Skip to main content
. 2022 Feb 23;23(5):2462. doi: 10.3390/ijms23052462

Table 1.

Comparison of studies regarding detection of MSI/dMMR from histology slides using deep learning.

Author/Year Organ
(% by Training Cohort)
Neural Network Training Cohort Type of Internal Validation External Validation Test Cohort(s) with AUC (95% CI) or Accuracy Methodology for MSI Analysis
Zhang et al., *
2018 [39]
Colorectum
(51.3%)
UCEC
(48.7%)
Stomach
Inception-V3 without adversarial training TCGA CRC (n = 585 WSIs) Random split Yes TCGA CRC Accuracy: 98.3%
TCGA UCEC Accuracy: 53.7%
-
TCGA CRC (n = 585 WSIs)
TCGA UCEC
(n = 556 WSIs)
TCGA CRC Accuracy: 72.3%
TCGA UCEC Accuracy: 84.2%
TCGA STAD (n = 209 WSIs) Accuracy: 34.9%
Inception-V3
with adversarial training
TCGA CRC Accuracy: 85.0%
TCGA UCEC Accuracy: 94.6%
TCGA STAD (n = 209 WSIs) Accuracy: 57.4%
Klaiman et al., * 2019 [40] Colorectum N/A Roche internal CRC80 dataset (n = 94 pts) Random split No Roche internal CRC80 dataset: 0.9 -
Kater et al.,
2019 [41]
Stomach
(19.2%)
ResNet-18 TCGA STAD FFPE
(n = 216 pts)
Random split Yes TCGA STAD FFPE (n = 99 pts): 0.81 (0.69–0.90)
DACHS FFPE (n = 378 pts): 0.60 (0.48–0.69)
KCCH FFPE (n = 185 pts): 0.69 (0.52–0.82)
TCGA: PCR
DACHS: PCR 1 KCCH: IHC
Colorectum
(23.1%)
TCGA CRC FFPE
(n = 260 pts)
TCGA CRC FFPE (n = 100 pts): 0.77 (0.62–0.87)
DACHS FFPE (n = 378 pts): 0.84 (0.720–0.92)
Colorectum
(23.8%)
TCGA CRC Frozen
(n = 269 pts)
TCGA CRC Frozen (n = 109 pts): 0.84 (0.73–0.91)
DACHS FFPE (n = 378pts): 0.61 (0.50–0.73)
UCEC
(33.9%)
TCGA UCEC FFPE
(n = 382 pts)
No TCGA UCEC FFPE (n = 110 pts): 0.75 (0.63–0.83)
Pressman et al., * 2020 [42] Colorectum ResNet18 TCGA (n = 360 WSIs) - Yes TCGA: 0.79
Gangnam sev (n = 170 WSIs): 0.76
-
Schmauch et al., 2020 [43] Colorectum
(62.8%)
HE2RNA with ResNet50 TCGA CRC FFPE
(n = 465 pts)
Three-fold cross validation No TCGA CRC FFPE: 0.82 PCR
Stomach
(37.2%)
TCGA STAD FFPE
(n = 276 pts)
TCGA STAD FFPE: 0.76
Kather et al., 2020 [44] Colorectum ShuffleNet TCGA CRC FFPE
(n = 426 pts)
Three-fold cross-validation Yes DACHS FFPE (n = 379 pts): 0.89 (0.88–0.92) TCGA: PCR
DACHS: PCR 1
Cao et al.,
2020 [45]
Colon ResNet-18 TCGA-COAD Frozen
(Total number including test cohort: 429 WSIs)
Random split Yes TCGA-COAD: 0.8848 (0.8185–0.9512)
Asian-CRC FFPE (n = 785 WSIs): 0.6497 (0.6061–0.6933)
TCGA-COAD: NGS 2
Asian-CRC; PCR
TCGA-COAD Frozen (90%) +
Asian-CRC FFPE (10%)
- No Asian-CRC FFPE (n = 785 WSIs): 0.8504 (0.7591–0.9323)
TCGA-COAD Frozen (30%) +
Asian-CRC FFPE (70%)
- No Asian-CRC FFPE (n = 785 WSIs): 0.9264 (0.8806–0.9722)
Echle et al.,
2020 [46]
Colorectum ShuffleNet MSIDETECT CRC
(n = 6406 pts)
Random split Yes MSIDETECT CRC: 0.92 (0.90–0.93) DACHS: PCR
TCGA: PCR
QUASAR and NLCS: IHC 3
YCR-BCIP: IHC
Three-fold cross validation MSIDETECT CRC: 0.92 (0.91–0.93)
YCR-BCIP-RESECT (n = 771 pts): 0.96 (0.93–0.98)
YCR-BCIP-BIOPSY (n = 1531 pts): 0.78 (0.75–0.81)
YCR-BCIP-BIOPSY
(n = 1531 pts)
Three-fold cross validation No YCR-BCIP-BIOPSY: 0.89 (0.88–0.91)
Valieris et al., 2020 [47] Stomach Resnet-34 TCGA-STAD FFPE
(Total number including test cohort: 369 pts)
Random split No TCGA-STAD FFPE: 0.81 (0.689–0.928) NGS 4
Yamashita et al., 2021 [48] Colorectum MSInet Stanford dataset (n = 85 pts) Random split No Stanford dataset (n = 15 pts): 0.931 (0.771–1.000) Stanford dataset: IHC/PCR
TCGA: PCR
Four-fold
cross-validation
Yes Stanford dataset (n = 15 pts): 0.937
TCGA (n = 479 pts): 0.779 (0.720–0.838)
Krause et al., 2021 [49] Colorectum ShuffleNet TCGA FFPE (n = 256 pts) Random split No TCGA FFPE (n = 142 pts): 0.742 (0.681–0.854) PCR
Lee et al.,
2021 [50]
Colorectum Inception-V3 TCGA FFPE
(n = 470,825 patches)
SMH FFPE
(n = 274 WSIs)
10-fold cross validation No TCGA FFPE: 0.892 (0.855–0.929)
SMH FFPE: 0.972 (0.956–0.987)
TCGA: PCR
SMH: PCR/IHC
TCGA FFPE
(n = 470,825 patches)
Yes TCGA FFPE: 0.861 (0.819–0.903)
SMH FFPE: 0.787 (0.743–0.830)
TCGA Frozen
(n = 562,837 patches)
No TCGA Frozen: 0.942 (0.925–0.959)
Hong et al.,
2021 [51]
UCEC InceptionResNetV1 TCGA and CPTAC
(Total number including test cohort: 456 pts)
Random split Yes TCGA and CPTAC: 0.827 (0.705–0.948)
NYU set: 0.667
TCGA: PCR
CPTAC: NGS 5

AUC, Area Under the Curve; UCEC, Uterine Corpus Endometrial Carcinoma; TCGA, The Cancer Genome Atlas study; CRC, ColoRectal Cancer; WSI, Whole Slide Images; STAD, STomach ADenocarcinoma; pts, patients; FFPE, Formalin-Fixed Paraffin-Embedded; DACHS, Darmkrebs: Chancen der Verhütung durch Screening (CRC prevention through screening study abbreviation in German); KCCH, Kangawa Cancer Center Hospital (Japan); Stanford dataset, Stanford University Medical Center (USA) Gangnam sev, Gangnam Severance Hospital (South Korea); COAD, COlonic ADenocarcinoma; MSIDETECT: A consortium composed of TCGA, DACHS, the United Kingdom-based Quick and Simple and Reliable trial (QUASAR), and the Netherlands Cohort Study (NLCS); YCR-BCIP: Yorkshire Cancer Research Bowel Center Improvement Programme; SMH, Saint Mary’s Hospital (South Korea); CPTAC, Clinical Proteomic Tumor Analysis Consortium; NYU, New York University hospital. * Conference paper or abstract not officially published. The stomach cancer cohort was used only in test cohort. 1 3-plex PCR (BAT25, BAT26, CAT25) 2 MSI sensor algorithm 3 2-plex IHC 4 Mutation signature 5 Mutation load, MMR gene mutation status, MSI sensor score, MSMuTect score, and MLH1methylation.