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Abstract

Objective—Delineating swallowing and chewing structures aids in radiotherapy (RT) treatment 

planning to limit dysphagia, trismus, and speech dysfunction. We aim to develop an accurate and 

efficient method to automate this process.

Approach: CT scans of 242 head and neck (H&N) cancer patients acquired from 2004–

2009 at our institution were used to develop auto-segmentation models for the masseters, 

medial pterygoids, larynx, and pharyngeal constrictor muscle using DeepLabV3+. A cascaded 

architecture was used, wherein models were trained sequentially to spatially constrain each 

structure group based on prior segmentations. Additionally, an ensemble of models, combining 

contextual information from axial, coronal, and sagittal views was used to improve segmentation 

accuracy. Prospective evaluation was conducted by measuring the amount of manual editing 

required in 91 H&N CT scans acquired February-May 2021.

Main results—Medians and inter-quartile ranges of Dice Similarity Coefficients (DSC) 

computed on the retrospective testing set (N=24) were 0.87 (0.85–0.89) for the masseters, 

0.80 (0.79– 0.81) for the medial pterygoids, 0.81 (0.79–0.84) for the larynx, and 0.69 (0.67–

0.71) for the constrictor. Auto-segmentations, when compared to inter-observer variability in 10 

randomly selected scans, showed better agreement (DSC) with each observer as compared to inter-

observer DSC. Prospective analysis showed most manual modifications needed for clinical use 

were minor, suggesting auto-contouring could increase clinical efficiency. Trained segmentation 

models are available for research use upon request via https://github.com/cerr/CERR/wiki/Auto-

Segmentation-models.

Significance—We developed deep learning-based auto-segmentation models for swallowing and 

chewing structures in CT and demonstrated its potential for use in treatment planning to limit 

complications post-RT. To the best of our knowledge, this is the only prospectively-validated 

deep learning-based model for segmenting chewing and swallowing structures in CT. Additionally, 

the segmentation models have been made open-source to facilitate reproducibility and multi-

institutional research.
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1. INTRODUCTION

Delineating organs at risk (OAR) is central in radiotherapy (RT) treatment planning to limit 

subsequent normal tissue complications. Manual delineation is time-consuming, subjective, 

and error-prone due to organ complexity and level of experience [1]. Introducing new 

OARs would also encumber an already busy clinic. Automation to generate accurate and 

reproducible segmentations is, therefore, of utmost importance.

In head and neck (H&N) cancer treatment, isolating the larynx and pharyngeal constrictor 

muscle is of particular interest to curtail speech dysfunction and dysphagia following RT [2] 

[3]. The masseters and medial pterygoids have further been identified as critical structures in 

limiting radiation-induced trismus [4]. But delineating these structures is challenging due to 

their complex morphology and low soft-tissue contrast in CT images.

Few semi-automatic and automatic methods have been developed to segment OARs in 

the H&N. Conventional multi-atlas-based auto-segmentation (MABAS) methods involve 

propagating and combining manual segmentations from a curated library of CT scans 

through image registration as in [5] and [6]. Refinement strategies include using organ-

specific intensity [7], texture [8], or shape representation models [9]. However, MABAS 

is sensitive to inter-subject anatomical variations and image artifacts, and registration 

is computationally intensive even with efficient implementations [10]. In H&N CT 

scans, commonly-used similarity metrics (mean squares, correlation coefficient, mutual 

information etc.) for registration are susceptible to intensity distortion due to dental artifacts.

Convolutional neural networks (CNNs) have recently emerged as effective tools for medical 

image segmentation. Ibragimov et al. [11] trained 13 CNNs, applied in sliding-window 

fashion to segment H&N OARs including the larynx and pharynx. In [12], Ward van 

Rooij et al. employed the popular 3D U-net [13] architecture to segment H&N OARs 

including the constrictor. Zhu et al. [10] extended the U-Net using squeeze-and excitation 

residual blocks and a modified loss function to improve segmentation of smaller OARs. In 

[14], Tong et al. trained a fully convolutional neural net, incorporating prior information 

to regularize shape characteristics of H&N OARs. The FocusNet [15] developed by Gao 

et al. uses multiple CNNs to segment OARs including the larynx, first segmenting large 

structures, then applying specially-designed sub-networks for smaller structures. In this 

work, we introduce a fully automatic CNN-based method to segment swallowing and 

chewing OARs and investigate its clinical applicability. To the best of our knowledge, this is 

the first [16] deep learning-based segmentation method to target chewing structures in CT. A 

cascaded architecture is proposed, wherein DeepLabV3+ models are trained sequentially to 

localize morphologically-complex structures based on boundaries of more easily identifiable 

structures. We also investigate the advantages of model ensembles using three orthogonal 

views over single-view models.
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2. MATERIALS AND METHODS

2.1 Dataset

CT scans of 242 oropharyngeal cancer patients with retrievable dose plans, acquired 

retrospectively (2004–2009) for treatment planning, were accessed under internal review 

board-approved studies (IRB#16–1488 and #17–017). This included images acquired on GE 

(30%) and Philips (70%) scanners with a kilovoltage peak (kVp) range of 120–140. Patients 

were randomly partitioned into training (N=194), validation (N=24), and testing (N=24) 

sets. Manual segmentations of the masseters, medial pterygoids, larynx, and constrictor were 

generated using a legacy in-house treatment planning system (Figure 1). This occasionally 

resulted in jagged contours, particularly for the larynx. Contours of the larynx were available 

in all scans, masseters and medial pterygoids in 60% of scans, and constrictor in 97% of 

the scans. Representative CT images showing considerable variation in head pose, shape, 

and appearance around the structures of interest, including slices with artifacts due to dental 

implants, were included in the dataset. Additional patient characteristics are provided in 

[17,18].

Prospective evaluation was conducted on a dataset of 91 scans acquired on GE (41%) and 

Philips (59%) scanners with kVp=120 from February-May 2021 at our institution. This 

included contrast-enhanced (16%) and non-enhanced (84%) scans, acquired using standard 

(41%) and bone (59%) convolution kernels respectively. Convolution kernels and contrast 

enhancement were not retrievable for retrospective data. Auto-segmentation performance 

was evaluated under IRB#16–1488 and #17–017 by measuring the amount of manual editing 

required for RT treatment planning. Edited contours of the masseters were available on 70 

scans, medial pterygoids on 64 (left) and 66 (right) scans, and constrictor on 27 scans. 

Scan resolution characteristics for retrospective and prospective datasets are summarized in 

supplementary table A1.

2.2 Pre-processing

A multi-label model was trained to segment the chewing structures. CT scans were 

automatically cropped by generating a bounding box around the patient’s outline (Figure 

2a) and limiting its posterior extent by 25% (Figure 2b). Axial, sagittal, and coronal 

images and masks of the chewing structures were extracted within these extents. To localize 

the larynx, anterior, left, right, and superior limits were determined based on the extents 

of the previously-detected chewing structures. (Figure 2c). The constrictor was localized 

using anterior, left, right, and superior limits of the chewing structures. Its posterior and 

inferior limits were defined by corresponding extents of the larynx, with sufficient padding 

(Figure 2d). Data preprocessing was performed using the Computational Environment for 

Radiological Research (CERR) [19]).

2.3 CNN Architecture and Implementation

DeepLabV3+ [20] was selected for its competitive performance on the PASCAL VOC 2012 

and Cityscapes datasets, and training was performed using the ResNet-101 [21] encoder 

backbone. This architecture combines an encoder network that captures information at 

different scales, using multiple dilated convolution layers applied in parallel at different 
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rates, with a decoder network capable of effectively extracting object boundaries. Moreover, 

it has been applied successfully to medical image segmentation, e.g., by Elguindi et al. 

[22] to segment the prostate in MRI and by Haq et al. [23] to segment cardio-pulmonary 

substructures in CT.

To address the imbalance in class labels due to differing OAR sizes, three models were 

developed— a multi-label model with four distinct classes for each of the chewing 

structures, and one binary segmentation model each for the swallowing structures. 

Additionally, a sequential auto-segmentation strategy (Figure 3) was used wherein each 

segmented OAR was used to constrain the location of subsequently segmented OARs. 

Auto-segmentation order was determined by ease of identification based on size and soft 

tissue contrast. The chewing structures were first segmented, followed by the larynx, and 

finally, the constrictor. Additionally, an ensemble of models was developed for each OAR 

group, comprising three DeepLabV3+ networks trained independently on axial, sagittal, and 

coronal slices respectively. Each of the axial, sagittal, and coronal models was trained on 

2.5D data, i.e., for a given scan, the ith training instance comprised slices i−1, i, and i+1 
as the three channels. This resulted in 9 models in total (3 OAR groups times 3 orthogonal 

views). For each OAR group, probability maps were averaged across the models from 

three orthogonal views, and voxels were assigned to the class with the highest combined 

probability. For the binary segmentation models (larynx and constrictor), this amounted to a 

threshold of 0.5.

Compared to 3D CNNs which are highly memory-intensive, training in 2.5D allowed us 

to employ a more complex CNN while benefiting from increased context and redundancy 

from three image orientations. Supplementary information from adjacent slices aided the 

segmentation of axial images with dental artifacts. Additionally, sagittal and coronal models 

were presented with less noisy data as distortion from dental artifacts was highly localized 

compared to axial images. Sample auto-segmentation results on distorted slices are provided 

in supplementary figure A1. Using a multi-view ensemble provided robustness to the 

occasional failures of the single-view models.

A high-performance cluster of four NVIDIA GeForce GTX 1080Ti GPUs, each with 11GB 

memory was used for training. Batch-normalization was applied using mini-batches of 8 

images, resized to 320 × 320 voxels for all 3 views. Data augmentation was performed 

through randomized scaling, cropping, and rotation, and the cross-entropy loss was used. 

The hyperparameters and optimization methods used are presented in Table 1.

2.4 Model evaluation

The validation dataset was used to estimate performance during hyperparameter tuning, and 

an unseen testing dataset was used for unbiased evaluation of the final model.

2.4.1 Geometric measures—The degree of overlap between manual (A) and 

automated (B) segmentations was measured using the Dice Similarity Coefficient (DSC) 

as:
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DSC = 2 A ∩ B
A + B

The 95th percentile of the Hausdorff distance (HD95), i.e., maximum distance between 

boundary points of A and B, was computed to capture the impact of rare but sizable errors 

on overall quality.

2.4.2 Variability of reference segmentations—Sources of manual reference 

segmentations were various: the larynx was delineated by observers with differing levels 

of expertise for treatment planning; constrictors and chewing structures were delineated 

post-treatment by either of two radiation oncology residents to study dysphagia [17] and 

trismus [18]. Regardless of origin, these sources are referred to as observer-1. Interobserver 

variability (IOV) was measured between observer-1 and a Medical Physicist (observer-2) on 

10 randomly-selected scans from the testing set.

Due to its small size and morphological complexity, auto-segmentations of the constrictor 

were additionally evaluated based on the extent of editing required by an Anatomist 

(observer-3) using MIM (MIM Software, Inc., Cleveland, OH). Consistent guidelines were 

applied: the superior extent of the constrictor was defined around the caudal tip of the 

pterygoid plate or the occipital condyles and the inferior limit either by the caudal border of 

the lower edge of the cricoid cartilage or by the esophagus.

2.4.3 Clinical suitability—Mean doses to the OARs, previously identified to determine 

risk of radiation-induced complications [17,18] were compared between automated and 

manual contours. The two-sided, paired Wilcoxon signed-rank test was applied to investigate 

potential statistical disparities at the 5% significance level.

On the prospective dataset, fraction of cases requiring corrections was measured. Further, 

surface DSC [25] and added path length (APL) [26], which have been shown to correlate 

with time saved through automation [26], were computed between original and expert-edited 

auto-segmentations.

3. RESULTS

3.1 Geometric measures

Representative auto-segmentations generated from our algorithm are presented in Figure 4 

for qualitative assessment.

Based on quantitative comparisons (Figure 5), auto-segmented masseters showed the highest 

median overlap (DSC) and auto-segmented constrictors the smallest DSC with manual 

segmentations on the retrospective test set. HD95 was largest corresponding to the larynx, 

possibly owing to inconsistent training contours generated by multiple observers with 

different levels of experience, in addition to its low soft-tissue contrast and relatively 

small volume. The auto-segmented larynx was also associated with the lowest surface dice 

similarity coefficient (supplementary figure A2).
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Multi-view consensus segmentations either closely matched or out-performed their single-

view counterparts in terms of median HD95 and reduced interquartile ranges, as evidenced 

by tighter bounds on the box plots (Figure 5b). The reduction in HD95 was statistically 

significant (p<0.05) per the left-tailed, paired Wilcoxon signed-rank test for the larynx 

and constrictor when compared to results from each individual view, and for the chewing 

structures, when compared to models trained on sagittal or coronal views. An example 

showing erroneous detections of the larynx using single-view models is presented in Figure 

6. This was mitigated by generating a consensus segmentation using information from all 3 

views.

3.2 Inter-observer variation

Inter-observer DSCs were compared to those between the deep learning-based contours and 

each of observer-1 and observer-2. Automated segmentations showed greater agreement 

with observer-1 across all structures and with observer-2 except for the larynx, as compared 

to inter-observer agreement (Figure 7). High IOV for the constrictor was consistent with 

previously-published results [27]. Auto-segmentations of the constrictor were additionally 

edited by observer-3 and the DSC was used to measure the extent of modification required. 

The median DSC measured between edited and unedited auto-segmentations was 0.92 

(inter-quartile range: 0.91–0.93).

3.3 Clinical suitability

Mean doses to the OARs were compared between manual and automated segmentations on 

the retrospective test dataset. Differences were not found to be statistically significant for 

all tested structures at significance level 5% (Table 2) per the two-sided, paired Wilcoxon 

signed-rank test.

Prospective evaluation was conducted by measuring the amount of manual editing required 

for treatment planning. Segmentation models were deployed through MIM workflows using 

EVA (in-house deep-learning based segmentation deployment pipeline). Each masseter was 

edited in 23% of scans, the left pterygoid in 25% of scans, and the right pterygoid in 

26% of scans. The remaining auto-segmented chewing structures were accepted as-is. All 

auto-segmentations of the constrictor required editing. Examples of manual edits to the 

auto-segmented chewing structures and constrictor are provided in supplementary figure A2. 

The amount of manual editing required was quantified in terms of APL and surface DSC 

between unedited and expert-edited auto-segmentations. Auto-segmentation performance on 

the prospective dataset is summarized in Table 3. Retrospective larynx definitions used in 

training deviated from current (updated) clinical guidelines and were therefore excluded 

from prospective analysis.

3.4 Comparison to previously-reported methods

Table 4 summarizes the performance (mean DSCs) of state-of-the-art H&N OAR 

segmentation models including 3D Unet [12], FocusNet [15] a H&N OAR-focused 

CNN [11], atlas-based unedited [28,29] and radiologist-adjusted [5] segmentations. The 

performance of our segmentation models matched or exceeded previously published 

methods. However, it should be noted that these results were reported on different datasets 
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and do not represent a direct comparison on our test dataset. Additionally, we compared 

our performance in segmenting the constrictor with Cross-Modality Educed Deep Learning 

[30], which combines CT and pseudo-MR information to enhance segmentation accuracy. A 

2D U-Net model with nested self-attention blocks [31], trained on axial T1-MR scans of 39 

H&N cancer patients in addition to our CT training database and pre-processed identically, 

was evaluated. Our method yielded a higher median DSC on the test dataset (Table 4). 

However, performance of the cross-modality approach using MR sequences with superior 

soft-tissue contrast around the constrictor, such as mDIXON, should be investigated.

3.5 Distribution of trained models

CPU and GPU implementations of the models were packaged along with 

dependencies to facilitate deployment across different operating systems (Singularity 

containers [32] for Linux; Conda environment archives for Linux, Windows, 

and macOS) and can be requested for research use following the instructions 

at https://github.com/cerr/CERR/wiki/Auto-Segmentation-models. Packaged models are 

deployed using CERR’s deep learning pipeline [19], compatible with MATLAB, 

as well as Octave and Python (via the Oct2Py bridge) for license-free use. 

Additionally, a JupyterLab notebook demonstrating the models developed in this 

work is available at https://github.com/cerr/CT_SwallowingAndChewing_DeepLabV3/blob/

master/demo_DLseg_swallowing_and_chewing_structures.ipynb. Integration with CERR’s 

radiomics toolbox [33] and dosimetric models [34] further facilitates outcomes analysis. 

These models are distributed strictly for research use; clinical or commercial use is 

prohibited. CERR and containerized model implementations have not been approved by 

the U.S. Food and Drug Administration (FDA).

4. DISCUSSION

We trained three model ensembles to segment structures of varying sizes, while constraining 

the location of each structure group based on the extents of previously identified structures. 

This sequential localization and segmentation framework was able to handle the imbalance 

in class labels arising from variation in OAR sizes. Additionally, using a multi-view 

ensemble improved the worst-case segmentation errors compared to single-view models. 

This, along with training in 2.5D also enabled accurate segmentation despite the presence 

of dental artifacts. The reduction in HD95 using the ensemble approach was statistically 

significant (p<0.05) for the larynx and constrictor compared to single-view models, and for 

the chewing structures compared to models trained on sagittal or coronal views, per the 

left-tailed, paired Wilcoxon signed rank test.

Model ensembles were found to generalize well for all structures, as auto-generated results 

showed adequate agreement with delineations by a new (unseen) observer (observer-2). 

Of the structures considered, the constrictor was most challenging to segment due to 

its morphological complexity, high anatomical variability, and low soft tissue contrast. 

These challenges were reflected in our analysis of manual segmentations by different 

observers as the IOV was highest for the constrictor, which is consistent with previously-

reported findings. To evaluate clinical suitability, the extent of manual editing required 
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was quantified. Median DSC>0.92 between expert-edited and unedited auto-segmentations 

of the constrictor suggests that most manual modifications were minor and use of deep 

learning-based contours could increase clinical efficiency.

In prospectively-collected scans, auto-segmentations of the chewing structures were 

accepted as-is in 76% cases. Compared to median DSCs of 0.80–0.87 on the retrospective 

test dataset, the performance on the prospective dataset was much higher (median DSC=1, 

median surface DSC=1, median APL=0 cm). This suggests that minor edits were sufficient 

for clinical use. All auto-segmentations of the constrictor required correction (median 

DSC=0.72, median surface DSC=0.55, median APL =180.4 cm). Manual edits focused 

on refining the superior and inferior extents, and in a few cases, the anterior limit. In 

four of the 27 scans, segmentation performance was observed to degrade due to tumor 

infiltration and tumors had to be manually segmented out. Tumors completely obscured a 

substantial portion of the region of interest across several contiguous slices and were not 

represented in the training set unlike dental artifacts, which partially obscured the region of 

interest across a few slices and were represented in both training and test sets. Including 

sufficient training images with tumor infiltration could help reduce the manual intervention 

needed. For the larynx, guidelines used in the retrospective dataset differed considerably 

from current clinical standards. The primary discrepancy was at the superior border, located 

at the top of the epiglottis in the (retrospective) training set vs. top of arytenoids in current 

clinical practice. The use of a legacy contouring tool further resulted in jagged training 

contours of the larynx, with additional variation stemming from multiple observers with 

different levels of experience. Although the auto-segmentation model for the larynx is not 

clinically usable as-is, performance on the retrospective dataset suggests it could be tuned 

with updated contours for this purpose. It currently aids in localizing the constrictor.

We note that all auto-segmentation models were trained and evaluated on CT scans acquired 

for planning purposes, and performance on CT scans acquired for diagnosis (using different 

reconstruction kernels, scan resolutions, contrast agents, etc.) is untested.

5. CONCLUSIONS

We developed a fully-automatic, accurate, and time-efficient method to segment swallowing 

and chewing structures in CT images and demonstrated its suitability for clinical use. 

Sequential localization aided in segmenting structures with complex morphology and low 

soft-tissue contrast. Multi-view ensemble models were found to improve the worst-case 

segmentation errors and could potentially be applied to improve segmentation quality in 

other sites as well. The trained models, along with a Jupyter notebook demonstrating usage, 

are publicly distributed for research use through the open-source platform CERR (https://

www.github.com/cerr/CERR).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample axial slices of H&N CT scans (left) and manual segmentations of the chewing and 

swallowing structures (right) used for training. MML, MMR: masseters (left and right), 
PML, PMR: medial pterygoids (left and left and right), CM: constrictor muscle.
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Figure 2. 
(a) Illustration of automatic method to extract patient outline in axial H&N CT scans and 

bounding boxes (yellow) generated sequentially to localize (b) chewing structures based on 

cropped patient outline (c) larynx based on previously-identified chewing structures and (d) 

constrictor based on previously-identified chewing structures and larynx.
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Figure 3. 
(a) Sequential framework for segmenting chewing and swallowing structures in which each 

segmented OAR group is used to constrain the location of subsequently segmented OARs. 

(b) Example showing consensus segmentation of left masseter using ensemble of models 

trained on 3 orthogonal views (axial, sagittal, and coronal).
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Figure 4. 
Auto-segmentation results for chewing structures (row-1) and swallowing structures (row-2), 

shown in four axial cross-sections. Manual reference segmentations are depicted in red and 

deep-learning-based auto-segmentations in yellow.
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Figure 5. 
Performance of deep learning models (axial, sagittal, coronal, and ensemble) compared to 

manual reference segmentations in terms of (a) DSC and (b) HD95. Figure 5(b) shows 

tighter bounds on the box plots for the ensemble, suggesting multi-view consensus improves 

worst-case segmentation errors over single-view models. Of the 24 test scans, the number 

with manual segmentations available for comparison is noted in parentheses. MML, MMR: 

masseters (left and right), PML, PMR: medial pterygoids (left and right), CM : constrictor 

muscle.

Iyer et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2023 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Sagittal cross-sections showing auto-segmentations of the larynx using (a) axial only (b) 

sagittal only (c) coronal only and (d) ensemble models. Erroneous detections resulting from 

single-view models were rejected by ensemble consensus.
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Figure 7. 
Comparing agreement of deep learning-based segmentations with each of two independent 

observers to the inter-observer agreement. MML, MMR: Masseters (left and right), PML, 
PMR: medial pterygoids (left and right), CM (constrictor muscle), DLS: deep learning-based 
segmentation.
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Table 1.

Summary of hyperparameters for training.

Model Structure(s) Learning rate Optimizer Momentum Weight Decay

1. Masseters and medial pterygoids

Axial: 0.002

SGD 0.9 0.0001Sagittal: 0.003

Coronal: 0.002

2. Larynx

Axial: 0.0003

SGD 0.9 0.0002Sagittal: 0.0003

Coronal: 0.0003

3. Constrictor

Axial: 1x10−6

Adam [24] 0.9 0.0001Sagittal: 8x10−7

Coronal : 2x10−6
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Table 2.

Comparison of mean doses extracted using manual and auto-generated contours. Median, first and third 

quartiles of percentage differences are presented.

Structure Metric Difference (%) p-value No. test patients

Masseters
Ipsilateral

a
 mean dose

−0.01 (−1.20, 1.32) 1.00 11

Medial pterygoids
Ipsilateral

a
 mean dose

0.53 (−0.77, 1.11) 0.70 11

Larynx Mean dose 0.38 (−2.02, 6.59) 0.33 24

Constrictor Mean dose 0.15 (−0.49, 1.28) 0.29 22

a
Ipsilaterality for paired structures was decided based upon the side with the highest dose.
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Table 3.

Quantifying manual modifications to auto-segmentations for clinical suitability in prospectively-collected data.

Structure Cases edited (%)
APL

a
 (cm) Surface DSC

b

Mean Q1 Q2 Q3 Mean Q1
c

Q2 
c

Q3 
c

Left masseter 22.86 2.66 0 0 0 0.99 1 1 1

Right masseter 22.86 8.9 0 0 0 0.97 1 1 1

Left medial pterygoid 25 8.47 0 0 0 0.94 1 1 1

Right medial pterygoid 25.76 9.8 0 0 0 0.93 1 1 1

Constrictor 100 187.36 137.92 180.39 232.57 0.57 0.51 0.57 0.63

a
APL: Added path length

b
DSC: Dice similarity coefficient

c
Q1,Q2,Q3 – first, second and third quartiles, respectively.
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Table 4.

DSC (mean ± std. deviation) for swallowing and chewing structures using the proposed method (column-1) 

and results from previously published methods.

Structure Proposed 
(retrospective)

Proposed 
(prospective)

Jue et al. 
[30] 

(2019)
1

van 
Rooij et 
al. [12] 

(2019)
1

Gao et 
al. [15] 

(2019)
1

Ibragimov 
et al. [11] 

(2017)
1

Tao et al. 
[5] 

(2015)
2

Thomson 
et al. [28] 

(2015)
2

Han et 
al. [29] 

(2008)
2

Model/
method DeepLabV3+ DeepLabV3+

2D U-
Net with 

self-
attention 

[31]

3D U-
Net FocusNet Custom 

CNN

ABAS 
(v2.01.00, 

Elekta 
AB)

ABAS 
SPICE 

[35]
MABAS

Masseters 0.87 ± 0.02 0.99 ± 0.04 - - - - - 0.83

Pterygoids 0.80 ± 0.03 0.96 ± 0.1 - - - - - 0.83

Larynx 0.81 ± 0.04 - 0.78 ± 
0.05

0.66 ± 
0.29

0.86 ± 0.04 0.73 ± 
0.04

0.58 -

Constrictor 0.68 ± 0.07 0.7 ± 0.07 0.67 ± 
0.08

0.68 ± 
0.09

- 0.69 ± 0.06 0.65 ± 
0.06

0.50 -

1
Deep learning-based

2
Atlas-based segmentation methods
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