tumor cells in response to the treatment can be captured by the QUS
technique. Hence, it is postulated that, as treatment initiates, ASD and its derivatives have
a potential role in predicting recurrence risk and differentiating the two groups.

We estimated the survival outcomes based on a prediction by the two machine learning
classifiers. Out of the two, the k-NN classifier using texture derivatives (week 4) was able
to closely approximate the curve obtained from the patient’s clinical details on recurrence,
thus displaying the efficacy of the classifier in recurrence prediction. Magnetic resonance
imaging and mammography are used more commonly in clinical practice for imaging of
breast malignancies aiding in diagnosis, staging, and response evaluation to treatment.
Ultrasound forms an attractive strategy due to its portable nature, ability of rapid scan
acquisition, no radiation hazards, and better patient compliance. Quantitative analysis of
the ultrasound imaging also provides an opportunity to capture the changes in the tumor
in real-time during treatment, much earlier than other imaging modalities which rely on
the morphological changes.

Unanswered question and future research: In the future, with a larger cohort, it may also
be worthwhile to combine clinical features and molecular subgroups with a QUS-radiomics
model. The promising results obtained in the study here emphasize the importance of QUS
parameters as a valuable tool for the timely identification of patients whose tumors have a
strong tendency towards recurrence. An early prediction of recurrence risk can potentially
assist oncologists in making decisions in regards to selecting systemic agents for treatment
or changing a less effective treatment to more effective therapy or maintenance therapies.
It may provide an insight into an earlier shift to surgery or towards an intensification of
systemic therapy before missing the ‘therapeutic window’ for benefit.

5. Conclusions

To summarize, this study demonstrates the effectiveness of QUS-radiomics in predict-
ing recurrence in patients with LABC early in the course of treatment. The work presented
here highlights the role of higher-order imaging features (texture derivatives) in improving
the performance of the classifiers at four weeks into neoadjuvant chemotherapy. Further
studies externally validating these initial, single-center findings are warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14051247/s1, Figure S1: Study methodology summarizing feature processing, Table S1:
The survival outcomes (recurrence-free survival) as predicted by the classifiers after the development
of the model. Supplementary File: List of all imaging features.
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