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BACKGROUND: DNA methylation alterations may underlie associations between gestational perfluoroalkyl substances (PFAS) exposure and later-life
health outcomes. To the best of our knowledge, no longitudinal studies have examined the associations between gestational PFAS and DNA
methylation.
OBJECTIVES:We examined associations of gestational PFAS exposure with longitudinal DNA methylation measures at birth and in adolescence using
the Health Outcomes and Measures of the Environment (HOME) Study (2003–2006; Cincinnati, Ohio).
METHODS: We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and
perfluorohexane sulfonate (PFHxS) in mothers during pregnancy. We measured DNA methylation in cord blood (n=266) and peripheral leukocytes
at 12 years of age (n=160) using the Illumina HumanMethylation EPIC BeadChip. We analyzed associations between log2-transformed PFAS con-
centrations and repeated DNA methylation measures using linear regression with generalized estimating equations. We included interaction terms
between children’s age and gestational PFAS. We performed Gene Ontology enrichment analysis to identify molecular pathways. We used Project
Viva (1999–2002; Boston, Massachusetts) to replicate significant associations.

RESULTS: After adjusting for covariates, 435 cytosine–guanine dinucleotide (CpG) sites were associated with PFAS (false discovery rate, q<0:05).
Specifically, we identified 2 CpGs for PFOS, 12 for PFOA, 8 for PFHxS, and 413 for PFNA; none overlapped. Among these, 2 CpGs for PFOA and
4 for PFNA were replicated in Project Viva. Some of the PFAS-associated CpG sites annotated to gene regions related to cancers, cognitive health,
cardiovascular disease, and kidney function. We found little evidence that the associations between PFAS and DNA methylation differed by child-
ren’s age.
DISCUSSION: In these longitudinal data, PFAS biomarkers were associated with differences in several CpGs at birth and at 12 years of age in or near
genes linked to some PFAS-associated health outcomes. Future studies should examine whether DNA methylation mediates associations between ges-
tational PFAS exposure and health. https://doi.org/10.1289/EHP10118

Introduction
Perfluoroalkyl substances (PFAS) are a family of persistent syn-
thetic chemicals with unique properties that allow them to resist
water, oil, heat, and chemical reactions. PFAS have been used in
industrial processes and commercial products including fire-
fighting foams, paints, waxes, cleaning products, and textiles

(Glüge et al. 2020). The major exposure pathway for PFAS is
through the ingestion of contaminated food and drinking water,
with inhalation of indoor air and house dust being minor path-
ways (ATSDR 2018). PFAS-contaminated drinking water is a
growing concern; at least 200million Americans have PFAS in
their drinking water (Andrews and Naidenki 2020). A growing
number of studies have linked prenatal exposure to PFAS to a
range of health outcomes in children, such as low birth weight
and preterm birth, decreased immune responses, cognitive func-
tion, later pubertal onset, obesity, and unfavorable cardiometa-
bolic profiles (Braun 2017; Li et al. 2021; Liu and Peterson 2015;
Liu et al. 2020; Rappazzo et al. 2017). However, the biological
mechanisms by which gestational PFAS exposure may affect
child health are not well understood.

Gestational exposure to PFAS may alter epigenetic modifica-
tions, including DNA methylation in fetuses, and these changes
may in turn affect gene expression and related health outcomes in
later life (Baccarelli and Bollati 2009; Kim et al. 2021a). DNA
methylation, the most-studied epigenetic mark, is the attachment
of a methyl group (−CH3) to the C-5 position of a cytosine ring,
which generally occurs at a cytosine–guanine dinucleotide (CpG)
site. Alterations in DNA methylation play an important role in
embryonic development and cell differentiation and are relatively
stable and mitotically inheritable (Barrett 2017; Breton et al.
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2017; Tang et al. 2015). In utero and neonatal exposure to PFAS
have been linked to reduced global DNA and insulin like growth
factor 2 (IGF2) methylation in cord blood (Guerrero-Preston et al.
2010; Kobayashi et al. 2017; Liu et al. 2018). IGF2, expressed in
early embryonic development, is an important determinant of fe-
tal growth (Randhawa and Cohen 2005). Thus, PFAS-induced
DNA methylation changes in early development are a potential
molecular pathway linking PFAS to human health.

Few studies have examined the associations of gestational
PFAS exposure with changes in epigenome-wide DNA methyla-
tion in cord blood or placenta (Miura et al. 2018; Ouidir et al.
2020; Starling et al. 2020). Two studies found that higher serum
perfluorooctanoate (PFOA) was significantly associated with
lower cord blood DNA methylation at specific CpG sites (Miura
et al. 2018; Starling et al. 2020), whereas one study found no sig-
nificant associations (Ouidir et al. 2020). Some of these studies
have reported significant associations of DNA methylation with
serum perfluorooctane sulfonate (PFOS), perfluorohexane sulfo-
nate (PFHxS) and perfluorononanoic acid (PFNA) concentrations
(Miura et al. 2018; Ouidir et al. 2020). In addition, cross-
sectional epigenome-wide association studies (EWAS) of PFAS
with DNA methylation in adults have reported inconsistent find-
ings (van den Dungen et al. 2017; Xu et al. 2020). Current studies
are limited by their cross-sectional design, and we are unaware of
studies examining longitudinal changes in DNA methylation.
Identifying CpGs that are persistently associated with gestational
PFAS exposure is critical because these CpGs may provide
insights about biological pathways underlying the health effects
of PFAS exposure (Baccarelli and Bollati 2009).

In this study, we used data from the Health Outcomes and
Measures of the Environment (HOME) Study to characterize the
association of maternal serum concentrations of PFOA, PFOS,
PFNA and PFHxS with repeated measures of DNA methylation
at birth and at 12 years of age. We used data from a different
cohort, Project Viva, to replicate our findings.

Methods

Study Participants
For this analysis, we collected data from mother–child pairs who
were enrolled in the HOME Study (discovery cohort). From
March 2003 to January 2006, pregnant women living in the
Cincinnati, Ohio, metropolitan area were recruited from nine pre-
natal clinics affiliated with three hospitals. Detailed information
regarding the eligibility and recruitment methods can be found
elsewhere (Braun et al. 2017). Briefly, pregnant women were en-
rolled at ∼ 16 wk of gestation and their children were followed
at 4 wk and at 1, 2, 3, 4, 5, 8, and 12 years of age. Originally, 468
pregnant women were recruited in the HOME Study and 401
completed the baseline visit. We excluded children who were
twins. For follow-up visits at ∼ 12 years of age, 390 singleton
children were eligible and 242 completed the follow-up assess-
ments. Of these, 329 participants at baseline and 199 participants
at follow-up had a sufficient blood sample volume available
for DNA methylation measurements. We excluded 4 partici-
pants whose samples did not pass the quality control for DNA
methylation measurements (see the section “DNA Methylation
Analysis”). Of these, we included 291 participants (266 at base-
line and 160 at follow-up) who had gestational PFAS measure-
ments and complete covariate information. There were 135
participants who had data on both time points, and 156 partici-
pants who had data on a single time point. We did not find sub-
stantial differences in baseline sociodemographic features or
PFAS concentrations between mother–child pairs with one or
both time points (Table S1). Additional information including

participant characteristics and collection of child information for
the follow-up visit at 12 years of age have been published previ-
ously (Braun et al. 2020).

The institutional review boards at the Cincinnati Children’s
Hospital Medical Center and the participating hospitals approved
this study prior to enrollment. Pregnant women provided written
informed consent upon enrollment at each study visit; their chil-
dren provided written informed assent at 12 years of age.

Gestational PFASMeasurements
To estimate gestational exposure to PFAS, we quantified the con-
centrations of PFOA, PFOS, PFNA, and PFHxS in serum collected
from pregnant women at ∼ 16 wk of gestation (10.4–30.3 wk).
Serum PFAS concentrations were measured using online solid-phase
extraction coupled to high-performance liquid chromatography–
isotope dilution tandem mass spectrometry (HPLC-MS/MS) at the
Centers for Disease Control and Prevention (CDC) laboratory fol-
lowing a modified analytical method (CDC 2015; Kato et al. 2011,
2018). The limits of detection (LODs) were 0:082 ng=mL for
PFNA, 0:1 ng=mL for PFOA and PFHxS, and 0:2 ng=mL for
PFOS; each of the four PFAS were detectable in at least 98% of se-
rum samples. PFAS concentrations below the LOD were replaced
with the LODdivided by the square root of 2.

DNAMethylation Analysis
Blood samples were collected at delivery (cord blood) and at
12 years of age and then stored at −80�C before performing DNA
methylation analysis. Venous cord blood samples were collected
immediately after birth via venipuncture. Trained phlebotomists
obtained fasting blood samples from the children at 12 years of
age. We extracted genomic DNA (gDNA) from 100 lL whole
blood using the DNeasy Blood & Tissue Kit (Qiagen) with RNase
A (100 mg=mL; cat. no. 19101), following the protocols provided
by the manufacturer. We quantified DNA methylation at 866,836
CpG sites per sample using the Infinium HumanMethylationEPIC
BeadChip (EPIC) array (Illumina). The EPIC array covers >90%
of the CpGs quantified by the Infinium HumanMethylation450
BeadChip (450K) array (Solomon et al. 2018). Briefly, gDNA
(250 ng) was subject to sodium bisulfite conversion using the EZ
DNA Methylation Kit (Zymo Research). Bisulfite-modified DNA
was then whole-genome amplified, enzymatically fragmented, and
hybridized to the InfiniumMethylationEPIC BeadChip (Illumina),
whichwas analyzed using an IlluminaHi-Scan System.All the lab-
oratory work was performed according to Illumina’s protocols
at the Genomics, Epigenomics and Sequencing Core at the
University of Cincinnati College of Medicine. Paired samples (at
delivery and at 12 years of age) were randomly assigned to posi-
tions on the sameBeadChip, balanced by child sex.

Standard protocols were followed for the normalization and
quality control of raw DNA methylation data (Kelsey et al. 2019;
Wilhelm-Benartzi et al. 2013). Briefly, we removed samples with
>5% high detection p-values (p>1×10−7; n=4) and probes
with at least one high-detection p-value using the same cutoff.
We also removed sex chromosomes, loci associated with single-
nucleotide polymorphisms and cross-hybridizing probes, as previ-
ously described (Zhou et al. 2017). This resulted in 669,622 auto-
somal probes being included in the analysis. We used Noob
(preprocessNoob: minfi Bioconductor package) for background
correction and dye bias normalization. In addition, we used Beta
MIxture Quantile dilation (BMIQ) (wateRmelon) to correct the
probe design bias (Teschendorff et al. 2013), and we used ComBat
to adjust for potential batch effects (Wilhelm-Benartzi et al. 2013).
The ComBat() function of the SVA package (Leek et al. 2012) was
used to correct for batch effects at the BeadChip level using a
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parametric empirical Bayes procedure (Johnson et al. 2007).
We performed all statistical analyses using logit-transformed
M-values = log2 betai

1− betai

� �
, where beta is the ratio of intensities

measured by methylated probes and the sum of intensities meas-
ured by bothmethylated and unmethylated probes (Du et al. 2010).

To account for heterogeneity in leukocyte and nucleated red
blood cells across participants, we estimated the relative propor-
tions of cell types in blood samples using the estimateCellCounts2
function in the R package FlowSorted.Blood.EPIC (Salas et al.
2018). We calculated the proportions of seven cell types (B lym-
phocytes, CD4+ andCD8+ T cells, neutrophils, monocytes, natural
killer (NK) cells, and nucleated red blood cells) in cord blood,
using an umbilical cord blood reference data set (Gervin et al.
2019). For child blood samples at 12 years of age, we estimated the
proportions of six cell types (B lymphocytes, CD4+ and CD8+ T
cells, neutrophils, monocytes, and NK cells) using an adult refer-
ence data set (Salas et al. 2018).

Covariates
We adjusted for covariates that were associated with gestational
PFAS concentrations and DNA methylation based on a priori
knowledge (Braid et al. 2017; Kingsley et al. 2018) (Figure S1).
In addition to cell type composition, we adjusted for child age
(continuous) and sex, annual household income (continuous),
maternal race/ethnicity (non-Hispanic white vs. non-Hispanic
black, and other) and maternal smoking during pregnancy (active
smoking defined as serum cotinine >3 ng=mL vs. nonsmoking)
in the models. We measured serum cotinine during pregnancy or
at delivery using HPLC-MS/MS (Braun et al. 2010). Maternal
race/ethnicity may be a confounder (Adkins et al. 2011; Boronow
et al. 2019; Park et al. 2019) for the associations between gesta-
tional PFAS and DNA methylation. Other covariates were
obtained using standardized computer-assisted interviews con-
ducted by trained staff. Race/ethnicity (non-Hispanic white; non-
Hispanic black; American Indian; Asian/Pacific; Hispanic) was
self-reported by participants using standardized questionnaires,
and only one category could be selected. In the analysis, race was
collapsed into non-Hispanic white, non-Hispanic black, and
other. We did this to reduce the degrees on freedom in the regres-
sion models and maximize precision. We did not adjust for pre-
mature birth, gestational age, mode of delivery, or pubarche in
our analysis because these variables could be mediators of the
associations between gestational PFAS and DNA methylation.

Statistical Analyses
We performed univariate analysis on the pregnancy concentra-
tions of PFOA, PFOS, PFNA, and PFHxS in serum [median
(25th, 75th percentiles)] and the levels of covariates
[mean± standard deviation (SD) or proportion (%)]. Prior to
analysis, we log2-transformed PFAS concentrations to reduce
the potential impact of outliers.

We analyzed longitudinal associations between log2-transformed
PFAS concentrations and repeated DNAmethylationmeasures using
a multivariable linear regression model with generalized estimating
equations (GEE) approach (Zeger and Liang 1986) with an identity
link function, a working independence correlationmatrix, and normal
errors. The R package gee (available at https://cran.r-project.org/web/
packages/gee)was used for estimation purposes.

For each of 669,662 autosomal CpG markers that survived
quality control, we first estimated the main effect model:
Mij =b0 + b1 log2ðPFASiÞ + b2agei + b3sexi + b4racei + b5
smokingi + b6incomei + cðcell type compositionÞij + eij,eij,eij ∼
Nð0,r2Þ. Here Mij represents the logit of the DNA methylation
proportions for subject i at each visit (j=1 at baseline, j=2 at

follow-up) and cell type composition represents the proportion
of cell types estimated at each visit. In this model, we were
interested in b1, which can be interpreted as the differences in
the logits of DNA methylation proportions across the two vis-
its per 2-fold increase in gestational PFAS concentrations.
Second, we examined the stability of PFAS-associated differ-
ences in DNA methylation across visits by adding the interac-
tion of age × log2 (PFAS) concentrations to the model above.
In addition, we performed analyses examining associations of
PFAS concentrations with DNA methylation in cord blood and
at 12 years of age individually for those CpG sites that were
significant in the main effect model to evaluate the stability of
these differences over time.

To adjust for multiple comparisons across the epigenome, we
used a modification of the Benjamini-Hochberg procedure
(Benjamini et al. 2001) to control for false discovery rate (FDR)
at the 5% level across CpG markers for each PFAS exposure.
Storey’s q-values (Storey and Tibshirani 2003) were obtained by
shrinking the Benjamini-Hochberg adjusted p-values by an esti-
mate of the proportion of truly null markers (q=BH p×p0), and
any q<0:05 was considered significant for both main and inter-
action effects. We evaluated genomic inflation by calculating
lambda and created quantile–quantile plots for epigenome-wide
analyses for each PFAS. We used the University of California,
Santa Cruz (UCSC) Genome Browser database to annotate CpGs
by assigning genomic features using the human reference ge-
nome GRCh37 (Haeussler et al. 2019), and CpGs assigned to
TSS200 or TSS1500 (200 or 1,500 bases from the transcription
start site) were annotated as being located in a promoter region.

To improve the biological interpretation of the microarray
data, we performed gene ontology enrichment analysis on the top
500 CpGs with the lowest FDR q-values for each PFAS from the
main effect models to identify putative biological pathways. We
decided to include 500 CpGs for this analysis because it is diffi-
cult to detect enriched pathways using the small number of CpGs
associated with PFAS based on a stringent FDR q<0:05. We used
the gometh function in the R package version 1.28.0, missMethyl
to perform the enrichment test for Gene Ontology (GO) terms
using Wallenius’ noncentral hypergeometric distribution, taking
into account the number of probes per gene on EPIC array and
CpGs annotated to multiple genes (Phipson and Maksimovic
2020). GO annotates genes to three biological domains including
biological processes, molecular functions, and cellular compo-
nents. GO termswith FDR q<0:05were considered significant.

In the secondary analysis, we examined the associations of
gestational PFAS concentrations with cell type composition in
cord blood and adolescent blood at 12 years of age to improve
our understanding of the potential immunotoxicity of PFAS. We
assessed these associations using separate linear regression mod-
els for each cell type, adjusting for child sex, household income,
maternal race/ethnicity, serum cotinine in pregnancy, and child
age (for adolescence models).

Replication Analysis
We used data collected from Project Viva to replicate EWAS
findings from the HOME Study. Project Viva is a longitudinal
prebirth cohort established to examine the effects of events during
early development on lifetime health outcome. Between April
1999 and November 2002, the study recruited women in early
pregnancy from eight obstetric offices of Atrius Harvard
Vanguard Medical Associates, a multispecialty group practice in
eastern Massachusetts. Exclusion criteria included multiple gesta-
tion, inability to answer questions in English, gestational age
≥22 wk at recruitment, and plans to move away from the study
area before delivery. Of 2,670 enrolled participants, 2,128 were
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still enrolled at delivery and had a live birth. Recruitment and
characteristics of the cohort have been described in detail else-
where (Oken et al. 2015). Gestational PFAS concentrations,
DNA methylation, and covariate data were available for 371
mother–child pairs at delivery and 342 children at 7 years of age
(Table S2).

The concentrations of PFOS, PFOA, PFNA, and PFHxS in
plasma collected from pregnant women at 30.9–42.6 wk of gesta-
tion were quantified at the CDC laboratory using the same analyti-
cal method used for the HOME Study. Venous cord blood was
collected. At the mid-childhood visit (mean= 7:9 years of age;
range: 6.7–10.5), trained research assistants obtained whole blood
from the antecubital vein. Genomic DNA was extracted from
nucleated cells using commercially available Qiagen PureGene
Kits and frozen at −80�C. DNA underwent sodium bisulfite
conversion using the EZ DNA Methylation-Gold Kit (Zymo
Research) was analyzed for DNA methylation using the Infinium
Human Methylation450 BeadChip (Illumina). DNA methylation
in cord blood and at ∼ 7 years of age was measured using the
Illumina Infinium HumanMethylation 450 BeadChip. Following
the same normalization and quality control pipeline for DNA
methylation data in the HOME Study (see the section “DNA
Methylation Analysis”), we excluded samples that failed on the
array (cord blood n=4, mid-childhood blood n=5), that were
low-quality (cord blood n=10, mid-childhood blood n=6), that
had a genotype mismatch when compared with a blood sample
from the same individual at a different time point (cord blood n=6,
mid-childhood blood n=4), and that had a predicted sex mismatch
with recorded sex in our phenotypic data set (cord blood n=6,
mid-childhood n=3). We excluded probes that were on the sex
chromosomes or that had a detection p<0:05 in >5% of samples,
contributing a total of 467,471 probes to this replication analysis.
The associations between log2-transformed PFAS concentrations
and repeated blood DNA methylation measures were evaluated
using the same GEEs that were used for the HOME Study data
with adjustment for the same covariates except for smoking, which
was collected using self-reported questionnaire. CpGs with a
p<0:05 and the same direction of associations observed in
the HOME Study were considered successful replications. We
performed all the statistical analyses using R (version 4.0.5;
R Development Core Team) and Bioconductor (version 3.12;
Bioconductor).

Results
Among the 266 mother–offspring pairs in the HOME Study at
baseline, 53% of the children were girls, 8% of the mothers were
active smokers during pregnancy (serum cotinine concentrations
>3 ng=mL), 66% were non-Hispanic white, and 17% had annual
household income of <$20,000 (Table 1). Median serum concen-
trations of PFOA, PFOS, PFHxS, and PFNA during pregnancy
were 5.4, 13.7, 1.5, and 0:9 ng=mL, respectively (Figure S2,
Table S3). We observed moderate correlations among serum
PFAS concentrations during pregnancy (q=0:29–0:63) (Table
S4). The mean age of the 160 children at follow-up was 12.3 y
(range: 11.1–14.0).

After adjusting for potential confounders and multiple com-
parisons, 435 CpGs were significantly associated with PFAS con-
centrations at FDR q<0:05 (Excel Tables S1–S4). We identified
12 significant CpGs for PFOA, 2 for PFOS, 8 for PFHxS, and
413 for PFNA; there were no overlapping CpGs across different
PFAS. Because of the large number of CpG loci with significant
associations with PFNA, only the top 8 loci with FDR q<0:01
are reported in the text (total n=30 CpGs) (Table 2, Figure 1)
and the 413 PFNA-associated CpGs at FDR q<0:05 are included
in Excel Table S4. The quantile–quantile plots for each PFAS did

not show noteworthy inflation in the distribution of observed
p-values (Figure S3; genomic inflation factor: PFOA, k=1:27;
PFOS, k=1:04; PFHxS, k=1:38; PFNA, k=1:29). The list of
CpGs associated with gestational PFAS concentrations (HOME
Study) with p<0:001 along with coefficients, p-values, and FDR
q-values can be found in the Excel Tables S1–S4.

Of the 435 significant associations discovered in the HOME
Study using the Infinium Methylation EPIC array, 315 CpGs
were present on the 450K array used by Project Viva, and we
successfully replicated 6 CpG sites with the same direction of
associations and a p<0:05 in Project Viva (2 CpGs for PFOA, 4
CpGs for PFNA) (Table 2, Figure 1).

In the HOME Study, few PFAS× age interactions reached sta-
tistical significance (FDR q>0:05) (Table 3). Only four CpGs for
PFHxS (cg12507840, cg12119988, cg11035296, and cg21869609)
and one CpG for PFNA (cg24155143) had significant interaction
terms. Among the fiveCpGswith significant interaction terms in the
HOME Study, two CpGs (cg12119988 and cg21869609) were
available using 450K array in Project Viva, and neither onewas suc-
cessfully replicated (PFAS× age interaction p>0:05) (Table 3).
AmongCpGs significantly associatedwithPFAS in ourmain effects
model (no age interaction), these associations were consistent at
birth and at 12 years of age, having the same direction and compara-
ble effect size for both time points (Excel Table S5).

Among the top 30 CpGs associated with PFAS in the HOME
Study, we annotated these CpGs to 20 unique genes, 2 CpGs asso-
ciated with PFHxS were mapped to the same gene [corneodesmo-
sin (CDSN); psoriasis susceptibility 1 candidate 1 (PSORS1C1)]
(Table 2). All CpGs associated with PFOS were hypermethylated,
whereas the majority of the CpGs associated with PFNA concen-
trations were hypomethylated. A mix of hypermethylated and

Table 1. Sociodemographic and perinatal characteristics and maternal serum
PFAS concentrations in pregnancy for participants at delivery and at 12 years
of age in the HOME Study (Cincinnati, Ohio; enrolled 2003–2006).

Characteristics
Delivery
(n=266)

Follow-up
(n=160)

Child sex [n (%)]
Girls 140 (53) 85 (53)
Boys 126 (47) 75 (47)

Child age [mean (SD)] — 12.3 (0.6)
Maternal serum cotinine

(ng/mL) [n (%)]
<0:015 (Unexposed)a 89 (34) 44 (28)
0:015− <3 (secondhand tobacco
smoke exposure)

155 (58) 103 (64)

>3 (active smoking) 22 (8) 13 (8)
Maternal race/ethnicity [n (%)]
Non-Hispanic white 175 (66) 92 (57)
Non-Hispanic black 74 (28) 59 (37)
All others 17 (6) 9 (6)

Annual household income [n (%)]
>$80,000 81 (31) 44 (28)
$40,000–80,000 94 (35) 50 (31)
$20,000–40,000 46 (17) 28 (17)
<$20,000 45 (17) 38 (24)

Prenatal PFAS concentrations
(ng/mL) [median (25th,
75th percentiles)]

PFOA 5.5 (3.9, 7.9) 5.1 (3.6, 7.6)
PFOS 14.0 (9.9, 17.8) 13.4 (8.9, 18.5)
PFHxS 1.5 (0.9, 2.4) 1.4 (0.8, 2.3)
PFNA 0.9 (0.7, 1.2) 0.9 (0.7, 1.2)

Note: Data were complete for all variables. PFAS concentrations below LOD were
replaced with the LOD divided by the square root of 2. —, no data; HOME, Health
Outcomes and Measures of the Environment; LOD, limit of detection; PFAS, perfluor-
oalkyl substances; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate;
PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate; SD, standard deviation.
aBelow detection limit. PFAS concentrations were measured in maternal serum at 10.4–
30.3 wk of gestation.
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hypomethylated CpGs were observed for PFOA and PFHxS. Most
CpGs for PFOA, PFOS, and PFHxS were in an open sea region,
whereas the majority of CpGs were in a CpG island for PFNA. In
addition, we found 1 CpG (cg04977784) is in an enhancer region,
and the majority of these CpGs reside in a DNase I hypersensitiv-
ity region (a mark for transcriptionally competent chromatin).
Finally, these CpGs annotated to the nearest genes, which have

been linked to several PFAS-associated health outcomes including
cancers, cognitive health, cardiovascular disease, inflammatory
bowel disease, and kidney function (Table S5).

In the enrichment analysis using the top 500 CpGs for each
PFAS (mapped to 239–432 unique genes), we observed significant
enrichment of gene sets annotating to a total number of 39 unique
GO terms with an FDR q<0:05 (Table 4). Among them, we

Figure 1. Volcano and Manhattan plots for the epigenome-wide adjusted associations of (A) log2-transformed gestational serum concentrations of PFOA or
(B) PFOS or (C) PFHxS or (D) PFNA with repeated measures of DNA methylation with in the HOME Study (Cincinnati, Ohio; enrolled 2003–2006). These
models were adjusted for child age and sex, annual household income (median income of each category), maternal race/ethnicity (non-Hispanic white vs. non-
Hispanic black and other) and smoking during pregnancy (active smoking ≥3 ng=mL for serum cotinine, not active smoking), and cell type composition. Left
panels are volcano plots showing the difference in leukocyte DNA methylation (magnitude of effect on M-value: x-axis) associated with gestational PFAS con-
centrations for each CpG site plotted against its negative log10-transformed p-value (y-axis). Triangles represent the CpG sites with FDR q<0:05. For PFNA,
diamonds represent the CpG sites with FDR q<0:01. Right panels are Manhattan plots showing negative log10-transformed p-values for the associations
between gestational PFAS concentrations and DNA methylation across chromosomes. Statistically significant CpG sites were defined as having an FDR
q<0:05 (PFOA, PFOS, and PFHxS) or 0.01 (PFNA). Horizontal lines denote FDR q<0:05 or 0.01. Note: CpG, cytosine–guanine dinucleotide; FDR, false
discovery rate; HOME, Health Outcomes and Measures of the Environment; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluor-
ooctanoate; PFOS, perfluorooctane sulfonate.
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identified 14 significant GO terms for PFOA, 13 for PFOS, 22 for
PFNA, and none for PFHxS; there were 10 overlapping terms
between PFOA and PFOS. The most significant GO term for both
PFOA and PFOS was homophilic cell adhesion via plasma mem-
brane adhesion molecules in the category of biological process
(BP) (FDR q-value: PFOA=4:71× 10−16; PFOS=2:42× 10−29).
GO cellular component (CC) terms, such as cytoplasm and intra-
cellular organelle, were the most significant for PFNA (FDR
q=0:001).

In general, gestational PFAS concentrations were not associ-
ated with estimated cell type composition in cord blood (Table 5)
or child blood collected at 12 years of age (Table 6). However,
we observed a monotonic decrease in the percentage of B lym-
phocytes in cord blood (pTrend = 0:03) across tertiles of PFOS and
a monotonic decrease in the percentage of nucleated red blood
cells at delivery (pTrend = 0:02) across tertiles of PFNA.

Discussion
In this longitudinal EWAS analysis using data from the HOME
Study, we found evidence that gestational PFAS exposure was
associated with differences in offspring peripheral leukocyte DNA
methylation at several CpGs at birth and at 12 years of age. These
associations were consistent in direction and magnitude at both
time points, indicating that these associations are persistent over
time. To the best of our knowledge, these CpGs have not been
reported in previous studies and were annotated to gene regions
linked to various PFAS-associated health outcomes, including can-
cers, cognitive health, cardiovascular disease, inflammatory bowel
disease, and kidney function. In addition, we successfully repli-
cated associations for six CpG sites in Project Viva.

Previous EWASstudies have found statistically significant asso-
ciations between gestational PFAS concentrations and DNA meth-
ylation at birth or in newborns (Miura et al. 2018; Ouidir et al. 2020;
Starling et al. 2020; van den Dungen et al. 2017). Specifically, two
studies reported significant associations between higher pregnancy
PFOA concentrations and lower cord blood DNA methylation at
two CpGs (cg11260715: AC002480.3 and cg04461802: GPR126)
in 190 Japanese mother–offspring pairs (Miura et al. 2018), and at
one CpG (cg18587484: TJAP1) in 583 mother–offspring pairs from
Colorado. (Starling et al. 2020). A cross-sectional study reported
that higher neonatal PFOAconcentrations were significantly associ-
ated with lower DNA methylation at one CpG (cg15557840:
SCRT2; SRXN1) in 597 newborns fromNewYork. (Robinson et al.
2021). In contrast, no significantCpGswere observed for the associ-
ations of pregnancy PFOA concentrations with placental DNA
methylation in a U.S. study (n=519) (Ouidir et al. 2020) or the
cross-sectional associations of PFOA concentrations with DNA
methylation in 80 adult Dutch men (van den Dungen et al. 2017).

Althoughwewere not able to identify the sameCpGs in the previous
studies, these CpGs were linked to genes that are associated with
similar health outcomes.

We found that PFOS concentrations in pregnancy were signifi-
cantly associated with DNAmethylation at two CpGs (cg16381104
and cg21421331:HPSE2), and bothwere hypermethylated. In other
studies, pregnancy PFOS concentrations were positively associated
with cord blood DNA methylation at two CpGs (cg02044327:
CXADRP3 and cg25705526: SNAPIN) (Miura et al. 2018), placen-
tal DNA methylation at two CpGs (cg17921248: PRKCA and
cg11891579: EBF1) (Ouidir et al. 2020), and newborn blood DNA
methylation at two CpGs (cg19039925: GVIN1 in boys and
cg05754408: ZNF26 in girls) (Robinson et al. 2021). In adults,
PFOS concentrationswere significantly associatedwithDNAmeth-
ylation at 117 CpGs in Swedish women (Xu et al. 2020). However,
PFOS was not significantly associated with DNA methylation in
Dutchmen (van denDungen et al. 2017).

In the HOME Study, both PFNA and PFHxS concentrations
were significantly associated with DNA methylation at specific
CpG sites. Ouidir et al. (2020) found two CpGs significantly
related to PFNA (cg26808417: ARL8A and cg21502999: ELK3)
and three CpGs for PFHxS (cg21058927: CISD2, cg11428546:
AFF3, and cg10530492: NOL7). However, Starling et al. (2020)
observed no significant associations for PFOS, PFNA, or PFHxS.
In the present study, gestational PFNA concentrations were asso-
ciated with a greater number of CpGs than other PFAS. It is pos-
sible that the distribution of PFNA concentrations may have
impacted these findings. PFNA has a relatively narrow exposure
range (0:3–2:9 ng=mL), and each participant can take on only
one of 24 values (machine rounds levels to 0.1). It is also possible
that blood DNA methylation is more sensitive to the effect of
PFNA exposure; however, the potential biological mechanism is
not clear based on the current literature.

We compared our results with those from prior studies that
listed CpGs with a p≤ 0:001 for their associations (Table S6).
Among these CpG sites, 3–4% for PFOS and PFOA in the study
by Miura et al. (2018), 3–6% for PFOS, PFOA, PFNA, and
PFHxS in the study by Starling et al. (2020), and 7% in the study
by Xu et al. (2020) had the same direction of the significant asso-
ciations for the respective PFAS that we observed in the HOME
Study.

The inconsistent findings across existing EWAS studies of
PFAS and DNA methylation may be explained by differences
in the study source population and design, sample size, data
analysis methods, concentration ranges and timing of PFAS
measurements, and the timing and methods of measuring DNA
methylation. The existing studies were generally cross-sectional
or had a single measurement of DNA methylation, whereas we
were able to collect longitudinal DNA methylation data at two

Table 3. Statistically significant CpG sites whose PFAS-associated methylation differences differed over time (bInteraction FDR q<0:05) in the HOME Study
(Cincinnati, Ohio; enrolled 2003–2006) and associations in Project Viva (eastern Massachusetts; enrolled 1999–2002).

CpGa Gene Chr
HOME Study

bInteraction (p value) FDR q-value
HOME Study
bbirth (p value)

HOME Study
bage12 (p value)

Project Viva
bInteraction (p value) Replicated

PFHxS
cg12507840 UBAC2; MIR548AN 13 −0:008 (1:69× 10–8) 0.011 0.041 (0.009) −0:035 (0.021) NA No
cg12119988 ANKDD1A 15 0.012 (3:19× 10–8) 0.011 −0:024 (0.290) 0.093 (0.0004) −0:001 (0.766) No
cg11035296 DLGAP2-AS1 8 −0:011 (1:62× 10–7) 0.030 0.044 (0.028) −0:0639 (0.020) NA No
cg21869609 LINGO3 19 −0:011 (1:77× 10–7) 0.030 0.028 (0.093) −0:038 (0.160) −0:003 (0.343) No
PFNA
cg24155143 — 4 −0:030 (3:34× 10–8) 0.021 0.14 (0.004) −0:22 (0.0001) NA No

Note: Adjusted for child age and sex, annual household income, maternal smoking during pregnancy and race, and cell type composition. —, not annotated to any known gene; bbirth,
shows the association between gestational PFAS and DNA methylation at birth; bage12, shows the association between gestational PFAS and DNA methylation at 12 years of age;
CpG, cytosine–guanine dinucleotide; Chr, chromosome; FDR, false discovery rate; HOME, Health Outcomes and Measures of the Environment; NA, not available in 450K microar-
ray; PFAS, perfluoroalkyl substances; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate.
aStatistically significant CpG sites were defined as having an FDR q<0:05 for bInteraction.
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time points. The longitudinal design enabled us to evaluate
whether these changes are persistent over time. Most prior stud-
ies used a less comprehensive microarray assay (i.e., the 450K
array) to evaluate DNA methylation covering ∼ 485,577 probes,
which may contribute to variations in observed DNA methylation
differences. In addition, it is known that DNA methylation profiles
differ between newborns and adults (Bjornsson et al. 2008).
Thus, studies examining different exposure periods may identify
inconsistent findings (van den Dungen et al. 2017; Xu et al. 2020).
Although serum concentrations of most PFAS during pregnancy
(median PFOS=14:0, PFHxS=1:5, PFNA=0:9 ng=mL) in the
HOMEStudywere similar to those of pregnant womenmeasured in
the National Health and Nutrition Examination Survey 2003–2008,
PFOA concentrations were higher (median PFOA=5:5 ng=mL)
(Braun et al. 2016). Moreover, PFOA and PFOS concentrations

among HOME Study women were higher than levels in the other
EWAS studies of DNA methylation at delivery or in newborns
in the United States (median PFOA=1:1–2:2 ng=mL, PFOS=
1:7–4:7 ng=mL) (Ouidir et al. 2020; Robinson et al. 2021; Starling
et al. 2020) and Japan (median PFOS=5:2 ng=mL, PFOA=
1:4 ng=mL) (Miura et al. 2018), but they were lower than the PFOS
concentrations in Swedish women living in communities with con-
taminated drinking water (median PFOS by exposure groups: low,
3 ng=mL;medium, 56 ng=mL; high, 230 ng=mL) (Xu et al. 2020).

In our analysis, serum PFOA and PFOS concentrations were
significantly associated with DNA methylation at several CpGs
annotated to gene regions that have been linked to breast, pros-
tate, and pancreatic cancers (Table S5), which is consistent with
prior studies showing higher PFOA/PFOS concentrations were
associated with increased risk of breast cancer (Bonefeld-

Table 4. GO Terms significantly enriched (FDR q<0:05) among top 500 genes associated with each gestational PFAS concentration ordered by FDR q-value
in the HOME Study (Cincinnati, Ohio; enrolled 2003–2006).
ID Ontology Description PFAS p-Value FDR q-value

GO:0007156 BP Homophilic cell adhesion via plasma membrane adhesion molecules PFOA 2:07× 10–20 4:71× 10–16

GO:0098742 BP Cell–cell adhesion via plasma membrane adhesion molecules PFOA 5:13× 10–18 5:82× 10–14

GO:0005509 MF Calcium ion binding PFOA 3:33× 10–12 2:19× 10–8

GO:0022610 BP Biological adhesion PFOA 3:86× 10–12 2:19× 10–8

GO:0098609 BP Cell–cell adhesion PFOA 8:73× 10–12 3:97× 10–8

GO:0007155 BP Cell adhesion PFOA 1:42× 10–11 5:37× 10–8

GO:0005887 CC Integral component of plasma membrane PFOA 2:06× 10–10 6:64× 10–7

GO:0031226 CC Intrinsic component of plasma membrane PFOA 2:34× 10–10 6:64× 10–7

GO:0071944 CC Cell periphery PFOA 4:92× 10–7 0.00124
GO:0005886 CC Plasma membrane PFOA 2:15× 10–6 0.00488
GO:0043169 MF Cation binding PFOA 7:30× 10–6 0.01497
GO:0046872 MF Metal ion binding PFOA 7:91× 10–6 0.01497
GO:1903367 BP Positive regulation of fear response PFOA 1:91× 10–5 0.03098
GO:2000987 BP Positive regulation of behavioral fear response PFOA 1:91× 10–5 0.03098
GO:0007156 BP Homophilic cell adhesion via plasma membrane adhesion molecules PFOS 1:07× 10–33 2:42× 10–29

GO:0098742 BP Cell–cell adhesion via plasma membrane adhesion molecules PFOS 1:65× 10–27 1:87× 10–23

GO:0098609 BP Cell–cell adhesion PFOS 3:02× 10–19 2:29× 10–15

GO:0005887 CC Integral component of plasma membrane PFOS 1:01× 10–18 5:76× 10–15

GO:0031226 CC Intrinsic component of plasma membrane PFOS 6:07× 10–18 2:76× 10–14

GO:0005509 MF Calcium ion binding PFOS 1:49× 10–15 5:63× 10–12

GO:0007155 BP Cell adhesion PFOS 3:70× 10–14 1:20× 10–10

GO:0022610 BP Biological adhesion PFOS 4:29× 10–14 1:22× 10–10

GO:0005886 CC Plasma membrane PFOS 9:12× 10–13 2:30× 10–9

GO:0071944 CC Cell periphery PFOS 2:77× 10–12 6:30× 10–9

GO:0016021 CC Integral component of membrane PFOS 2:65× 10–7 0.000547
GO:0031224 CC Intrinsic component of membrane PFOS 2:97× 10–7 0.000563
GO:0016020 CC Membrane PFOS 2:25× 10–5 0.039281
GO:0005737 CC Cytoplasm PFNA 5:46× 10–8 0.001140
GO:0043229 CC Intracellular organelle PFNA 1:20× 10–7 0.001140
GO:0043226 CC Organelle PFNA 1:51× 10–7 0.001140
GO:0043227 CC Membrane-bounded organelle PFNA 2:55× 10–7 0.001309
GO:0005622 CC Intracellular PFNA 2:88× 10–7 0.001309
GO:0043231 CC Intracellular membrane-bounded organelle PFNA 5:48× 10–7 0.002074
GO:0044237 BP Cellular metabolic process PFNA 7:83× 10–7 0.002542
GO:0005654 CC Nucleoplasm PFNA 2:01× 10–6 0.005690
GO:0031974 CC Membrane-enclosed lumen PFNA 2:92× 10–6 0.005690
GO:0043233 CC Organelle lumen PFNA 2:92× 10–6 0.005690
GO:0070013 CC Intracellular organelle lumen PFNA 2:92× 10–6 0.005690
GO:0044249 BP Cellular biosynthetic process PFNA 3:01× 10–6 0.005690
GO:0044238 BP Primary metabolic process PFNA 5:18× 10–6 0.009058
GO:0031981 CC Nuclear lumen PFNA 5:85× 10–6 0.009495
GO:0009058 BP Biosynthetic process PFNA 1:10× 10–5 0.014653
GO:0034641 BP Cellular nitrogen compound metabolic process PFNA 1:10× 10–5 0.014653
GO:0008152 BP Metabolic process PFNA 1:14× 10–5 0.014653
GO:1901576 BP Organic substance biosynthetic process PFNA 1:16× 10–5 0.014653
GO:0071704 BP Organic substance metabolic process PFNA 1:33× 10–5 0.01594566
GO:1901360 BP Organic cyclic compound metabolic process PFNA 1:98× 10–5 0.02246282
GO:0006807 BP Nitrogen compound metabolic process PFNA 2:92× 10–5 0.03161224
GO:0031076 BP Embryonic camera-type eye development PFNA 4:58× 10–5 0.04725753

Note: Top 500 CpG sites for each PFAS ranked by FDR q-value with corresponding genes were included in the pathway analysis. At FDR q<0:05, we found 14 significant GO terms
for PFOA, 13 for PFOS, 22 for PFNA, and none for PFHxS, and 10 overlapped between PFOA and PFOS. BP, biological process; CC, cellular component; FDR, false discovery rate;
GO, Gene Ontology; HOME, Health Outcomes and Measures of the Environment; ID, identifier; MF, molecular function; PFAS, perfluoroalkyl substances; PFHxS, perfluorohexane
sulfonate; PFNA, perfluorononanoate; PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate.
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Jorgensen et al. 2011; Tsai et al. 2020; Wielsøe et al. 2017), pros-
tate cancer (Lundin et al. 2009; Vieira et al. 2013), and pancreatic
cancer (Raleigh et al. 2014). For instance, in our study, we found
that PFOA was associated with MAGI1, which is a potential tu-
mor suppressor gene in breast cancer (Alday-Parejo et al. 2020);
PFOS was associated with HPSE2 that encodes a heparanase
enzyme and plays a role in breast cancer (Wu et al. 2020). In
addition, PFOA was associated with KRT18, an intermediate fila-
ment gene related to both prostate cancer and breast cancer-
associated fibroblasts (Davalieva et al. 2015; Vastrad et al. 2018).

Finally, PFOA was associated with SRPRB, a gene that regulates
cell apoptosis and NF-jB expression and may be associated with
pancreatic ductal adenocarcinoma (Ma et al. 2017; Mez et al.
2017).

Several novel CpGs identified in our analysis were located in
gene regions that have been linked to cognitive abilities, which is
consistent with some prior epidemiological studies showing asso-
ciations of higher prenatal or childhood PFAS concentrations
with poor cognition performance, increased odds of attention def-
icit hyperactivity disorder (ADHD), or ADHD-related outcomes

Table 5. Adjusted mean cell type composition in cord blood by gestational PFAS concentration (ng/mL) tercile in the HOME Study (Cincinnati, Ohio; enrolled
2003–2006).

PFAS [tercile (range)]

Cell type

B cell (%) CD4 (%) CD8 (%) Monocyte (%) Neutrophil (%) NK (%) nRBC (%) CD4/CD8 NLR LMR

PFOA
T1 (1.1–4.4) 4.0 19.0 3.5 9.0 56.0 1.8 5.0 33.6 2.41 3.74
T2 (4.4–6.9) 5.0 20.0 3.0 9.0 57.0 1.7 5.0 38.1 2.30 6.35
T3 (6.9–26.4) 4.0 19.0 2.5 9.0 58.0 2.3 5.0 31.6 2.44 4.11
pTrend

a 0.083 0.31 0.2 0.98 0.23 0.59 0.56 0.8 0.8 0.83
PFOS
T1 (1.4–11.7) 4.6 19.0 3.7 9.0 55.0 2.0 6.0 34.4 2.15 6.33
T2 (11.7–16.5) 4.3 19.0 2.5 9.0 59.0 2.0 5.0 31.3 2.67 3.95
T3 (16.5–57.2) 4.0 20.0 2.8 9.0 58.0 2.0 4.0 37.7 2.35 3.86
pTrend

a 0.031 0.63 0.53 0.67 0.23 0.21 0.17 0.56 0.56 0.39
PFHxS
T1 (0.1–1.1) 4.4 19.0 4.0 9.0 44.0 1.8 6.0 25.7 2.06 5.90
T2 (1.1–2.0) 3.9 19.0 2.0 9.0 61.0 1.6 3.0 39.9 2.91 4.09
T3 (2.0–30.9) 4.7 20.0 3.0 9.0 56.0 2.4 5.0 37.6 2.22 4.03
pTrend

a 0.29 0.94 0.13 0.31 0.23 0.69 0.79 0.35 0.35 0.81
PFNA
T1 (0.3–-0.8) 4.7 20.0 3.0 9.0 56.0 2.0 6.0 42.3 2.22 6.03
T2 (0.8–1.1) 4.1 18.0 3.0 9.0 59.0 2.0 5.0 30.7 2.67 3.86
T3 (1.1–2.9) 4.2 21.0 3.0 10.0 57.0 2.0 3.0 28.2 2.29 3.94
pTrend

a 0.06 0.54 0.89 0.41 0.23 0.68 0.019 0.49 0.49 0.84

Note: All models were adjusted for child sex, maternal pregnancy cotinine concentrations, race, and annual household income. CD4, T helper cells; CD8, cytotoxic T cells; CD4/CD8,
the ratio of T helper cells to cytotoxic T cells; HOME, Health Outcomes and Measures of the Environment; NK, natural killer cells; NLR, the ratio of neutrophils to lymphocytes;
LMR, the ratio of lymphocytes to monocytes; nRBC, nucleated red blood cells; PFAS, perfluoroalkyl substances; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate;
PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate.
aThe pTrend for cell type composition differences across median PFAS concentrations in each tercile.

Table 6. Adjusted mean cell type composition based on methylation at 12 years of age by gestational PFAS concentration (ng/mL) tercile in the HOME Study
(Cincinnati, Ohio; enrolled 2003–2006).

PFAS [tercile (range)]

Cell type

B cell (%) CD4 (%) CD8 (%) Monocyte (%) Neutrophil (%) NK (%) CD4/CD8 NLR LMR

PFOA
T1 (1.1–4.2) 8.0 17.0 13.0 7.5 49.0 5.4 1.37 1.19 6.20
T2 (4.2–6.3) 9.0 18.0 13.0 7.7 48.0 5.0 1.52 1.13 6.41
T3 (6.3–17.4) 8.0 17.0 13.0 7.1 51.0 4.7 1.39 1.29 6.26
pTrend

a 0.2 0.61 0.64 0.56 0.14 0.089 0.17 0.17 0.84
PFOS
T1 (1.4–10.0) 9.0 18.0 13.0 7.0 47.0 5.3 1.38 1.12 6.63
T2 (10.0–16.0) 8.0 17.0 13.0 8.0 50.0 4.6 1.40 1.28 5.74
T3 (16.0–57.2) 8.0 18.0 13.0 7.0 50.0 5.2 1.50 1.22 6.49
pTrend

a 0.14 0.85 0.38 0.56 0.23 0.61 0.22 0.22 0.70
PFHxS
T1 (0.1–1.0) 9.0 18.0 13.0 8.0 48.0 5.0 1.40 1.14 6.23
T2 (1.0–2.0) 8.0 17.0 13.0 7.0 50.0 5.0 1.48 1.26 6.28
T3 (2.0–32.5) 8.0 17.0 13.0 7.0 49.0 5.0 1.40 1.22 6.37
pTrend

a 0.23 0.28 0.39 0.41 0.23 0.29 0.19 0.19 0.58
PFNA
T1 (0.3–0.7) 8.0 17.0 13.0 7.0 49.0 5.0 1.41 1.20 6.28
T2 (0.7–1.1) 8.0 17.0 13.0 8.0 50.0 5.0 1.37 1.25 6.10
T3 (1.1–2.9) 8.0 19.0 13.0 7.0 48.0 5.0 1.54 1.14 6.59
pTrend

a 0.62 0.26 0.84 0.99 0.72 0.9 0.74 0.74 0.42

Note: All models were adjusted for child sex, child age, maternal pregnancy cotinine concentrations, race, and annual household income. CD4, T helper cells; CD8, cytotoxic T cells;
CD4/CD8, the ratio of T helper cells to cytotoxic T cells; HOME, Health Outcomes and Measures of the Environment; NK, natural killer cells; NLR, ratio of neutrophils to lympho-
cytes; LMR, the ratio of lymphocytes to monocytes; PFAS, perfluoroalkyl substances; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluorooctanoate;
PFOS, perfluorooctane sulfonate.
aThe pTrend for cell type composition differences across median PFAS concentrations in each tercile.
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in children (Harris et al. 2018; Hoffman et al. 2010; Vuong et al.
2021). Our results suggested that PFOA may be associated with
tenascin R (TNR) and solute carrier family 10 member 2
(SLC10A2), which have been shown to affect neural development
and Alzheimer’s disease (Chiovaro et al. 2015; Mez et al. 2017);
PFNA was associated with dolichyl-phosphate N-acetylglucosa-
minephosphotransferase 1 (DPAGT1), solute carrier family 6
member 2 (SLC6A2), transmembrane protein 56 (TMEM56), and
these genes were associated with neuromuscular transmission dis-
orders, ADHD, depression, and bipolar disorder (Belaya et al.
2012; Bi et al. 2017; Kim et al. 2021b; Song et al. 2011; Yao et al.
2021). In addition to cancers and cognitive outcomes, we found a
few genes that have been linked to the development of obesity
[ArfGAP with GTPase domain, ankyrin repeat and PH domain 1
(AGAP1)], coronary artery disease [ring finger protein 13
(RNF13)], inflammatory bowel disease [vasoactive intestinal pep-
tide receptor 1 (VIPR1) and CDSN; PSORS1C1], and kidney func-
tion [erythrocytemembrane protein band 4.1 like 3 (EPB41L3) and
serpin family A member 5 (SERPINA5)] (D’Angelo et al. 2018;
Gorski et al. 2017; Vilander et al. 2017;Wakil et al. 2016; Yukawa
et al. 2007). These findings are consistent with previous epidemio-
logical studies reporting similar child and adult health conditions
in relation to PFAS exposure (Blake and Fenton 2020; Rappazzo
et al. 2017).

We found that PFAS were associated with a lower percentage
of B lymphocytes in cord blood. Some studies have shown that
PFAS may decrease B cell populations (Rockwell et al. 2017) and
suppress T-cell antigen response in adult mice (DeWitt et al.
2016), decrease the production of vaccine antibodies against teta-
nus and diphtheria in children (Abraham et al. 2020), and increase
the severity of COVID-19 in adults (Grandjean et al. 2020). Future
studies are needed to determine the role of PFAS exposure in vac-
cine response against infectious diseases, particularly COVID-19.

Strengths of the present study include the longitudinal design
with DNA methylation assessed at two time points in children,
using the most recent microarray for genome-wide DNA methyla-
tion assessment, the EPIC array, which interrogates almost twice
themeasured CpGs as the 450K array, with higher coverage within
enhancer regions and distal regulatory elements (Pidsley et al.
2016). Another strength is our replication study using Project
Viva, with repeated measures of DNA methylation across child-
hood. This allowed us to validate the novel PFAS-associated CpGs
identified in our study.

Our study has some limitations. We assessed DNA methyla-
tion in leukocytes, which may not accurately represent the levels
of DNA methylation in other tissues. We also did not measure
mRNA levels to evaluate gene expression related to DNA meth-
ylation differences observed in our analysis. In addition, given
that the DNA methylation varies by genotype, our results may
not be generalized to populations with different genetic back-
grounds. In addition, this study was underpowered to identify
sex-specific associations between PFAS and repeated measures
of DNA methylation. Robinson et al. (2021) found evidence that
sex may modify the associations of DNA methylation with PFOS
concentrations in newborns, but the interaction terms between
sex and PFAS concentrations were not significant in the analysis
by Starling et al. (2020). Therefore, future longitudinal studies
with larger samples are needed to confirm the sex-specific associ-
ations. Although we did control for multiple comparisons in our
analysis, we did not control for multiplicity of exposures, but this
may not be appropriate given that PFAS concentrations were cor-
related with each other.

Another limitation is the timing of measurement for gestational
PFAS concentrations. Concentrations were measured across a
range of gestational ages (10.4–30.3 wk) across the HOME Study

and Project Viva, and in different trimesters. This may have
resulted in different patterns of associations across the two studies
given that PFAS concentrations may decline over pregnancy
owing to hemodynamic changes (e.g., plasma volume expansion).
Although concentrations decline over pregnancy, we previously
showed that PFAS concentrations across pregnancy are highly cor-
related in the HOME Study (Kato et al. 2014), and the preservation
of rank order in exposure is likely to maintain the associations of
PFAS levels with DNAmethylation regardless of the timing of ex-
posure assessment. Relatedly, it is unlikely that maternal plasma
volume changes during pregnancy are related to child leukocyte
DNA methylation given that they will not alter the relative blood
cell profile collected in offspring. In a prior study from Project
Viva, adjusting for pregnancy hemodynamics did not meaning-
fully change the associations of birth outcomes with PFAS concen-
trations in pregnancy (Sagiv et al. 2018).

Finally, given that two different chips were used for the
HOME Study and Project Viva, 28% of the 435 significant CpG
sites detected on the EPIC array were missing from the 450K
array. We were not able to attempt to replicate these CpG sites.
Last, we cannot rule out the possibility that residual confounding
may bias our results.

Conclusions
Using longitudinal data, serum PFAS concentrations during preg-
nancy were associated with stable differences in several CpGs at
delivery and in adolescence. These CpGs were in or near genes
linked to PFAS-associated health outcomes. To the best of our
knowledge, this is the first study to examine the association
between gestational PFAS exposure and longitudinal epigenome-
wide DNA methylation. Future studies are needed to replicate
our findings and verify whether DNA methylation is a mecha-
nism linking early life PFAS exposure to human health.
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