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Abstract
Chimp optimization algorithm (ChOA) is a robust nature-inspired technique, which was recently proposed for addressing

real-world challenging engineering problems. Due to the novelty of the ChOA, there is room for its improvement.

Recognition and classification of marine mammals using artificial neural networks (ANNs) are high-dimensional chal-

lenging problems. In order to address this problem, this paper proposed the using of ChOA as ANN’s trainer. However,

evolving ANNs using metaheuristic algorithms suffers from high complexity and processing time. In order to address this

shortcoming, this paper proposes the fuzzy logic to adjust the ChOA’s control parameters (Fuzzy-ChOA) for tuning the

relationship between exploration and exploitation phases. In this regard, we collect underwater marine mammals sounds

and then produce an experimental dataset. After pre-processing and feature extraction, the ANN is used as a classifier.

Besides, for having a fair comparison, we used a benchmark audio database of marine mammals. The comparison

algorithms include ChOA, coronavirus optimization algorithm, harris hawks optimization, black widow optimization

algorithm, Kalman filter benchmark algorithms, and also comparative benchmarks include convergence speed, local

optimal avoidance ability, classification rate, and receiver operating characteristics (ROC). The simulation results show

that the proposed fuzzy model can tune the boundary between the exploration and extraction phases. The convergence

curve and ROC confirm that the convergence rate and performance of the designed recognizer are better than benchmark

algorithms.
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1 Introduction

Recently, the processing of underwater audio signals in

automatic recognition and classification of marine mam-

mals has been expanding internationally and has become

one of the favorite fields of researchers active in this field

[9]. In other words, underwater sound signal processing is

the newest way to measure the existence, abundance, and

patterns of migratory marine mammals [5, 38].

The use of human-based methods and intelligent meth-

ods is one method of recognizing marine mammals. Ini-

tially, human operator-based methods were used to identify

marine mammals. Its advantages include simplicity and

ease of work [32]. However, the main disadvantage is the

dependence on the operator’s psychological state and

inefficiency in environments where the signal-to-noise

ratio is low [22]. Then, contour-based recognition was used

to recognition marine mammals due to their time com-

plexity and low identification rate [13, 14]. To eliminate

these defects, automatic target recognition (ATR) based on

intelligent systems is used [3].

MLP-NN neural network, due to its simple structure,

high performance, and low computational complexity, has

become a useful tool for automatically recognizing targets

[35]. In the past, MLP-NN training used gradient-based

methods and error propagation, but these algorithms had a
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low convergence speed and were stuck in local minima

[15, 25].

In recent years, we have witnessed the increasing use of

meta-heuristic algorithms for the subject of neural network

training. Genetic Algorithm (GA) [24], Simulated

Annealing (SA) [20], Biogeography Algorithm (BBO)

[28], Gray Wolf Optimizer (GWO) [10], Spider Commu-

nity Algorithm (SSA) [27], Dragonfly Algorithm (DA)

(Mohammad [19] and Algorithm for Finding No Progress

(IWT) (M. [16] Suggested examples of the algorithm

Existing meta-innovations that have been used as artificial

neural network trainers. GA and SA are likely to reduce

local optimization but converge at a slower rate. This

works poorly in applications that require real-time pro-

cessing. BBO has time-consuming calculations. GWO and

IWT, despite their low complexity and high convergence

speed, fall into the trap of local optimization, so they are

not suitable for problems with local optimization. Many

regulatory parameters and high complexity in the SSA

algorithm are among the weaknesses of this algorithm. In

addition to having many control parameters, DA has time-

consuming calculations that are not suitable for real-time

use.

The main reason for getting stuck in local optimizations

is the imbalance between the two phases of exploration and

extraction. Techniques for avoiding local optimization and

creating trade-offs between the exploration and extraction

phases include optimization with Chaotic maps [21], the

use of non-linear coefficients [18], and utilize spiral shapes

to improve performance [16] and linear control strategy

(LCS) and arcsine-based non-linear control strategy (NCS-

arcsine) [37]. On the other hand, the No Free Launch

(NFL) theorem logically states that meta-heuristic algo-

rithms do not have the same answer in dealing with dif-

ferent problems [33]. According to the NFL theory in this

paper, a fuzzy system is used to create a triad between the

exploration and extraction phases for MLP-NN training.

The proposed technique for optimizing ChOA using a

fuzzy system is called Fuzzy-ChOA, and in this article is

indicated by the symbol FChOA.

In the following, the article is organized so that in part 2,

it designs an experiment for data collection. Section 3

deals with the pre-processing of the obtained data and

feature extraction. Section 4 discusses how to design an

FChOA-MLPNN to automatically detect the sound pro-

duced by marine mammals. Section 5 will simulate and

discuss it, and finally, Sect. 6 will conclude.

2 The experiment design and data
acquisition

to obtain a real data set of sound produced by dolphins and

whales from a research ship called the Persian Gulf

Explorer and a Sonobuoy, a UDAQ_Lite data acquisition

board, and three hydrophones (Model B& k 8013) were

obtained was used with equal distance to increase the

dynamic range. This test was performed in Bushehr port.

The raw data including 125 samples of Bottlenose

Dolphin (10 sightings), 150 samples of Common Dolphin

(18 sightings), 190 cases of Atlantic Spotted Dolphin (15

sightings), 106 cases of Sperm Whale (6 sightings), 115

samples of Northern Right Whale (10 sightings), and 172

samples of Killer Whale (8 sightings).

2.1 The ambient noise reduction
and reverberation suppression

For example, the sounds emitted by marine mammals

(dolphins and whales) recorded by the hydrophone array

are considered x (t), y (t), z (t), and the original sound of

dolphins and whales is considered s (t). The mathematical

model of the output of hydrophones is in Eq. 1.

x tð Þ ¼ r
t

�1
h t � sð Þs sð Þ

yðtÞ ¼ r
t

�1
g t � sð Þs sð Þ

z tð Þ ¼ r
t

�1
q t � sð Þs sð Þ

ð1Þ

In Eq. 1, the Environment Response Functions (ERF)

are denoted by h (t), g (t), and q (t). ERFs are unknown, and

‘‘tail’’ is considered uncorrelated [4], and naturally, the first

frame of sound produced by marine mammals does not

reach the hydrophone array at one time. Due to the sound

pressure level (SPL) in the Hydrophone B&K 8103 and the

reference (Hi and Testa n.d.), which deals with the

underwater audio standard, the recorded sounds must be

pre-amplified by 106 factor.

Then, the Hamming window and Fast Fourier Transform

(FFT) are applied to the frequency domain SPL. Next,

frequency bandwidth is alleviated to 1 Hz bandwidth by

Eq. 2.

SPL1 ¼ SPLm � 10 logDf ð2Þ

SPLm is the obtained SPL at each fundamental fre-

quency center in dB; re 1 lPa, SPL1 reduces SPL to 1 Hz

bandwidth in dB; re one lPa, and Df represents the band-

width for each 1/3 Octave band filter. Wiener filter has

been used to minimize the square mean error (MSE)

between ambient noise and marine mammal noise [8].
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After that, the results were calculated using Eqs. 3 to detect

sounds with low SNR, i. e., less than 3 dB, deleted from the

database.

SPLV ¼ 10 log½10ðSPLT =10Þ � 10
ðSPLA=10Þ � ð3Þ

where T, V, and A represent all the available signal, sound,

and ambient sound, respectively. After that, the SPLs were

recalculating at a standard measuring distance of 1 m as

Eq. 4 (Fig. 1).

SPL ¼ SPL1 þ 20log rð Þ ð4Þ

In the next part, the effect of reverberation must be

removed. In this regard, the common phase is added to the

band (reducing the phase change process using the delay

between the cohesive parts or the initial sound is called the

common phase) [29]. Therefore, a cross-correlation pass

function by adjusting each frequency band’s gain elimi-

nates non-correlated signals and passes the correlated sig-

nals. Finally, in each frequency band, the output signals are

combined to generate the estimated signal, i. e. bS. The

reverberation removal block diagram is indicated in Fig. 2.

Typical representations for dolphin and whale sounds and

melodies and their spectroscopy are shown in Fig. 3.

It must be noted that the application of the gain con-

troller depends on different inputs. For example when x and

y are the same, i.e. bS ¼ x ¼ y, or one of them is delayed by

a few milliseconds, the delay is adjusted automatically as

bS tð Þ ¼ x t � Tð Þ ¼ yðtÞ, where T is a hypothetical delay

modification. If the delay is greater than the window length

L, the x and y are being uncorrelated and the gain is being

zero. Finally, when x and y are uncorrelated, totally, bS tð Þ is
zero.

All of the terms are true for each frequency band. Thus

if x and y are uncorrelated at one frequency and correlated

at another, then the uncorrelated part is removed and the

correlated part remains. Since all of the operations are

defined on a moving average basis, everything may change

as a function of time.

3 average cepstral features and cepstral
liftering features.

The effect of ambient noise and reverberation decreases

after detecting the audio signal frames obtained in the pre-

processing stage. In the next step, the detected signal

frames enter the feature extraction stage. The sounds made

by dolphins and whales emitted from a distance to the

hydrophone experience changes in size, phase, and density.

Due to the time-varying multipath effect, fluctuating

channel complicates the dolphins and whales recognition

task. The cepstral factors with the cepstral liftering feature

can significantly alleviate the multipath effects, while the

average cepstral coefficients can notably eliminate the

time-varying effects of shallow underwater channels [6].

Therefore, this section proposes the use of cepstral fea-

tures, including mean cepstral features and cepstral lifter-

ing features, to make a valid data set. The channel response

cepstrum and the original sound dolphins and whales

cepstrum could be separated by higher and lower cepstrum

indices, respectively [5]. They are in non-overlapping parts

of the liftering cepstrum. Thus, the quality of the features is

improved by lower time liftering. After the noise and

reverberation removal, the frequency domain frames of

SPLs (S(k)) are transferred to the cepstrum feature

extraction section. The following Equation calculates the

cepstrum features of the sound generated with dolphins and

whale’s signals.

cðnÞ ¼
X
M

l¼1

logð
X
N�1

k¼0

SðkÞj j2HlðkÞÞ cosðnðl� 0:5Þ p
M
Þ ð5Þ

where S(k) represents the frequency domain frames of

sounds generate dolphins and whales SPLs, N denotes the

number of discrete frequencies used for FFT, Hl (k) shows

the transfer function of the Mel-scaled triangular filter,

where l = 0, 1,…, M. Finally, cepstral coefficients are

transferred back to the time domain as c(n) by Discrete

Cosine Transform (DCT).

As mentioned earlier, the sound produced by dolphins

and whales is extracted by Low-time liftering process.

Thus, the low-time liftering is proposed as Eq. 6 to extract

the sound that originated from the whole sound.

Amplifier Filter

Hydrophone 
Array

A/D Fourier 
Transform

Frequency Band 
Reduction Eq.2

Correction for 
Background 
Noise Eq.3

Distance 
Normalization 

Eq.4

Reverberation 
Removal Section

Fig. 1 The ambient noise

reduction and reverberation

suppression block diagram

Analog Integrated Circuits and Signal Processing (2022) 111:403–417 405

123



we½n� ¼
1 0� n�Lc

0 Lc � n�N=2

�

ð6Þ

Lc shows the length of the liftering window, which is

used as 15 or 20. The final features can be calculated by

multiplying the cepstrum c(n) with the and applying log-

arithm and DFT functions as Eqs. 7 and 8, respectively.

ceðnÞ ¼ we½n� cðnÞ ð7Þ
cLðnÞ ¼ LogðDFTðceðnÞÞ ð8Þ

Finally, the feature vector would be represented using

Eq. 9.

Xm ¼ ½cLð0Þ; cLð1Þ; :::; cLðP� 1Þ�T ð9Þ

The first 512-cepstrum points (out of 8192 points in one

frame for a sampling rate of 8192 Hz, except for zeroth

index {Cm
y ½0�½0�}) are corresponded to 62.5 ms liftering

coefficients, are windowed from the N indices, which is

equivalent to one frame length to reduce the liftering

coefficients to 44 features. The length of sub-frames,

before averaging, is five seconds. During the averaging

liftering process, ten previous frames comprise 50 s aver-

age cepstral features. The final average cepstral features are

calculated by smoothing those ten frames. Consequently,

the average cepstral feature vector consists of 44 features.

In the next phase, the Xm vector would be an input vector

for an MLP-NN.

To sum up, the number of neural network inputs is equal

to P. The whole process of the feature extraction stage is

indicated in Fig. 4. To sum up, the output of this stage is

shown in Fig. 5.

The correlation matrix shows the correlation coefficients

between the variables (or features). Each cell in the

table shows the correlation between the two variables.

Correlation between two variables means measuring the

prediction of values of one based on the other. This means

that the higher the correlation coefficient, the greater the

possibility of predicting the value of one variable over the

other. Pearson and Spearman correlation coefficients are

between 1 and - 1. Thus, if the correlation coefficient is

close to or equal to 1, there is a strong correlation between

the two variables. In this case, we can say that the direction

of change of both variables is similar to each other.

As shown in Fig. 5, the extracted features are not highly

correlated with each other. Therefore, relatively good

features have been extracted (Fig. 6).

4 Design of an FChOA-MLPNN for automatic
detection of sound produced by marine
mammals

MLP-NN is the simplest and most widely used neural

network [23]. Important applications of MLP-NN include

automatic target recognition systems. For this reason, this

article uses MLP-NN as an identifier [2]. MLP-NN is one

of the most robust neural networks used for systems with

high nonlinearity. Also, the MLP-NN is a feed-forward

network capable of non-linear fittings with higher preci-

sion. Despite what has been said, one of the challenges

facing MLP-NN is always training and adjusting the edges’

bias and weight [7].

The steps for using meta-heuristic algorithms to teach

MLPNN are as follows: The first phase determines how to

display the connection weights. The second phase assesses

the fitness function to evaluate these connection weights,

which can be considered Mean Square Error (MSE) for the

recognition problems. In the third phase, the evolutionary

process is used to minimize the fitness function, which is

the MSE.

The technical design of the evolutionary strategy of

connection weights training can be presented in Fig. 7 and

Eq. 10.

A

Synthesis

SPLy

SPLx

SGG Synththt esis
SPhase (φ)

&  
Gain (G)

SPLy

SPLx A

Phase (φ)
&

Gainini (G)

Fig. 2 The block diagram of the

reverberation removal section

cFig. 3 Typical sound presentations produced by dolphins and whales

and their spectrogram
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(a) Bottlenose Dolphin

(b) Common Dolphin

(c) Atlantic Spotted Dolphin
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(d) Sperm Whale

(e) Northern Right Whale

(f) Killer Whale
bFig. 3 continued
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V~ ¼ W~:h~
on

¼ W11:W12:. . .:Wih: b1:b2:. . .: bh: M11: M12:. . .: Mhmgf
ð10Þ

where i represents the number of the input nodes, h denotes

the number of the hidden nodes, Wih indicates the con-

nection weight from the ith input node to the hth hidden

node, bh denotes the bias (threshold) of the hth hidden

neuron, qhm indicates the connection weight from the hth

hidden node to the mth output node.

As previously stated, the MSE is a common criterion for

evaluating an MLP-NNs as Eq. 11.

MSE ¼
X
m

i¼1

Ok
i � dki

� �2 ð11Þ

where m is the number of neurons in the MLP outputs, dki is

the optimal output of ith input unit in cases where kth

training sample is utilized, and Ok
i denotes the real output

of ith input unit in cases where the kth training sample is

observed in the input. The MLP must be adapted to a set of

training samples to be effective. Therefore, MLP perfor-

mance based on the mean MSE on all training samples is

calculated as:

E ¼
X
T

k¼1

Pm
i¼1 Ok

i � dki
� �2

T
ð12Þ

T denotes the number of training samples, dki denotes the

optimal output related to ith input when using kth the

training sample, and m denotes the number of outputs and

Ok
i indicates the input’s real output when using kth the

training sample. In the final stage, the recognizer needs a

meta-heuristic algorithm to tune the parameters mentioned

above. The next section proposes using an enhanced chimp

optimization algorithm (ChOA) with fuzzy logic called

FChOA as an instructor.

Energy 
Spectrum

Mel-Scale 
Filters

DTC
(Log)

Low Time
Liftering

DTC
(Log)

Peak 
Picking

Ŝ Xn

Fig. 4 The block diagram of the cepstrum liftering feature extraction process

Fig. 5 Correlation matrix for

extracted features

Analog Integrated Circuits and Signal Processing (2022) 111:403–417 409

123



4.1 Fuzzy-ChOA

In this section, a fuzzy system is proposed as a ChOA

developer. The first subsection introduces the ChOA

algorithm, and the second subsection describes how to use

the fuzzy system to adjust the ChOA control parameters.

4.1.1 Chimp optimization algorithm

This algorithm was introduced in 2020, inspired by the way

chimps were hunted by Khishe and Mousavi ([17]. The

behavior of the first two roles in team hunting, driver and

chase, is statistically described next:

d ¼ c: xprey tð Þ �m:xchimp tð Þ
�

�

�

� ð13Þ

xchimp tþ 1ð Þ ¼ xprey tð Þ � a � d ð14Þ

t represents the number of current iterations, a, m, and c

are coefficient vectors, xprey is the prey position vector, and

xchimp is the Chimp position vector. The vectors a, m and c,

are calculated by Eqs. (15), (16), and (17), respectively.

a ¼ 2 � f � r1 � f ð15Þ
c ¼ 2 � r2 ð16Þ
m ¼ Chaotic value ð17Þ

where f decreases nonlinearly by the iteration process from

2.5 to zero (in both exploration and extraction stages),

while r1 and r2 are random vectors in the interval [1,0].

Also, m is a vector that is calculated based on turbulent

maps. This vector indicates the effect of Chimp’s sexual

motivation on the hunting process.

The stochastic population generation of chimps is the

first step in the ChOA algorithm. Next, the chimps are

randomly arranged into four independent groups: driver,

barrier, chaser, and attacker. Each group strategy will

determine the location updating method of individual

chimps by determining the f vector, while all of the groups

aim to estimate the potential prey’s positions. The c and m

vectors are tuned adaptively and will enhance the local

minima avoidance and convergence rate.

Chimps (driver, barrier, and chaser) search for prey and

then surround it. The hunting process is usually carried out

by invading chimps. Chasing stimuli, obstacles, and

Chimps sometimes participate in the hunting process. To

Fig. 6 The typical visualization of produce sound cepstrum features (Northern Right Whale)

X1

Xi

X2

P1

P2

Q1

Q2

Ph

W11

Qm

b1

b2

bh

W12

W1h

W21

W22

W2h

Wi1

Wi2

Wih

M11

M12

M1m

M21

M22

M2m

Mh1

Mh2

Mhm

Input Layer Output LayerHidden Layer

Fig. 7 Introduction of MLP-NN as a search agent for a meta-heuristic

algorithm
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mathematically simulate chimps’ behavior, it is assumed

that the first attacker (the best solution available), the

stimulus, the obstacle, and the pursuer are more aware of

the potential prey’s location. Thus, the four solutions that

are the best solution are obtained, stored, and the other

Chimps are forced to update their positions according to

the best Chimp locations. This relationship is expressed by

Eqs. (18), (19), and (20).

dAttacker ¼ c1xAttac � m1xj j; dBarrier ¼ c2xBarrier � m2xj j
dChaser ¼ c3xChaser � m3xj j; dDriver ¼ c4xDriver � m4xj j

ð18Þ

x1 ¼ xAttacker � a1 dAttackerð Þ; x2 ¼ xBarrier � a2 dBarrierð Þ
x3 ¼ xChaser � a3 dChaserð Þ; x4 ¼ xDriver � a4 dDriverð Þ

ð19Þ

x t þ 1ð Þ ¼ x1 þ x2 þ x3 þ x4
4

ð20Þ

The m parameter mathematically models chimps’

chaotic behavior in the hunt’s final stage to obtain more

meat and, subsequently, more social favors such as

grooming.

4.1.2 Proposed fuzzy controlled system to adjust ChOA
control parameters

All optimization algorithms have essential and influential

parameters [30]. These parameters play a significant role in

the search process. For example, early convergence, con-

vergence rate, local optimization, exploration, and extrac-

tion depend on the correct and dynamic adjustment of these

significant parameters. As shown in the previous section

and Eqs. (15) and (16), a and c are two critical parameters

in ChOA. On the other hand, parameters a and c in classical

ChOA are influenced by random components r1 and r2. In

references ([31], fuzzy inference has been used as an

automatic adjuster of control parameters to upgrade and

modify them. According to studies, the fuzzy system is a

suitable candidate for intelligent control of control

parameters. It should be noted that efficiency and com-

plexity in most intelligent systems based on meta-heuristic

algorithms are directly related. The higher the efficiency,

the more complex the parallel. Therefore, the use of an

additional intelligent controller (fuzzy controller) increases

the computation’s complexity, which improves the per-

formance of the high-dimensional feature space. Therefore,

this paper uses fuzzy inference to develop ChOA.

The proposed fuzzy system has three stages of fuzzy-

ization, fuzzy inference, and de-fuzzy. The first step is

fuzzy construction. This step converts the inputs to the

fuzzy model for processing based on a fuzzy system. In the

second step, the fuzzy system evaluates and infers the rules

using the Mamdani inference algorithm. The last step is

called defuzzification, in which the results of fuzzy infer-

ence, which are in the form of fuzzy sets, are converted into

quantitative data and information.

Fig. 8. shows the proposed fuzzy model for adjusting the

control parameters of the chimp optimization algorithm.

In this model, the membership functions for fuzzifica-

tion (shown in Fig. 9) are:

Un: The number of repetitions in which the fitness

function has not changed. The Un the membership function

is shown in Fig. 9(a).

The parameter f: f is reduced nonlinearly from the range

of 2.5 to zero by the iteration process. Any continuous

function can perform independent group updates. These

functions must be selected so that f decreases during each

iteration. The membership function f is shown in Fig. 9(b).

After fuzzification of input data, a set of rules is pre-

sented using the Mamdani algorithm according to Table 1.

Next, the Mamdani inference machine’s output will be

defuzzification by two membership functions of parameters

a and c. The de-fuzzy phase consists of two parameters, a

and c, which, if properly adjusted, will define the boundary

between the exploration and extraction phases. Defuzzifi-

cation membership functions (shown in Fig. 10) The two

parameters a and c are:

The parameter a: a is a random variable in the range [5,

- 5]. This parameter leads to convergence or divergence of

search agents to prey. Figure 10.a shows the membership

function of parameter a.

The c: c parameter is a random variable in the range [2

and 0]. Vector c always needs to generate random values

and execute the exploration process in the initial iterations

and the final iterations. This factor has been beneficial to

avoid the occurrence of local minimum points. Fig-

ure 10(b) shows the membership function of parameter a.

5 Simulation results and discussion

to show the power and efficiency of MLP-FChOA, in

addition to using the sounds obtained in Sects. 2 and 3, the

reference dataset [36] is also used. As already mentioned,

To obtain the data set, the Xm vector is assumed to be an

input for the MLP-FChOA. The Xm dimension is 645 �44,

which implies that the data set contains 44 features and 645

samples. Also, the dimension of the benchmark dataset is

435 �44.

In MLP-FChOA, the number of input nodes is equal to

the number of features. 70% of the data was used for

training, and 30% was used for testing. To have a fair

comparison between the algorithms, the condition of

stopping 300 iterations is considered. There is no specific
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equation for obtaining the number of hidden layer neurons,

so Eq. 23 is used to obtain it [26].

H ¼ 2� N þ 1 ð23Þ

where N shows the number of the inputs, and H denotes the

number of the hidden nodes. Similarly, the number of

output neurons is equivalent to the marine mammal classes,

i. e., six neurons.

In order to have a fair evaluation of FChOA, the per-

formance of this algorithm with five benchmark algorithms

ChOA (M. [17], CVOA[34], HHO [12], KF [1], and BWO

[11] are measured. The basic parameters and the primary

values of these benchmark algorithms get demonstrated in

Table 2. The classifiers’ performance is then tested for

classification rate, local minimum avoidance, and conver-

gence speed. Each algorithm is run 33 times, and the

classification rate, mean and standard deviation of the

minimum error, and P-value are shown in Table 3. Mean

values and standard deviation of minimum error and P-

value indicate the algorithm’s strength in avoiding local

optimization. Figures 11 and 13 also show a comprehen-

sive comparison of the convergence speed and syntax and

the classifiers’ final error rate. Figures 12 and 14 show the

ROC curve to demonstrate the ability to evaluate

Fig. 8 A proposed fuzzy model

for setting parameters a and c

(a) The membership function of the Un (b) The membership function of the parameter f.

Fig. 9 the membership functions for fuzzification

Table 1 Fuzzy rules used
Rules

If (Un is Low) and (f is Low), Then (a is Medium_High) and (c is Medium)

If (Un is Low) and (f is Medium), Then (a is Medium_Low) and (c is Medium_Low)

If (Un is Low) and (f is High), Then (a is High) and (c is Low)

If (Un is Medium) and (f is Low), Then (a is Medium_High) and (c is Medium_High)

If (Un is Medium) and (f is Medium), Then (a is Medium_High) and (c is Medium_Low)

If (Un is Medium) and (f is High), Then (a is Medium_High) and (c is Low)

If (Un is High) and (f is Low), Then (a is Medium) and (c is High)

If (Un is High) and (f is Medium), Then (a is Medium_Low) and (c is Medium_Low)

If (Un is High) and (f is High), Then (a is High) and (c is Low)
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classifiers. All of the evaluation was carried out in

MATLAB-R2020a, on a PC with processor Intel Core i7-

4500u with a 2.3 GHz processor, 5 GB RAM running

memory, in Windows 10.

Figures 10, 11, 12, 13, 14 show the simulation results of

MLP training using different metaheuristic algorithms. For

a more comprehensive study and a fairer comparison, in

Table 3, in addition to the simulation results of MLP

training using metaheuristic methods, the simulation results

using the traditional method of descent gradient (GD) are

also discussed. Considering the values obtained in the

measured metrics, the use of GD for MLP training in this

investigation is very disappointing.

Adding a subsystem to a metaheuristic algorithm

increases its complexity. However, a comparison of the

convergence curves in Figs. 11 and 13 shows that the

FChOA achieved the global optimum faster than the other

algorithms used. Other algorithms were stuck in the local

optimum if they converged. In particular, by comparing the

ChOA and FChOA in Fig. 13, it can be seen that the use of

(a) The membership function of the parameter a. (b) The membership function of the parameter c.

Fig.10 the membership functions for defuzzification

Table 2 The initial parameters

and primary values of the

benchmark algorithms

Algorithm Parameter Value

ChOA r1:r2 Random values

m Chaotic maps

Number of chimps 55

FChOA a:c Tuning using a fuzzy system

m Chaotic maps

Number of chimps 55

CVOA P-die 0.06

P_isolation 0.7

P_Superspreader 0.2

P_reinfection 0.03

Social_distancing 9

P_Travel 0.2

Pandemic_duration 31

BWO PP 0.7

CR 0.45

PM 0.5

HHO v,u Random values inside (0,1)

B Constant set to 1.5

KF The covariance matrix of state estimation error R = 40I

Covariance matrix of artificial Noise xk Q = 40I

Covariance matrix of artificial Noise Vk PO = 40I
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an auxiliary (fuzzy system) subsystem is necessary to avoid

getting caught up in the local optimum in the ChOA. In

general, using a fuzzy system to improve ChOA increases

complexity. However, the convergence curves and better

performance of FChOA than other algorithms used show a

reduction in computational cost. Another evidence that,

despite increasing complexity, shows an improvement in

FChOA performance is the lower MSE of this algorithm

compared to other algorithms used.

As shown in Figs. 11 and13, among the benchmark

algorithms used for MLP training, FChOA has the highest

convergence speed by correctly detecting the boundary

between the exploration and extraction phases. KF has the

lowest convergence speed by adjusting control parameters.

As shown in Table 3, MLP-FChOA has the highest clas-

sification rate, and MLP-KF has the lowest classification

rate among the classifiers. The STD values, shown in

Table 3, indicate that the MLP-FChOA results rank first in

the two datasets, confirming that the FChOA performs

better than other standard training algorithms and demon-

strates the FChOA’s ability to avoid getting caught up in

local optimism. A P-value of less than 0.05 indicates a

significant difference between FChOA and other algo-

rithms. As shown in Figs. 12 and 14, the ROC curve also

confirms the algorithm’s better performance. Generally, the

precision-recall plot shows the trade-off between recall and

precision for various threshold levels. A high area under

the precision-recall curve represents high precision and

recall. High precision indicates a low false-positive rate,

and high-recall indicates a low false-negative rate. As can

be observed from the curves in Fig. 12, FChOA has a

higher area under the precision-recall curves.

Table 3 Results were obtained from different algorithms

Training

method

MLP training

algorithms

Benchmark dataset Experimental dataset

MSE(AVE±STD) P-
value

Classification rate

%

MSE(AVE ± STD) P-
value

Classification rate

%

ChOA 0.1381 ± 0.1483 1.351 65.6015 0.1388 ± 0.1563 2.009 35.8461

Metahsoristic FChOA 0.1016 – 0.1121 0.038 89.3480 0.1006 – 0.1222 0.019 89.1355

CVOA 0.1277 ± 0.1371 0.184 81.9422 0.1254 ± 0.1451 0.106 79.0043

BWO 0.1421 ± 0.1509 2.169 58.0248 0.1254 ± 0.1451 2.894 58.8453

HHO 0.1109 ± 0.1295 0.086 76.1208 0.1192 ± 0.1386 0.057 74.0199

KF 0.1611 ± 0.1662 2.871 18.01533 0.1530 ± 0.17244 3.322 57.9411

Traditional GD 0.5944 ± 0.6231 6.7892 13.4590 0.69908 ± 0.2576 6.908 11.9184

Fig. 11 Convergence diagram of different training algorithms for benchmark dataset
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6 Conclusion

This paper classified marine mammals based on intelligent

systems and used with an MLP-NN as a classifier. The

neural training network was performed using ChOA,

FChOA, CVOA, BWO, HHO, KF. The simulation results

showed that the fuzzy system performs the task of adjust-

ing and controlling the primary and proper parameters of

FChOA well and makes the algorithm powerful in deter-

mining the boundary between the exploration and

extraction phases and finding it possible to find the optimal

global algorithm and avoid getting stuck and Prevents local

optimizations. The convergence and ROC curves indicate

MLP-FChOA, MLP-HHO, MLP-CVOA, MLP-ChOA,

MLP-BWO, and MLP-KF, respectively, perform better in

the classification of marine mammals based on the sound

emitted from them, respectively. Also, the fastest conver-

gence speed is related to the MLP-FChOA classifier.

The research topics for the future are as follows:

• Using deep learning to classify marine mammals

Fig. 12 The ROC curves and precision-recall curves for different training algorithms for benchmark dataset

Fig. 13 Convergence diagram of different training algorithms for Datasets obtained in parts 2 and 3
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• Using of RBF network and metaheuristic algorithms to

classify marine mammals

• Investigating the role of chaotic maps in improving the

training of ANNs using metaheuristic mammal

• Implement FChOA to classify marine mammals using

FPGA

• Design of optimal neural network structure for marine

mammal classification
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9. González-hernández, F. R., Sánchez-fernández, L. P., Suárez-
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