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Abstract: To date, the application of oxygen-ozone (O,03) therapy has significantly increased in
the common clinical practice in several pathological conditions. However, beyond the favorable
clinical effects, the biochemical effects of O,O3 are still far from being understood. This compre-
hensive review aimed at investigating the state of the art about the effects of 0,03 therapy on
pro-inflammatory cytokines serum levels as a modulator of oxidative stress in patients with muscu-
loskeletal and temporomandibular disorders (TMD). The efficacy of O,O3 therapy could be related
to the moderate oxidative stress modulation produced by the interaction of ozone with biological
components. More in detail, 0,03 therapy is widely used as an adjuvant therapeutic option in several
pathological conditions characterized by chronic inflammatory processes and immune overactivation.
In this context, most musculoskeletal and temporomandibular disorders (TMD) share these two
pathophysiological processes. Despite the paucity of in vivo studies, this comprehensive review
suggests that O,O3 therapy might reduce serum levels of interleukin 6 in patients with TMD, low
back pain, knee osteoarthritis and rheumatic diseases with a concrete and measurable interaction
with the inflammatory pathway. However, to date, further studies are needed to clarify the effects of
this promising therapy on inflammatory mediators and their clinical implications.

Keywords: ozone; oxygen-ozone therapy; musculoskeletal disorders; temporomandibular disorders;
pain management; rehabilitation; low back pain; osteoarthritis; inflammation

1. Introduction

Ozone gas (O3) was discovered in 1840, and its expansion into the medical field has
given rise to compelling research in the recent decades to validate its clinical value [1].
Despite some controversies, several papers [2-11] have proposed relevant medical features,
including bactericidal and virucidal effects, inflammatory modulation and circulatory stim-
ulation, with considerable applications in several medical fields such as wound healing,
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ischemic disorders, infections, and chronic inflammatory conditions such as musculoskele-
tal disorders.

The function of O3 shares similarities with that of a prodrug, as it is modified upon
reacting with molecules to develop more active substrates, thus prompting an endogenous
cascade of reactions [12]. On the other hand, it is hard to classify O3 as merely a prodrug,
due to its power to directly interact with phospholipids, lipoproteins, bacteria envelopes
and viral capsids. Therefore, O3 is considered one of the most powerful oxidizing molecules
in nature, although, at high concentrations, it rapidly decomposes into ordinary oxygen [13].
O3 rapidly reacts with water and polyunsaturated fatty acids (PUFA) and in human fluids
and tissues, producing, respectively, hydrogen peroxide (H>O,) and a combination of lipid
ozonation products (LOP), mainly composed by 4-HNE (from omega-6 PUFA) and 4-HHE
(trans-4 hydroxy-2-hexenal from omega-3 PUFA) [13]. In this context, HyO,, acting as an
ozone messengetr, is considered as the fundamental reactive oxygen species (ROS). However,
other ROS have been identified as products of ozone reactions, such as superoxide ions
and hydroxyl radical (OH™) [14]. Hence, given the role of signal transduction, the previous
concept that ROS are always harmful has recently been revised and replaced by the latest
evidence describing ROS as mediators of the host defense and immune responses [15].

Cytokines are undoubtedly involved in these processes and the proinflammatory
cytokines tumor necrosis factor-a (TNF-«), interleukin-1 (IL-1), macrophage migration
inhibitory factor (MIF) play a pivotal role [16,17]. Cytokines have been considered encour-
aging biomarkers and clinical targets in rheumatic and oncologic therapies, but, to date,
anti-cytokine-based therapeutic approaches such as the use of anti-TNF antibodies, soluble
TNF receptors or IL-1 receptor antagonists have failed to ascertain a clear clinical advan-
tage [18,19]. In addition, some antioxidants and ROS scavengers could exert a protecting
effort against endotoxic shock in rodents by hampering TNF-«.

Thus, it has been demonstrated that ozone-oxygen (O,03) mixture might play a key
role as a microbiocidal agent compared to the rich bactericidal activity of NO, serving as a
modulator of several inflammatory processes in vivo [20,21]. O,O3 exhibits various effects
on the immune system, such as the modulation of macrophages’ phagocytic activity, which
provides the first-line defense against bacteria and toxins [22].

In this scenario, O,O3 concentrations should be set to a specific range to ensure
safety; however, patients might present a sensation of heaviness at the injection site that
spontaneously decreases in a few minutes. On the contrary, other adverse effects might be
related to an incorrect administration technique, including vagal crisis, pain, hematoma in
the injection site, local infections, and even death [23-25].

Moreover, it has been demonstrated that low amounts of ozone increased endogenous
antioxidant pathways, entangling glutathione (GSH), superoxide dismutase (SOD) and
catalase (CAT), and preparing the host to face ROS-mediated physiopathological circum-
stances. The ozone, through oxidative preconditioning, protects tissues from ROS-related
damage, promoting the antioxidant—prooxidant balance and the concomitant preservation
of the cell redox state [26-28]. Therefore, we could hypothesize that O,O3 mixture could
enhance proinflammatory cytokine modulation [29].

Musculoskeletal disorders are considered as a common cause of pain and functional
disability, predicting a burden that will further increase due to the aging of the popula-
tion [30-34]. They include all inflammatory and rheumatic diseases affecting the osteoartic-
ular system such as osteoarthritis (OA), but also low back pain and temporomandibular
disorders [35-39].

0,03 therapy has assumed the role of an adjuvant therapeutic approach in various
pathological disorders characterized by chronic inflammatory processes and immune hy-
per activation, and most musculoskeletal disorders share these two pathophysiological
scenarios [40]. In this context, several authors presented a practical function of O,Oj3 in the
management of low back pain (LBP) with promising perspectives, as a minimally invasive
approach, for the conservative therapies of disc herniation or protrusion and in case of
failed back surgery syndrome [41-47]. At the same time, a recent systematic review [48]
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documented that knee pain could be decreased after O,Oj3 intra-articular management
in patients affected by knee osteoarthritis (KOA). Likewise, tendon disorders are another
conceivable focus for O,O3 therapy, and a recent randomized controlled trial (RCT) evalu-
ated the usefulness of O,O3 therapy in patients with shoulder impingement, indicating
that it might be assumed an intriguing alternative intervention in case of contraindication
to corticosteroids [49]. Moreover, O,03 injective treatment reported positive results after
0,03 injection in patients with lateral chronic epicondylitis not responding to conventional
therapy [50]. Lastly, favourable developments have been documented even in rheumatic
diseases, where O,0Oj3 rectal insufflations or autohemotherapy seemed to reveal a profitable
safety profile, promoting positive prospective in fibromyalgia [51].

A common denominator of these widespread pathologies is the low-grade inflamma-
tory profile, with a similar serum pattern of inflammatory mediators [52-54]. This concept
has been recently investigated for the development of more specific and sensitive meth-
ods for early diagnosis and follow-up, starting from a detailed and targeted phenotypic
characterization of musculoskeletal and temporomandibular disorders [55].

To date, although it has been suggested that O,0O3 therapy could be an effective anal-
gesic treatment, its specific anti-inflammatory effects in terms of serum levels of cytokines
modifications are controversial.

Several other musculoskeletal diseases might take advantage of the O,O3 therapy
that is commonly used in the PRM clinical practice. However, only a few papers have
investigated the effects of 0,03 therapy on other musculoskeletal disorders leading to
disability (i.e., cervical pain, tendinopathies, and fibromyalgia). Moreover, it should be
considered that O,Oj3 therapy is commonly used in the clinical practice as anti-inflammatory
and analgesic therapeutic option for temporomandibular disorders (TMD) and general
musculoskeletal and rheumatic diseases (Figure 1).

Temporomandibular disorders Knee osteoarthritis

Back pain Rheumatic diseases

Figure 1. Main clinical targets for oxygen-ozone therapy as anti-inflammatory and analgesic treatment.

Therefore, in the present comprehensive review, we aimed to investigate the state of
the art about the effects of O,O3 therapy on pro-inflammatory cytokines serum levels as a
modulator of oxidative stress in patients with TMD and musculoskeletal disorders.
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2. Oxygen-Ozone as Anti-Inflammatory Therapy

O3 is composed of three oxygen atoms with a cyclic structure [56]. It is generated for
medical use from pure oxygen which passes through a high voltage gradient (5-13 mV)
following the reaction:

30; + 68,400 cal — 203

The result is a gas mixture composed of not less than 95% oxygen and not more than
5% O3. O3 is 1.6 times denser and 10 times more soluble in water than oxygen. It should be
considered that Oj is the most powerful oxidant after fluorine and persulfate, although
it is not a radical molecule. It is an unstable gas that cannot be stored and should be
used right away as it has a half-life of 40 min at 20 °C. Despite the heterogeneous and
current applications in the medical field, the biochemical effects of O,0Oj3 are still difficult to
understand, even if its properties and chemical characteristics seem to suggest some of its
positive clinical effects [40,44,57-59].

Like any other gas, O3 physically dissolves in pure water according to Henry’s law
in relation to temperature, pressure, and ozone concentration. Unlike O,, O3 reacts imme-
diately with the water present in the tissues. O3 reacts with polyunsaturated fatty acids
(PUFA), antioxidants such as ascorbic and uric acid, and thiol compounds with -SH groups
(cysteine, reduced glutathione-GSH and albumin). Depending on the dose of O3 adminis-
tered, enzymes, carbohydrates, DNA and RNA may also be involved in the process. These
compounds undergo oxidation, acting as electron donors [56]. O3, interacting with water
and PUFA, present in the tissues, leads to the formation of hydrogen peroxide (H,O3), a
fundamental reactive oxygen species (ROS) which acts as an ozone messenger, and other
lipid ozonation products (LOPs) [33-35].

H;0; is a non-radical oxidant capable of acting as an O3 messenger to elicit numerous
biological and therapeutic effects. The fact that ROS are always harmful is a concept widely
revised in the literature as, in physiological quantities, they are considered mediators of
host defense and immune responses. Moreover, they have an extremely short duration
(seconds), but by virtue of their reactivity, they could damage cellular components if their
generation is not well calibrated. The composition of ROS in the plasma is very rapid and
is accompanied by a transient (15-20 min for the recycling of oxidized compounds) and
modest decrease in the antioxidant capacity. HyO, diffuses very easily from plasma to
cells (intracellular gradient 1/10 of the plasma one) and represents an important biological
stimulus. In tissues, the moderate oxidative stress of ROS is canceled by endogenous radical
scavengers (superoxide dismutase, glutathione peroxidase, catalase, NADPH quinone-
oxidoreductase, etc.) [60,61].

An excess of ROS can in fact lead to the formation of toxic compounds such as
peroxynitrite (OsNOO,) and hypochlorite anion (ClO,). Furthermore, the presence of
traces of Fe™ should be avoided because, in the presence of hydrogen peroxide, they
catalyze the formation of the most reactive OH, through the Fenton reaction (hydroxyl
radical) [56].

LOPs (lipoperoxides-LOO, alkoxy radicals-LO, lipohydroperoxides-LOOH, iso-prostane
and alkenes (4-hydroxy-2,3-transnonenal-HNE and malonyldialdehyde-MDA)) are signal
molecules of acute oxidative stress and they cause an upregulation of antioxidant enzymes,
such as superoxide dismutase (SOD), GSH-peroxidase (GSH-Px), GSH-reductase (GSH-
Rd) and catalase (CAT), which play a key role in antioxidant defense. They also induce
oxidative stress proteins, one of which is heme-oxygenase 1 (HO-1 or HSP-32), which
degrades the heme molecule. Being toxic and much more stable in vitro than ROS, they
must be generated in very low concentrations and metabolized by GSH-transferase (GSH-
Tr) and aldehyde dehydrogenase [56].

Therefore, following the administration of O3 the formation of ROS and LOP takes
place and, due to their chemical diversity, they act in two different phases. ROS behave
as early and short-acting messengers, while on the other hand, LOPs act as late and long-
lasting messengers. Thus, they spread in different tissues and bind in small quantities to
cell receptors, thus minimizing their toxicity [56].
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Small and repeated oxidative stresses might induce the activation of the transcriptional
factor mediating nuclear factor-erythroid 2-related factor 2 (Nrf2), a domain involved in
the transcription of antioxidant response elements (ARE) and usually bound to protein 1
associated with ECH Kelchlike (Keap-1), thus creating an inactive complex in the intracellu-
lar space. A mild oxidative stress can therefore favor the release of Nrf2 from this complex
and its migration into the nucleus, where it would favor the transcription of different AREs
on the DNA, binding to the Maf protein [62,63].

Therefore, through repeated mild oxidative stresses, O3 could induce the upregulation
of Nrf2, conditioning human cells to transcribe different AREs, stimulating a better response
to pathological radical stress, common in most chronic inflammatory diseases [12].

Several antioxidant enzymes reach a higher level of concentration in response to the
production of AREs, such as superoxide dismutase, catalase (CAT), glutathione-transferase
(GST), heme oxygenase (HO)-1, heat shock proteins, glutathione peroxidase and quinone-
oxidoreductase. These enzymes play a “scavenger role” of free radicals. Based on the redox
state of the cell and the amount of O,0O3 administered, we can observe different effects. For
example, 0,03 overexpresses HO-1 or NO-producing 32 kPa heat shock proteins (Hsp34)
and, furthermore, Hsp70 expression levels are in turn upregulated by 0,03, which is
related to HO-1. Heme is enzymatically degraded by HO-1 and can be toxic depending on
free iron, amount produced and biliverdin. Biliverdin is a nitrosative and oxidative stress
neutralizer based on the ability to interact with reactive nitrogen and NO species. The
response to thermal shock provides a cytoprotective state during an inflammatory process,
aging and neurodegenerative disorders. HO isoforms appear to be regulators of cellular
redox homeostasis, functioning as dynamic sensors of its oxidative stress. O,O3 may play
a role in regulating the proinflammatory and anti-inflammatory effects of prostaglandin
formation, which is similar in nature to NO [40].

Furthermore, Nrf2 appears to play an important role in the intracellular signaling
pathways of inflammation. Indeed, the activation of the Nrf2-antioxidant signal could
attenuate a key regulator of the inflammatory response and muscle atrophy (NF-B), and
furthermore, the literature suggests that the inflammatory response could be directly down-
regulated by suppression of crucial inflammatory mediators and cytokines (IL-6, IL-8 and
TNF-a) [64-66].

Low doses of O3 could therefore play a role in the regulation of prostaglandin synthe-
sis, in the release of bradykinin and in the increase of macrophage and leukocyte secretions.
It is widely accepted that pain is a common symptom related to the inflammatory process
and 0,03 therapy could play a key role not only in the management of inflammation, but
also in nociceptive perception and modulation. As for the analgesic use of 0,03, after
the administration of O,03, an increase in antioxidant molecules (serotonin and endoge-
nous opioids) has been demonstrated, which would induce pain relief by stimulating the
antinociceptive pathways [3,6,67-69].

Therefore, the effect of O3 mimics an acute oxidative stress that, if properly balanced, is
not harmful, but is able to elicit positive biological responses and reverse chronic oxidative
stress (degenerative process, aging, etc.) This hypothesis about ozone and oxidative stress
modulation could be better defined as a “real non-toxic therapeutic shock able to restore
homeostasis” [56,70,71].

3. Oxygen-Ozone and Back Pain

Little evidence is available in literature about the effect of O,Oj3 injections in patients
with low back pain due to lumbar disc herniation [72,73]. Although the fluoroscopy or
tomography guide requirement could limit the feasibility of this therapy in conventional
rehabilitation settings, positive effects were reported in comparison with other interventions
such as steroid intraforaminal injection [74]. On the contrary, intramuscular-paravertebral
0,03 therapy seems to be safe, reliable, and effective to reduce pain in patients affected by
LBP not responding to anti-inflammatory/analgesic drugs [75,76].
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The O,03 might exert its action combining mechanical and anti-inflammatory effects,
breaking glycosaminoglycan chains in the nucleus pulposus, decreasing their capability
to retain water, thus lowering the size of the herniated position, and allowing to relieve
the hernial conflict [22,77]. A reduction in disk volume is the result of all these events. In
a study conducted by Andreula et al. [78], five histologic disk specimens were removed
during surgical microdiscectomy, providing intradiscal injections of O3 at 27 pug/mL, and
reporting the nucleus pulposus fibrillary matrix dehydration, regression, and collagen fibers
revealing. Parallelly, O,O3 might also influence the inflammatory cascade by modulating
the breakdown of arachidonic acid into prostaglandins and facilitating the fibroblastic
action, stimulating the deposition of collagen and the initiation of the repairing process at
the tissue level [57].

Around the disc protrusion, inflammatory mediators prompted by granulation tissue
are known to attract histiocytes, fibroblasts, and chondrocytes that can produce interleukin-
la (IL-1«), interleukin-6 (I1-6), and TNF-c; these cytokines induce the prostaglandin E2
pathway, which causes pain or increases the sensitivity of the nerve roots to other algogenic
substances, such as bradykinin [79]. In vivo, local injection of medical ozone would increase
the concentrations of TNF-«, IL13, and IFN-y around the disc, suggesting that the contact
of medical ozone with the disc damages the extracellular matrix, resulting in shrinkage
and decompression of the surrounding neurons. This might proceed probably together
with the decrease in lactic acid and inflammatory cytokines, resulting in the decrease of
low back pain and sciatica [80].

Furthermore, this disk shrinkage can enhance local microcirculation and increase
oxygen supply by decreasing venous stasis caused by disk vessel compression. The 0,03
therapy might have analgesic and anti-inflammatory effects in treating disk herniation due
to the neutralization of proinflammatory cytokines by boosting the surge of antagonists’
release [25].

When a disc degeneration leads to disc herniation, the adjacent nervous system
structures, such as the nerve roots, or the dorsal root ganglion can be affected, causing
neuropathic pain of mechanical or biochemical origin [81]. Moreover, other spinal structures
are damaged, including facet joints, ligaments, and muscles, which can also become
pain generators [82]. However, the peripheral sensitization should be avoided by 0,03
mediators, since recent evidence suggests that ozonized low-density lipoprotein inhibits
NFkKB and IL-1 receptor-associated kinase 1 (IRAK-1) signaling [83]. At the same time,
the oxidation of IL, IL receptors, or nuclear factors might block COX-2 expression [84].
Clinically, Niu et al. showed that low concentrations of medical ozone (20 and 40 pg/mL)
can reduce the serum IL-6, IgG, and IgM expression, presenting as analgesic and anti-
inflammatory effects; while high concentrations of medical ozone (60 pg/mL) increase the
serum IL-6, IgG, and IgM expression, presenting as pain and pro-inflammatory effects.
Thus, the medical ozone concentration of 40 1g/mL seemed to report the optimal treatment
efficacy [85].

In conclusion, ozone therapy might reduce the autoimmune inflammatory reaction
and, consequently, pain due to radiculopathy, after the exposure of the nucleus pulposus to
the immune system [22]. Intramuscular O,Oj3 therapy is a safe and widely used procedure
in the common clinical practice but these results could be only achieved starting from strict
eligibility criteria in patient selection and trained and experienced physicians to perform
the procedure. Nevertheless, further research must provide evidence for a correct balance
between O,0O3 dosage and inflammatory mediators” expression.

4. Oxygen-Ozone and Osteoarthritis

OA is a widespread musculoskeletal disease and a leading cause of chronic disabil-
ity [86]. Conservative estimates state that up to 240 million people worldwide suffer from
it [87]. OA is not merely a degenerative disease, considering that both mechanical and
inflammatory factors are attributed to its pathophysiology [88-90]. The paradigm of OA
is changing from the non-inflammatory theory of “wear and tear” to the hypothesis of
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“chronic low-grade inflammation” [91,92]. Long-time exposure to chronic low-grade inflam-
mation and imbalance in oxidant-antioxidant systems is involved in OA pathogenesis and
progression by compromising the complex network of signaling pathways that regulate
cartilage and subchondral bone homeostasis [93,94].

A crucial role in this process might be played by inflammatory cytokines released by
chondrocytes (IL-1p3, IL-6, IL-8, IL-17, TNF-«, IFN-y), promoting the catabolism of cartilage
and subchondral bone [93,94]. Under normal conditions, these catabolic factors are in
equilibrium with anabolic factors that include anti-inflammatory cytokines (IL-4, IL-10) and
anabolic cytokines (TGF-f3, IGF-1, FGF-18, and PDGF) [95-97]. Inflammatory and catabolic
factors produce an imbalance that leads a healthy joint to develop OA [97].

As a result, clinical research is looking for immunomodulatory treatments that can act
on inflammation to reduce the progression of OA and stimulate the synthesis of anabolic
factors [48]. Among these, O,0O3 represents a promising treatment option for its ability to
modulate inflammation, promote cartilage growth, and joint repair mechanisms [48,61,98].
O3 might influence the modulation of inflammation through different mediators and
signaling pathways [4,99,100]. In synovial fluid, O3 decreases the production of pro-
inflammatory cytokines, particularly IL-6, IL-13, and TNF-&, which are responsible for
cartilage degradation [101]. This effect of ozone has been observed and demonstrated in
several studies in animal models of knee OA (KOA), rheumatoid arthritis, and in models
of ischemia/reperfusion, e.g., in the reduction of neuropathic pain [3,98,102].

A recent in vivo study on intra-articular O,O3 injection treatment in patients with
KOA has shown that O3 is capable of reducing serum levels of IL-6 [91]. This is particularly
interesting because IL-6 is produced by IL-13 and TNF-«, two important inflammatory
cytokines that appear to play a key role in the initiation and development of OA [103].
IL-1 is responsible for cartilage destruction whereas TNF-« activates the inflammatory
process [91]. The authors also demonstrated that O3 could be capable of improving serum
IGF-1 levels. IGF-1 is a growth factor with important properties in reducing inflammation
and stimulating cell growth, differentiation, and tissue repair [104].

Hashemi et al. obtained similar results showing that treatment with intra-articular
injections of ozone in patients with KOA induces a significant reduction in serum levels of
inflammatory cytokines at 1, 2, and 6 months after the procedure [101]. This result is also
greater at 2 and 6 months compared with patients treated with steroid injections. Notably,
IL-1b and TNF-« serum levels significantly decreased in the ozone group compared with
the steroid group. The authors” hypothesis is that ozone is likely to have a more stable
anti-inflammatory effect than steroids. Although the steroid has a robust anti-inflammatory
action against inflammatory cytokines, this effect in cartilage tissue was shorter than ozone.
The biochemical findings of this study are also confirmed by the clinical outcomes; in
fact, patients treated with ozone demonstrated a more lasting improvement in pain and
disability compared to steroid injection.

These results represent in vivo confirmation of previous in vitro experiments focusing
on the ability of ozone to reduce serum levels of pro-inflammatory cytokines by stimulating
the production of anti-inflammatory cytokines and anabolic chemokines. These intriguing
biological effects could be strictly connected to the clinical improvements observed in
these patients.

Inflammatory cytokines can also increase the production of ROS which can activate
the NF-K{3 pathway leading to accelerating cartilage matrix disintegration and apopto-
sis [105-109]. Ozone has been observed to decrease the NF-K 3 pathway and enhance the
Nrf2 (Nuclear factor erythroid 2-related factor 2) pathway, which is involved in the genera-
tion of antioxidant response elements (AREs) such as superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GPx), and hemoxygenase-1(HO-1) [110,111]. The activated
NEF-Kf3 pathway could lead to a downstream cascade of other proinflammatory cytokines
giving rise to a vicious circle that perpetuates the chronic inflammatory process [112].
Ozone inhibition of NF-Kf3 activation can reduce the degradation of the cartilage matrix
and initiation of the apoptotic pathway, thus supporting cell survival [108] (Figure 2).



Int. . Mol. Sci. 2022, 23, 2528

8 of 18

INIBITION
ACTIVATION

NUCLEUS

>
0
B
e
<

MITOCHONDRIA = CELL SURVIVAL

Figure 2. Ozone (O3) intracellular and intranuclear pathways involved in inflammation and oxida-
tive stress.

Although injured or damaged articular cartilage remains one of the most difficult
tissues to treat [113], it has been recently highlighted that the ozone could provide promising
results as a safe and effective treatment in patients with KOA from both a biochemical and
clinical perspective [3,114-121].

5. Oxygen-Ozone and Rheumatic Diseases

Rheumatoid arthritis (RA) is the most frequent pathology associated with chronic
joint inflammation, a genetic degenerative disease that initially affects extremity joints and
is characterized by a chronic inflammatory state that distorts and demolishes articular
cartilage and expands connective tissue fibrosis, leading to cell destruction and subchondral
bone deterioration. It has been estimated that about 1% of the world population suffers
from this disorder [122]. O,Oj3 therapy effectively decreased inflammation with a down-
regulation of pro-inflammatory cytokines and an up-regulation of IL-10 anti-inflammatory
cytokine [123]. Rajesh and collaborators investigated the temporal expression of cytokines
during the initial phase of an experimental model of arthritic inflammation and revealed
that interferon-gamma (IFN-y) participates in inflammatory process modulation [124].
The O3 has also been shown to effectively increase the clinical response of methotrexate
(MTX) in patients with rheumatoid arthritis induced by PG/PS. The combination therapy
diminishes inflammation through reduction of IL-1B and TNF-« and decreases oxidative
stress by reducing hydrogen and preventing damage to proteins and lipids [125].

In this scenario, O,O3 therapy seems to play a positive role in several inflammatory
conditions due to its bacteriostatic, oxidative stress, immune and epigenetic modulation.
Compared with topical ozone administration, systematic ozone therapy has apparent ad-
vantages in enhancing metabolism, blood hypercoagulability, angiosclerosis, insomnia, and
rejuvenation of the body [2,126]. Thus, psoriasis vulgaris is a chronic immune-mediated
inflammatory cutaneous disease characterized by red, itchy, and scaly skin patches. Patients
typically suffer disfiguration, disability, and associated comorbidities [112]. Zeng et al. indi-
cated that short-term 0,03 therapy seemed to attenuate psoriatic disease severity lowering
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the level of blood lipids and up-streaming PPAR-y level in CD4 T cells, considering that
the PPAR-y expression is commonly reduced in CD4 T cells in psoriasis [127].

Systemic sclerosis (SSc) is an immune-mediated rheumatic disease, characterized by
skin and visceral organs fibrosis and vasculopathy [128,129]. Carpal tunnel syndrome
(CTS) is one of the most common entrapment disorders in general and the most recurring
peripheral nervous system involvement in SSc [130,131]. Elawamy et al. demonstrated that
both intracarpal ozone or methylprednisolone reported advantageous impacts upon CTS in
people with SSC; nonetheless, ozone relieves pain, enhances the hand functioning, decreases
the duration and frequency of Raynaud’s attacks, declines the size of ulceration, and
improves median nerve conduction study over the 6-month follow-up [132]. Rascaroli et al.
found slight improvements in sensory and motor parameters after ozone therapy, and
Bahrami et al. showed improvement of median sensory nerve action potential latency,
compared to the pre-treatment level in both groups (one group treated with wrist volar
splint alone, the other group treated with ozone injection and splint) [133-136]. The nature
of the fibrotic expression in SSc people with CTS seemed to be significantly associated with
gene upstream for Coll and Col3, TGF-3, and SMAD3 in CTS fibroblasts [137,138]. These
studies, focusing on TGF-f3 signaling inhibition in CTS, reported that therapies targeted for
the TGF- pathway might eventually have utility for the prevention and treatment of CTS,
as well as the anti-fibrotic effect of relaxin [137,138].

Gout disease is one of the most frequent causes of inflammatory arthritis in adults
and is chronic disorder associated with self-limiting acute gout attacks (gout flare), caused
by the accretion of monosodium urate (MSU) depositions in joints and surrounding soft
tissue and bursa [139-141]. Acute episodes of gout disease are one of the most influential
reasons for unfavourable health-related quality of life [139-141]. In a rat model, ozone
therapy indicated a decrease in the degree of edematous ankle swelling, pro-inflammatory
cytokines, lipid peroxidation, the nucleotide-binding oligomerization domain-like receptor
containing pyrin domain 3 (NLRP3), procaspase-1, caspase-1, interleukin-13 synovial tissue
levels with an enhancement of antioxidant defence system [142]. In other murine models,
Bilge et al. demonstrated that ozone therapy raises the levels of antioxidant enzymes,
including oxidative shock proteins (hemo-oxygenase-1), Interleukin 4 and Interleukin 10,
TGF-B, NO endorphin, adrenocorticotropic hormone (ACTH), and cortisol levels [141].

In conclusion, the positive effect of ozone treatment sustained by its bidirectional
regulation of immunity are present also in rheumatic diseases patients. These positive
effects could be caused by a O;O3-related massive production of inflammatory modulation
cytokines by immune cells.

6. Oxygen-Ozone and Temporomandibular Disorders

Temporomandibular disorders (TMD) represent heterogeneous musculoskeletal disor-
ders, defined as a multifactorial set of signs and symptoms involving masticatory muscles
of the stomatognathic system, temporomandibular joint (TM]), or both [143].

According to the Diagnostic Criteria for TMD (DC/TMD) Axis I, TMD could be di-
vided in muscle disorders (including myofascial pain) or intra-articular disorders (including
disc displacement with or without reduction, arthralgia, and arthritis) [144,145].

TMD are the second most common musculoskeletal disorders, affecting approximately
90% of the general population [146-148]. Indeed, TMD are the first most common cause of
pain of non-dental origin in the maxillofacial region [149], with an incidence rate of 3.9%
per annum [150].

Main clinical symptoms are pain and limited jaw range of motion, often accompanied
by decrease in the maximal interincisal opening, muscle or joint tenderness on palpation,
joint sounds, and otologic complaints (e.g., tinnitus, vertigo, or ear fullness) [151,152].
These signs and symptoms could lead to discomfort or difficulty in performing activities of
daily living, such as eating, chewing, talking, swallowing, yawning, causing disability with
a significantly reduced quality of life [153-155].
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The etiology has been accepted as multifactorial, and parafunctional habits, clenching
of teeth, grinding, as well as psychosocial issues, including anxiety depression are generally
believed to contribute to the development or perpetuation of the pain complaints [156-159].

In response to this imbalance of the masticatory system, cytokines such as TNFe, IL-1,
IL-6 and IL-8 are released within TMJ [160], thus promoting the release of proteinases and
stimulating the expression of degrading enzymes and inflammatory mediators; all this
mechanism could lead to a TMJ inflammation and bone and cartilage degradation [161].
Other cytokines and metallo-proteinases (MMPs) could be involved in the inflammatory
process, including interferon-gamma (IFN-y), prostaglandin E2 (PGE2), IL-17, MMP-2,
MMP-9, aggrecanase-1 and aggrecanase-2 [162-165].

More in detail, both immune and non-immune cells could release TNF-« (e.g., macroph
ages, synoviocytes, and neurons associated with the trigeminal ganglion), causing TM]
inflammation and pain in myofascial TMD patients [165]. Ulmner et al. [166] characterized
and quantified the synovial tissue cytokines and related the result to the diagnoses of disc
displacement with or without reduction. Results of this study showed that bone morpho-
genetic protein (BMP) type 2 and 4, epidermal growth factor (EGF), eotaxin, granulocyte-
colony stimulating factor (G-CSF), IL-13, IL-7, IL-8, IL-10, macrophage inflammatory
protein (MIP) 13, TNF-« and TNF-f3 had significantly higher concentrations in patients
with disc displacement without reduction. In 2021, Son et al. [167] investigated the relation-
ship between long-term clinical characteristics and different cytokine and autoimmunity
levels in young female TMD patients according to pain disability. The subjects included
in the study were classified in high and low disability groups, according to the Graded
Chronic Pain Scale (GCPS). The authors showed that IL-8 and IgG levels were significantly
higher in the high disability group (p = 0.047 and 0.005, respectively).

Several conservative treatments have been used for reducing TMD-related pain, includ-
ing occlusal splint devices [168,169], behavioral therapies [170], manual therapy [171], laser
therapy [172], transcutaneous electrical nerve stimulation (TENS) [173], dry needling [173].
In this context, O;0O3 therapy [152,174-176] might be considered as a promising new treat-
ment to reduce TMD pain, although the mechanism of action should still be adequately
investigated [177]. Probably, O,O3 might effectively decrease inflammation with a down-
regulation of pro-inflammatory cytokines and an up-regulation of IL-10 anti-inflammatory
cytokine [123].

In the context of muscle-related TMD, Celakil et al. [178] recently conducted a double-
blind randomized clinical trial in order to evaluate the efficacy of ozone therapy compared
to placebo. Topical gaseous ozone therapy was applied to the muscles of 20 participants
three times per week for 10 min for 2 weeks, with a significantly lower VAS score than
placebo group after treatment (p = 0.040). Moreover, the pressure pain threshold of the tem-
poral muscle, masseter muscle, and TM] lateral pole were significantly higher in the ozone
group (p = 0.035; p = 0.007; p = 0.012, respectively). The same authors also compared the
bio-oxidative ozone therapy to occlusal splints therapy in patients affected by both muscle
and articular TMD disorders [135,175,179], showing that both therapies were effective in
the improvement of mandibular movements and VAS scores. However, evaluating the
effects in terms of PPT measurement of the temporal and masseter, their results indicated
that occlusal splint treatment produced better results than ozone application (p = 0.046;
p = 0.024, respectively). In the context of intra-articular TMD, Daif et al. compared the ef-
fects of TMJ ozone injections to medication therapy in TMD patients with disc displacement
with reduction [180]. In the ozone group, each joint received 2 mL ozone-oxygen mixture
(10 pg/mL) injections, 2 times per week for 3 weeks, whereas patients in the second group
received nonsteroidal anti-inflammatory drugs and muscle relaxants showing. Results
of this study showed that 87% of the patients who received ozone gas injections into the
superior joint space either completely recovered (37%) or improved (50%), whereas in
the medication group, only 33% of the patients showed an improvement in their clinical
dysfunction indexes.
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To date, the precise mechanism underpinning the positive effects of O,O3 therapy in
TMD patients are far from being understood. However, O3 decreases the production of
pro-inflammatory cytokines, particularly IL-6, IL-1$3, and TNF-«, which are responsible for
cartilage degradation in the synovial fluid [101]. Thus, when injected into a joint capsule,
0,03 could be able to stimulate the intrinsic fibroblastic joint repairing abilities and to
promote new cartilage growth as well as reducing inflammation [180,181]. Therefore,
ozone therapy is a not-invasive, fast, and comfortable treatment modality that seems to be
effective in the pain management framework in TMD. This could have positive implications
for these patients in improving mandibular function, although the precise role of O,O3 on
serum levels of pro-inflammatory cytokines should be better investigated.

7. Conclusions

In conclusion, this comprehensive review describes the impact of O,O3 therapy on
serum cytokine levels in different settings and conditions. As previously described, muscu-
loskeletal and rheumatological disorders include several pathological conditions charac-
terized by different and complex therapeutic approaches. In this scenario, O,Oj3 therapy
remains a promising conservative and minimally invasive intervention that improves pain
symptoms and patients” quality of life. To date, evidence suggests a role of 0,03 therapy in
IL-6 and IL-10 serum level modulation, although the precise epigenetic mechanism remains
controversial. Therefore, further high-quality studies are needed to fully understand the
molecular, epigenetic, and biochemical effects of O,O3 and its therapeutic implications.
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